440,240 research outputs found

    Informatics Engineering and Information Science : International Conference, ICIEIS 2011 Kuala Lumpur, Malaysia, November 14-16, 2011 Proceedings, Part II

    Get PDF
    The ICIEIS 2011 conference explored new advances in digital information and data communications technologies. It brought together researchers from various areas of computer science, information sciences, and data communications to address both theoretical and applied aspects of digital communications and wireless technology. We hope that the discussions and exchange of ideas will contribute to advancements in the technology in the near futur

    Regenerative and Adaptive schemes Based on Network Coding for Wireless Relay Network

    Full text link
    Recent technological advances in wireless communications offer new opportunities and challenges for relay network.To enhance system performance, Demodulate-Network Coding (Dm-NC) scheme has been examined at relay node; it works directly to De-map the received signals and after that forward the mixture to the destination. Simulation analysis has been proven that the performance of Dm-NC has superiority over analog-NC. In addition, the Quantize-Decode-NC scheme (QDF-NC) has been introduced. The presented simulation results clearly provide that the QDF-NC perform better than analog-NC. The toggle between analogNC and QDF-NC is simulated in order to investigate delay and power consumption reduction at relay node.Comment: 11 pages, 8 figures, International Journal of Computer Networks & Communications (IJCNC), Vol.4, No.3, May 201

    Wearable learning tools

    Get PDF
    In life people must learn whenever and wherever they experience something new. Until recently computing technology could not support such a notion, the constraints of size, power and cost kept computers under the classroom table, in the office or in the home. Recent advances in miniaturization have led to a growing field of research in ‘wearable’ computing. This paper looks at how such technologies can enhance computer‐mediated communications, with a focus upon collaborative working for learning. An experimental system, MetaPark, is discussed, which explores communications, data retrieval and recording, and navigation techniques within and across real and virtual environments. In order to realize the MetaPark concept, an underlying network architecture is described that supports the required communication model between static and mobile users. This infrastructure, the MUON framework, is offered as a solution to provide a seamless service that tracks user location, interfaces to contextual awareness agents, and provides transparent network service switching

    Telecommunications Protocols Fundamentals

    Get PDF
    The need for communication amongst people and electrical systems motivated the emergence of a large number of telecommunications protocols. The advances in digital networks and the internet have contributed to the evolution of telecommunications worldwide. The purpose of this chapter is to provide students and researchers with a clear presentation of telecommunications core protocols that are utilised in different research domains including telephony, brain-computer interface (BCI) and voice and digital telecommunications. Indeed, BCI involves different electrical signals, communications concepts and telecommunications protocols. This chapter introduces the reader to the core concepts in communications including analogue and digital telecommunications protocols that are utilised generally in communications and in particular in BCI systems. The topics covered in this chapter include telecommunications protocols, communications media, electrical signals, analogue and digital modulation techniques in digital communications, software-defined radio, overview on 10-Mbps Ethernet protocol and Session Initiation Protocol (SIP)

    Routing efficiency in wireless sensor-actor networks considering semi-automated architecture

    Get PDF
    Wireless networks have become increasingly popular and advances in wireless communications and electronics have enabled the development of different kind of networks such as Mobile Ad-hoc Networks (MANETs), Wireless Sensor Networks (WSNs) and Wireless Sensor-Actor Networks (WSANs). These networks have different kind of characteristics, therefore new protocols that fit their features should be developed. We have developed a simulation system to test MANETs, WSNs and WSANs. In this paper, we consider the performance behavior of two protocols: AODV and DSR using TwoRayGround model and Shadowing model for lattice and random topologies. We study the routing efficiency and compare the performance of two protocols for different scenarios. By computer simulations, we found that for large number of nodes when we used TwoRayGround model and random topology, the DSR protocol has a better performance. However, when the transmission rate is higher, the routing efficiency parameter is unstable.Peer ReviewedPostprint (published version

    Axon: A High Speed Communication Architecture for Distributed Applications

    Get PDF
    There are two complementary trends in the computer and communication fields. Increasing processor power and memory availability allow more demanding applications, such as scientific visualization and imaging. Advances in network performance and functionality have the potential for supporting programs requiring high bandwidth and predictable performance. However, the bottleneck in increasingly in the host-network interface, and thus the ability to deliver high performance communication capability to applications has not kept up with the advances in computer and network speed. We have proposed a new architecture that meets these challenges called Axon, whose novel aspects include: an integrated design of hardware, operating systems, and communications protocols, stressing both performance and the required functionality for demanding applications; the proper division of hardware and software function; and reorganization of end-to-end protocols to take advantage of the increased functionality of the emerging high speed internetworks

    Performance evaluation of two-fuzzy based cluster head selection systems for wireless sensor networks

    Get PDF
    Sensor networks supported by recent technological advances in low power wireless communications along with silicon integration of various functionalities are emerging as a critically important computer class that enable novel and low cost applications. There are many fundamental problems that sensor networks research will have to address in order to ensure a reasonable degree of cost and system quality. Cluster formation and cluster head selection are important problems in sensor network applications and can drastically affect the network’s communication energy dissipation. However, selecting of the cluster head is not easy in different environments which may have different characteristics. In this paper, in order to deal with this problem, we propose two fuzzy-based systems for cluster head selection in sensor networks. We call these systems: FCHS System1 and FCHS System2. We evaluate the proposed systems by simulations and have shown that FCHS System2 make a good selection of the cluster head compared with FCHS System1 and another previous system.Peer ReviewedPostprint (published version
    corecore