2,940 research outputs found

    Advanced carrier sensing to resolve local channel congestion

    Get PDF
    Communication performance in VANETs under high channel load is significantly degraded due to packet collisions and messages drops, also referred to as local channel congestion. So far, research was focused on the control of transmit power and the limitation of the messages rate to mitigate the effects of high load. Few attention has been paid to the carrier sensing setup, i.e controlling WHEN the channel is indicated as clear. In previous work, we identified that the Clear Channel Assessment (CCA) as part of the carrier sensing is a very efficient way of controlling the spatial reuse under high load. The CCA threshold determines at which received power level the channel is sensed busy. In this paper, we propose a stepwise CCA Threshold Adjustment (CTA) depending on how long the packet has been waiting already for medium access. This basic and robust approach mitigates significantly the problem of local message queue drops and hence local congestion. The simulation study confirms the reduction of the average and maximum medium access delay as well as the prevention of message queue drops. Even under inaccurate CCA thresholds among the vehicles, fairness in medium access can be maintained by using CTA. In all cases, the awareness of each vehicle is dramatically improved within the safety-critical area of each vehicle

    Goodbye, ALOHA!

    Get PDF
    ©2016 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.The vision of the Internet of Things (IoT) to interconnect and Internet-connect everyday people, objects, and machines poses new challenges in the design of wireless communication networks. The design of medium access control (MAC) protocols has been traditionally an intense area of research due to their high impact on the overall performance of wireless communications. The majority of research activities in this field deal with different variations of protocols somehow based on ALOHA, either with or without listen before talk, i.e., carrier sensing multiple access. These protocols operate well under low traffic loads and low number of simultaneous devices. However, they suffer from congestion as the traffic load and the number of devices increase. For this reason, unless revisited, the MAC layer can become a bottleneck for the success of the IoT. In this paper, we provide an overview of the existing MAC solutions for the IoT, describing current limitations and envisioned challenges for the near future. Motivated by those, we identify a family of simple algorithms based on distributed queueing (DQ), which can operate for an infinite number of devices generating any traffic load and pattern. A description of the DQ mechanism is provided and most relevant existing studies of DQ applied in different scenarios are described in this paper. In addition, we provide a novel performance evaluation of DQ when applied for the IoT. Finally, a description of the very first demo of DQ for its use in the IoT is also included in this paper.Peer ReviewedPostprint (author's final draft

    Exploiting Regional Differences: A Spatially Adaptive Random Access

    Full text link
    In this paper, we discuss the potential for improvement of the simple random access scheme by utilizing local information such as the received signal-to-interference-plus-noise-ratio (SINR). We propose a spatially adaptive random access (SARA) scheme in which the transmitters in the network utilize different transmit probabilities depending on the local situation. In our proposed scheme, the transmit probability is adaptively updated by the ratio of the received SINR and the target SINR. We investigate the performance of the spatially adaptive random access scheme. For the comparison, we derive an optimal transmit probability of ALOHA random access scheme in which all transmitters use the same transmit probability. We illustrate the performance of the spatially adaptive random access scheme through simulations. We show that the performance of the proposed scheme surpasses that of the optimal ALOHA random access scheme and is comparable with the CSMA/CA scheme.Comment: 10 pages, 10 figure

    Channel estimation, synchronisation and contention resolution in wireless communication networks

    Get PDF
    In the past decade, the number of wireless communications users is increasing at an unprecedented rate. However, limited radio resources must accommodate the increasing number of users. Hence, the efficient use of radio spectrum is a critical issue that needs to be addressed. In order to improve the spectral efficiency for the wireless communication networks, we investigate two promising technologies, the relaying and the multiple access schemes. In the physical (PHY) layer of the open systems interconnect (OSI) model, the relaying schemes are capable to improve the transmission reliability and expand transmission coverage via cooperative communications by using relay nodes. Hence, the two-way relay network (TWRN), a cooperative communications network, is investigated in the first part of the thesis. In the media access control (MAC) layer of the OSI model, the multiple access schemes are able to schedule multiple transmissions by efficiently allocating limited radio resources. As a result, the contention-based multiple access schemes for contention resolution are explored in the second part of the thesis. In the first part of the thesis, the channel estimation for the two-way relay networks (TWRNs) is investigated. Firstly, the channel estimation issue is considered under the assumption of the perfect synchronisation. Then, the channel estimation is conducted, by relaxing the assumption of perfect synchronisation. Another challenge facing the wireless communication systems is the contention and interference due to multiple transmissions from multiple nodes, sharing the common communication medium. To improve the spectral efficiency in the media access control layer, a self-adaptive backoff (SAB) algorithm is proposed to resolve contention in the contention-based multiple access networks

    Channel estimation, synchronisation and contention resolution in wireless communication networks

    Get PDF
    In the past decade, the number of wireless communications users is increasing at an unprecedented rate. However, limited radio resources must accommodate the increasing number of users. Hence, the efficient use of radio spectrum is a critical issue that needs to be addressed. In order to improve the spectral efficiency for the wireless communication networks, we investigate two promising technologies, the relaying and the multiple access schemes. In the physical (PHY) layer of the open systems interconnect (OSI) model, the relaying schemes are capable to improve the transmission reliability and expand transmission coverage via cooperative communications by using relay nodes. Hence, the two-way relay network (TWRN), a cooperative communications network, is investigated in the first part of the thesis. In the media access control (MAC) layer of the OSI model, the multiple access schemes are able to schedule multiple transmissions by efficiently allocating limited radio resources. As a result, the contention-based multiple access schemes for contention resolution are explored in the second part of the thesis. In the first part of the thesis, the channel estimation for the two-way relay networks (TWRNs) is investigated. Firstly, the channel estimation issue is considered under the assumption of the perfect synchronisation. Then, the channel estimation is conducted, by relaxing the assumption of perfect synchronisation. Another challenge facing the wireless communication systems is the contention and interference due to multiple transmissions from multiple nodes, sharing the common communication medium. To improve the spectral efficiency in the media access control layer, a self-adaptive backoff (SAB) algorithm is proposed to resolve contention in the contention-based multiple access networks
    • …
    corecore