6 research outputs found

    Design and Implementation of an Innovative Internet of Things (IOT) based Smart Energy Meter

    Get PDF
    Energy meter is very essential measuring instrument for measuring the power in domestic, industrial etc. environment. Correct and appropriate measuring of power without any error is important in order to calculate the total power consumption and then for tariff calculation. In view of this, in this paper design and implementation on an innovative smart energy meter is proposed. The proposed smart energy meter is based on Internet of Things (IoT) applications. The paper describes its design along with its working

    A Comprehensive Review of Smart Energy Meters: An Innovative Approach

    Get PDF
    Energy meter is an important device used for measuring the power. It is used in customers� homes, industries etc. for measuring the electrical power. A lot of modifications and development has taken place in the construction and operation of the energy meters over a decade. In view of above this paper presents a review of the development of the energy meters and their applications. Energy meters and its different types along with the innovation in this field is been discussed in this paper

    The Analysis of Comparison Electrical Power Measurement on LED Lamps

    Get PDF
     Abstract— This study uses 2 variations of the value of the DC 12V LED lamp power that is 12W and 15W with 3 different brands of lamp variations. Measurement of input voltage and current is carried out using a Krisbow KW06-490 DC clampmeter that has been calibrated as a standard measuring instrument and a Krisbow KW06-491 DC clampmeter that has not been calibrated as a test gauge 1 and a Multimeter Viper DT830B that has not been calibrated as a test gauge 2. Data the current and input voltage between each lamp and different lamp brands are used to calculate the value of the test lamp power and then compare it.The big conclusion from this study was found that the error value between the value of the test power or the use of DC 12V LED lamps with 12W written power on R, S, and T brand lamps was ± 51.67%, ± 70.75%, ± 61.33 %. In 15W lamps the brands R, S, and T were ± 7.20%, ± 0.53%, ± 8.27%

    FPGA-based real time compensation method for medium voltage transducers

    Get PDF
    open5noSince the increase of the distributed power connected to the medium voltage networks, a capillary monitoring of the power quality becomes essential. This entails the spread of transducers with suitable frequency bandwidths, as required by the relevant standards. The paper describes a real time compensation method for the extension of the frequency bandwidth of medium voltage dividers whose performances do not allow to perform measurements over a wide frequency range. This approach will contribute to keep the costs of this innovation lowopenCrotti, Gabriella; Gallo, Daniele; Giordano, Domenico; Landi, Carmine; Inrim, Mario Luiso2 1Crotti, Gabriella; Gallo, Daniele; Giordano, Domenico; Landi, Carmine; Inrim, Mario Luiso2

    Development and metrological characterization of measuring instruments for low-voltage networks monitoring

    Get PDF
    This thesis collects the main results about my research and the work related to the designing of monitoring systems of LV distribution networks. The first three chapters are introductive; the first one describes the main concepts contained in the guide for the evaluation of measurement uncertainty (also called GUM), since some of them are recalled in the next sections. Chapter 2 provides the main notions on the smart grid concept, the new generation of distribution networks characterized by a high degree of automation, and on the main power quality problems affecting the grids. Therefore, the following standard, connected to the above topics, are presented: (i) EN 50160. (ii) IEEE 519. (iii) IEC 61000-4-7. Finally, chapter 3 presents a general description of the main sensors suitable for the LV monitoring systems for the acquisition of voltage and current waveforms, providing information on the working principles, the metrological performances and recalling the related standards (as the IEC 61869). Chapter 4 gets to the heart of the work done in my PhD course; in fact, the two monitoring devices specifically developed to meet the needs of the future smart grids are presented: the Guardian Meter and the Network Monitoring Unit. Hence, information is provided on the purposes of each device, on their technical characteristics, on the tests conducted for the metrological characterization and on the results related to measurement performance. It is noteworthy that the testing activity has led to the development of procedures, some of which innovative, for the metrological evaluation of monitoring devices. In fact, the last chapter collects the scientific outcomes deriving from the R&D activity, which can be the starting points for the updating of current standards related to monitoring systems and for the development of new procedures to evaluate the metrological performance of the energy meters

    Metrological characterization of sensors and instrumentation for distribution grid monitoring and electrical asset diagnostics

    Get PDF
    The Smart Grid needs a large amount of information to be operated and day by day new information is required to improve the operation performance. It is also fundamental that the available information is reliable and accurate. Therefore, the role of metrology is crucial, especially if applied to the distribution grid monitoring and the electrical assets diagnostics. This dissertation aims at better understanding the sensors and the instrumentation employed by the power system operators in the above-mentioned applications and studying new solutions. Concerning the research on the measurement applied to the electrical asset diagnostics: an innovative drone-based measurement system is proposed for monitoring medium voltage surge arresters. This system is described, and its metrological characterization is presented. On the other hand, the research regarding the measurements applied to the grid monitoring consists of three parts. The first part concerns the metrological characterization of the electronic energy meters’ operation under off-nominal power conditions. Original test procedures have been designed for both frequency and harmonic distortion as influence quantities, aiming at defining realistic scenarios. The second part deals with medium voltage inductive current transformers. An in-depth investigation on their accuracy behavior in presence of harmonic distortion is carried out by applying realistic current waveforms. The accuracy has been evaluated by means of the composite error index and its approximated version. Based on the same test setup, a closed-form expression for the measured current total harmonic distortion uncertainty estimation has been experimentally validated. The metrological characterization of a virtual phasor measurement unit is the subject of the third and last part: first, a calibrator has been designed and the uncertainty associated with its steady-state reference phasor has been evaluated; then this calibrator acted as a reference, and it has been used to characterize the phasor measurement unit implemented within a real-time simulator
    corecore