773 research outputs found

    Pre-training is a Hot Topic: Contextualized Document Embeddings Improve Topic Coherence

    Full text link
    Topic models extract meaningful groups of words from documents, allowing for a better understanding of data. However, the solutions are often not coherent enough, and thus harder to interpret. Coherence can be improved by adding more contextual knowledge to the model. Recently, neural topic models have become available, while BERT-based representations have further pushed the state of the art of neural models in general. We combine pre-trained representations and neural topic models. Pre-trained BERT sentence embeddings indeed support the generation of more meaningful and coherent topics than either standard LDA or existing neural topic models. Results on four datasets show that our approach effectively increases topic coherence

    What are Public Concerns about ChatGPT? A Novel Self-Supervised Neural Topic Model Tells You

    Full text link
    The recently released artificial intelligence conversational agent, ChatGPT, has gained significant attention in academia and real life. A multitude of early ChatGPT users eagerly explore its capabilities and share their opinions on it via social media. Both user queries and social media posts express public concerns regarding this advanced dialogue system. To mine public concerns about ChatGPT, a novel Self-Supervised neural Topic Model (SSTM), which formalizes topic modeling as a representation learning procedure, is proposed in this paper. Extensive experiments have been conducted on Twitter posts about ChatGPT and queries asked by ChatGPT users. And experimental results demonstrate that the proposed approach could extract higher quality public concerns with improved interpretability and diversity, surpassing the performance of state-of-the-art approaches

    A neural autoencoder approach for document ranking and query refinement in pharmacogenomic information retrieval

    Get PDF
    In this study, we investigate learning-to- rank and query refinement approaches for information retrieval in the pharmacogenomic domain. The goal is to improve the information retrieval process of biomedical curators, who manually build knowledge bases for personalized medicine. We study how to exploit the relationships be- tween genes, variants, drugs, diseases and outcomes as features for document ranking and query refinement. For a supervised approach, we are faced with a small amount of annotated data and a large amount of unannotated data. Therefore, we explore ways to use a neural document auto-encoder in a semi-supervised approach. We show that a combination of established algorithms, feature-engineering and a neural auto-encoder model yield promising results in this setting

    Tight Lower Bounds for Multiplicative Weights Algorithmic Families

    Get PDF
    We study the fundamental problem of prediction with expert advice and develop regret lower bounds for a large family of algorithms for this problem. We develop simple adversarial primitives, that lend themselves to various combinations leading to sharp lower bounds for many algorithmic families. We use these primitives to show that the classic Multiplicative Weights Algorithm (MWA) has a regret of Tlnk2\sqrt{\frac{T \ln k}{2}}, there by completely closing the gap between upper and lower bounds. We further show a regret lower bound of 23Tlnk2\frac{2}{3}\sqrt{\frac{T\ln k}{2}} for a much more general family of algorithms than MWA, where the learning rate can be arbitrarily varied over time, or even picked from arbitrary distributions over time. We also use our primitives to construct adversaries in the geometric horizon setting for MWA to precisely characterize the regret at 0.391δ\frac{0.391}{\sqrt{\delta}} for the case of 22 experts and a lower bound of 12lnk2δ\frac{1}{2}\sqrt{\frac{\ln k}{2\delta}} for the case of arbitrary number of experts kk

    Active classification with comparison queries

    Full text link
    We study an extension of active learning in which the learning algorithm may ask the annotator to compare the distances of two examples from the boundary of their label-class. For example, in a recommendation system application (say for restaurants), the annotator may be asked whether she liked or disliked a specific restaurant (a label query); or which one of two restaurants did she like more (a comparison query). We focus on the class of half spaces, and show that under natural assumptions, such as large margin or bounded bit-description of the input examples, it is possible to reveal all the labels of a sample of size nn using approximately O(logn)O(\log n) queries. This implies an exponential improvement over classical active learning, where only label queries are allowed. We complement these results by showing that if any of these assumptions is removed then, in the worst case, Ω(n)\Omega(n) queries are required. Our results follow from a new general framework of active learning with additional queries. We identify a combinatorial dimension, called the \emph{inference dimension}, that captures the query complexity when each additional query is determined by O(1)O(1) examples (such as comparison queries, each of which is determined by the two compared examples). Our results for half spaces follow by bounding the inference dimension in the cases discussed above.Comment: 23 pages (not including references), 1 figure. The new version contains a minor fix in the proof of Lemma 4.
    corecore