4 research outputs found

    Designing a Cavity Backed Microstrip Antenna with Enhanced Isolation for the Development of a Continuous Wave Ground Penetrating Radar

    Get PDF
    This paper presents an improved design of a rectangular microstrip antenna at 920 MHz by backing it with an appropriate cavity wall to enhance the isolation between the transmitter and receiver antenna for use in applications, where the weak received power gets masked by the direct coupled power between two antennas. Antennas having 0.12 λ cavity wall with separation gap of 0.36 λ resulted in an isolation of 52.6 dB at a resonance frequency of 920 MHz with maximum and minimum isolation of 71.4 dB and 49.1 dB, respectively for 5% BW of the antenna designed. These antennas were fabricated and tested, which are used in the development of Continuous Wave Ground Penetrating Radar with an online graphical user interface; leading to the validation of the usefulness of proposed antennas. The isolation achieved at an optimised separation of the antennas enabled detection of metal targets as small as a bunch of wire buried 20 cm in the soil and non-metal, like wood and plastic buried in soil. It enabled the detection of a circular steel target of radius 12.5 cm buried at a depth of 65 cm in loose semi-dry pebbled soil

    Advances in Monitoring Dynamic Hydrologic Conditions in the Vadose Zone through Automated High-Resolution Ground-Penetrating Radar Images and Analysis

    Get PDF
    This body of research focuses on resolving physical and hydrological heterogeneities in the subsurface with ground-penetrating radar (GPR). Essentially, there are two facets of this research centered on the goal of improving the collective understanding of unsaturated flow processes: i) modifications to commercially available equipment to optimize hydrologic value of the data and ii) the development of novel methods for data interpretation and analysis in a hydrologic context given the increased hydrologic value of the data. Regarding modifications to equipment, automation of GPR data collection substantially enhances our ability to measure changes in the hydrologic state of the subsurface at high spatial and temporal resolution (Chapter 1). Additionally, automated collection shows promise for quick high-resolution mapping of dangerous subsurface targets, like unexploded ordinance, that may have alternate signals depending on the hydrologic environment (Chapter 5). Regarding novel methods for data inversion, dispersive GPR data collected during infiltration can constrain important information about the local 1D distribution of water in waveguide layers (Chapters 2 and 3), however, more data is required for reliably analyzing complicated patterns produced by the wetting of the soil. In this regard, data collected in 2D and 3D geometries can further illustrate evidence of heterogeneous flow, while maintaining the content for resolving wave velocities and therefore, water content. This enables the use of algorithms like reflection tomography, which show the ability of the GPR data to independently resolve water content distribution in homogeneous soils (Chapter 5). In conclusion, automation enables the non-invasive study of highly dynamic hydrologic processes by providing the high resolution data required to interpret and resolve spatial and temporal wetting patterns associated with heterogeneous flow. By automating the data collection, it also allows for the novel application of established GPR data algorithms to new hydrogeophysical problems. This allows us to collect and invert GPR data in a way that has the potential to separate the geophysical data inversion from our ideas about the subsurface; a way to remove ancillary information, e.g. prior information or parameter constraints, from the geophysical inversion process

    Apports de l'ultra large bande et de la diversité de polarisation du radar de sol pour l'auscultation des ouvrages du génie civil

    Get PDF
    The Ground Penetrating Radar technique (GPR) is now widely used as a non destructive probing and imaging tool in several civil engineering applications mainly concerning inspection of construction materials and structures, mapping of underground utilities and voids, characterization of sub-structures, foundations and soil and estimation of sub-surface volumetric moisture content. GPR belongs to a continuously evolving field due to electronic integration, high-performance computing, and advanced signal processing. The promotion of this technology relies on the development of new system configurations and data processing tools for the interpretation of sub-surface images. In this context, the work presents first the dual polarization UWB ground coupled GPR system which has been developed recently. Then, the data processing has focalized on the development of analysis tools to transform the raw images in a more user-readable image in order to improve the GPR data interpretation especially within the scope of detection of urban pipes and soil characterization. The processing means used concern clutter removal in the pre-processing step using adaptations and extensions of the PCA and ICA algorithms. Moreover, a template matching image processing technique is presented to help the detection of hyperbola within GPR raw B-scan images. The dual polarization is finally shown to bring additional information and to improve the detection of buried dielectric objects or medium discontinuities. The performances of our analysis approaches are illustrated using synthetic data (3D FDTD simulations) and field-measurement data in controlled environments. Different polarization configurations and dielectric characteristics of objects have been considered. The potential for target discrimination has been quantified using statistical criteria such as ROCLa technique de Georadar (GPR) est actuellement largement utilisée comme une technique non-destructive de sondage et d'imagerie dans plusieurs applications du génie civil qui concernent principalement: l'inspection des structures et des matériaux de construction, la cartographie des réseaux enterrés et des cavités, la caractérisation des fondations souterraines et du sol ainsi que l'estimation de la teneur en eau volumique du sous-sol. Le radar GPR est une technique en continuelle évolution en raison de l'intégration toujours plus poussée des équipements électroniques, des performances des calculateurs numériques, et des traitements du signal avancés. La promotion de cette technologie repose sur le développement de nouvelles configurations de systèmes et d'outils de traitement des données en vue de l'interprétation des images du sous-sol. Dans ce contexte, les travaux de cette thèse présentent tout d'abord le système GPR ULB (Ultra large bande) à double polarisation couplé au sol, lequel a été développé récemment au laboratoire. Par la suite, les traitement des données ont été focalisés sur le développement d'outils d'analyse en vue d'obtenir à partir des images brutes des images plus facilement lisibles par l'utilisateur afin d'améliorer l'interprétation des données GPR, en particulier dans le cadre de la détection de canalisations urbaines et la caractérisation des sols. Les moyens de traitement utilisés concernent l'élimination du clutter au cours d'une étape de prétraitement en utilisant des adaptations et des extensions des algorithmes fondés sur les techniques PCA et ICA. De plus, une technique de traitement d'image ‘'template matching” a été proposée pour faciliter la détection d'hyperbole dans une image Bscan de GPR. La diversité de polarisation est enfin abordée, dans le but de fournir des informations supplémentaires pour la détection d'objets diélectriques et des discontinuités du sous-sol. Les performances de nos outils d'analyse sont évaluées sur de données synthétiques (simulations 3D FDTD) et des données de mesures obtenues dans des environnements contrôlés. Pour cela, nous avons considéré différentes configurations de polarisation et des objets à caractéristiques diélectriques variées. Le potentiel de discrimination des cibles a été quantifié en utilisant le critère statistique fondé sur les courbes RO
    corecore