9 research outputs found

    Advancements on SEFE and Partitioned Book Embedding Problems

    Full text link
    In this work we investigate the complexity of some problems related to the {\em Simultaneous Embedding with Fixed Edges} (SEFE) of kk planar graphs and the PARTITIONED kk-PAGE BOOK EMBEDDING (PBE-kk) problems, which are known to be equivalent under certain conditions. While the computational complexity of SEFE for k=2k=2 is still a central open question in Graph Drawing, the problem is NP-complete for k3k \geq 3 [Gassner {\em et al.}, WG '06], even if the intersection graph is the same for each pair of graphs ({\em sunflower intersection}) [Schaefer, JGAA (2013)]. We improve on these results by proving that SEFE with k3k \geq 3 and sunflower intersection is NP-complete even when the intersection graph is a tree and all the input graphs are biconnected. Also, we prove NP-completeness for k3k \geq 3 of problem PBE-kk and of problem PARTITIONED T-COHERENT kk-PAGE BOOK EMBEDDING (PTBE-kk) - that is the generalization of PBE-kk in which the ordering of the vertices on the spine is constrained by a tree TT - even when two input graphs are biconnected. Further, we provide a linear-time algorithm for PTBE-kk when k1k-1 pages are assigned a connected graph. Finally, we prove that the problem of maximizing the number of edges that are drawn the same in a SEFE of two graphs is NP-complete in several restricted settings ({\em optimization version of SEFE}, Open Problem 99, Chapter 1111 of the Handbook of Graph Drawing and Visualization).Comment: 29 pages, 10 figures, extended version of 'On Some NP-complete SEFE Problems' (Eighth International Workshop on Algorithms and Computation, 2014

    Hierarchical Partial Planarity

    Full text link
    In this paper we consider graphs whose edges are associated with a degree of {\em importance}, which may depend on the type of connections they represent or on how recently they appeared in the scene, in a streaming setting. The goal is to construct layouts of these graphs in which the readability of an edge is proportional to its importance, that is, more important edges have fewer crossings. We formalize this problem and study the case in which there exist three different degrees of importance. We give a polynomial-time testing algorithm when the graph induced by the two most important sets of edges is biconnected. We also discuss interesting relationships with other constrained-planarity problems.Comment: Conference version appeared in WG201

    Planarity of Streamed Graphs

    Full text link
    In this paper we introduce a notion of planarity for graphs that are presented in a streaming fashion. A streamed graph\textit{streamed graph} is a stream of edges e1,e2,...,eme_1,e_2,...,e_m on a vertex set VV. A streamed graph is ω\omega-stream planar\textit{stream planar} with respect to a positive integer window size ω\omega if there exists a sequence of planar topological drawings Γi\Gamma_i of the graphs Gi=(V,{ejij<i+ω})G_i=(V,\{e_j \mid i\leq j < i+\omega\}) such that the common graph Gi=GiGi+1G^{i}_\cap=G_i\cap G_{i+1} is drawn the same in Γi\Gamma_i and in Γi+1\Gamma_{i+1}, for 1i<mω1\leq i < m-\omega. The Stream Planarity\textit{Stream Planarity} Problem with window size ω\omega asks whether a given streamed graph is ω\omega-stream planar. We also consider a generalization, where there is an additional backbone graph\textit{backbone graph} whose edges have to be present during each time step. These problems are related to several well-studied planarity problems. We show that the Stream Planarity\textit{Stream Planarity} Problem is NP-complete even when the window size is a constant and that the variant with a backbone graph is NP-complete for all ω2\omega \ge 2. On the positive side, we provide O(n+ωm)O(n+\omega{}m)-time algorithms for (i) the case ω=1\omega = 1 and (ii) all values of ω\omega provided the backbone graph consists of one 22-connected component plus isolated vertices and no stream edge connects two isolated vertices. Our results improve on the Hanani-Tutte-style O((nm)3)O((nm)^3)-time algorithm proposed by Schaefer [GD'14] for ω=1\omega=1.Comment: 21 pages, 9 figures, extended version of "Planarity of Streamed Graphs" (9th International Conference on Algorithms and Complexity, 2015

    Constrained Planarity in Practice -- Engineering the Synchronized Planarity Algorithm

    Full text link
    In the constrained planarity setting, we ask whether a graph admits a planar drawing that additionally satisfies a given set of constraints. These constraints are often derived from very natural problems; prominent examples are Level Planarity, where vertices have to lie on given horizontal lines indicating a hierarchy, and Clustered Planarity, where we additionally draw the boundaries of clusters which recursively group the vertices in a crossing-free manner. Despite receiving significant amount of attention and substantial theoretical progress on these problems, only very few of the found solutions have been put into practice and evaluated experimentally. In this paper, we describe our implementation of the recent quadratic-time algorithm by Bl\"asius et al. [TALG Vol 19, No 4] for solving the problem Synchronized Planarity, which can be seen as a common generalization of several constrained planarity problems, including the aforementioned ones. Our experimental evaluation on an existing benchmark set shows that even our baseline implementation outperforms all competitors by at least an order of magnitude. We systematically investigate the degrees of freedom in the implementation of the Synchronized Planarity algorithm for larger instances and propose several modifications that further improve the performance. Altogether, this allows us to solve instances with up to 100 vertices in milliseconds and instances with up to 100 000 vertices within a few minutes.Comment: to appear in Proceedings of ALENEX 202

    Computing NodeTrix Representations of Clustered Graphs

    Full text link
    NodeTrix representations are a popular way to visualize clustered graphs; they represent clusters as adjacency matrices and inter-cluster edges as curves connecting the matrix boundaries. We study the complexity of constructing NodeTrix representations focusing on planarity testing problems, and we show several NP-completeness results and some polynomial-time algorithms. Building on such algorithms we develop a JavaScript library for NodeTrix representations aimed at reducing the crossings between edges incident to the same matrix.Comment: Appears in the Proceedings of the 24th International Symposium on Graph Drawing and Network Visualization (GD 2016

    Upward Book Embeddings of st-Graphs

    Get PDF
    We study k-page upward book embeddings (kUBEs) of st-graphs, that is, book embeddings of single-source single-sink directed acyclic graphs on k pages with the additional requirement that the vertices of the graph appear in a topological ordering along the spine of the book. We show that testing whether a graph admits a kUBE is NP-complete for k >= 3. A hardness result for this problem was previously known only for k = 6 [Heath and Pemmaraju, 1999]. Motivated by this negative result, we focus our attention on k=2. On the algorithmic side, we present polynomial-time algorithms for testing the existence of 2UBEs of planar st-graphs with branchwidth b and of plane st-graphs whose faces have a special structure. These algorithms run in O(f(b)* n+n^3) time and O(n) time, respectively, where f is a singly-exponential function on b. Moreover, on the combinatorial side, we present two notable families of plane st-graphs that always admit an embedding-preserving 2UBE

    27th Annual European Symposium on Algorithms: ESA 2019, September 9-11, 2019, Munich/Garching, Germany

    Get PDF
    corecore