8,004 research outputs found

    The unlikely rise of masking interferometry: leading the way with 19th century technology

    Full text link
    The exquisite precision delivered by interferometric techniques is rapidly being applied to more and more branches of optical astronomy. One particularly successful strategy to obtain structures at the scale of the diffraction limit is Aperture Masking Interferometry, which is presently experience a golden age with implementations at a host of large telescopes around the world. This startlingly durable technique, which turns 144 years old this year, presently sets the standard for the recovery of faint companions within a few resolution elements from the core of a stellar point spread function. This invited review will give a historical introduction and overview of the modern status of the technique, the science being delivered, and prospects for new advances and applications.Comment: This is an invited review for SPIE Amsterdam in 2012. It presents a brief history of masking interferometry, and some thoughts on future progress. 11 pages, 4 figs, lots of ref

    Stellar Intensity Interferometry: Astrophysical targets for sub-milliarcsecond imaging

    Full text link
    Intensity interferometry permits very long optical baselines and the observation of sub-milliarcsecond structures. Using planned kilometric arrays of air Cherenkov telescopes at short wavelengths, intensity interferometry may increase the spatial resolution achieved in optical astronomy by an order of magnitude, inviting detailed studies of the shapes of rapidly rotating hot stars with structures in their circumstellar disks and winds, or mapping out patterns of nonradial pulsations across stellar surfaces. Signal-to-noise in intensity interferometry favors high-temperature sources and emission-line structures, and is independent of the optical passband, be it a single spectral line or the broad spectral continuum. Prime candidate sources have been identified among classes of bright and hot stars. Observations are simulated for telescope configurations envisioned for large Cherenkov facilities, synthesizing numerous optical baselines in software, confirming that resolutions of tens of microarcseconds are feasible for numerous astrophysical targets.Comment: 12 pages, 4 figures; presented at the SPIE conference "Optical and Infrared Interferometry II", San Diego, CA, USA (June 2010

    A self-calibration approach for optical long baseline interferometry imaging

    Full text link
    Current optical interferometers are affected by unknown turbulent phases on each telescope. In the field of radio-interferometry, the self-calibration technique is a powerful tool to process interferometric data with missing phase information. This paper intends to revisit the application of self-calibration to Optical Long Baseline Interferometry (OLBI). We cast rigorously the OLBI data processing problem into the self-calibration framework and demonstrate the efficiency of the method on real astronomical OLBI dataset

    The 2010 Interferometric Imaging Beauty Contest

    Full text link
    We present the results of the fourth Optical/IR Interferometry Imaging Beauty Contest. The contest consists of blind imaging of test data sets derived from model sources and distributed in the OI-FITS format. The test data consists of spectral data sets on an object "observed" in the infrared with spectral resolution. There were 4 different algorithms competing this time: BSMEM the Bispectrum Maximum Entropy Method by Young, Baron & Buscher; RPR the Recursive Phase Reconstruction by Rengaswamy; SQUEEZE a Markov Chain Monte Carlo algorithm by Baron, Monnier & Kloppenborg; and, WISARD the Weak-phase Interferometric Sample Alternating Reconstruction Device by Vannier & Mugnier. The contest model image, the data delivered to the contestants and the rules are described as well as the results of the image reconstruction obtained by each method. These results are discussed as well as the strengths and limitations of each algorithm.Comment: To be published in SPIE 2010 "Optical and infrared interferometry II

    Why Chromatic Imaging Matters

    Full text link
    During the last two decades, the first generation of beam combiners at the Very Large Telescope Interferometer has proved the importance of optical interferometry for high-angular resolution astrophysical studies in the near- and mid-infrared. With the advent of 4-beam combiners at the VLTI, the u-v coverage per pointing increases significantly, providing an opportunity to use reconstructed images as powerful scientific tools. Therefore, interferometric imaging is already a key feature of the new generation of VLTI instruments, as well as for other interferometric facilities like CHARA and JWST. It is thus imperative to account for the current image reconstruction capabilities and their expected evolutions in the coming years. Here, we present a general overview of the current situation of optical interferometric image reconstruction with a focus on new wavelength-dependent information, highlighting its main advantages and limitations. As an Appendix we include several cookbooks describing the usage and installation of several state-of-the art image reconstruction packages. To illustrate the current capabilities of the software available to the community, we recovered chromatic images, from simulated MATISSE data, using the MCMC software SQUEEZE. With these images, we aim at showing the importance of selecting good regularization functions and their impact on the reconstruction.Comment: Accepted for publication in Experimental Astronomy as part of the topical collection: Future of Optical-infrared Interferometry in Europ

    Long-baseline optical intensity interferometry: Laboratory demonstration of diffraction-limited imaging

    Full text link
    A long-held vision has been to realize diffraction-limited optical aperture synthesis over kilometer baselines. This will enable imaging of stellar surfaces and their environments, and reveal interacting gas flows in binary systems. An opportunity is now opening up with the large telescope arrays primarily erected for measuring Cherenkov light in air induced by gamma rays. With suitable software, such telescopes could be electronically connected and also used for intensity interferometry. Second-order spatial coherence of light is obtained by cross correlating intensity fluctuations measured in different pairs of telescopes. With no optical links between them, the error budget is set by the electronic time resolution of a few nanoseconds. Corresponding light-travel distances are approximately one meter, making the method practically immune to atmospheric turbulence or optical imperfections, permitting both very long baselines and observing at short optical wavelengths. Previous theoretical modeling has shown that full images should be possible to retrieve from observations with such telescope arrays. This project aims at verifying diffraction-limited imaging experimentally with groups of detached and independent optical telescopes. In a large optics laboratory, artificial stars were observed by an array of small telescopes. Using high-speed photon-counting solid-state detectors, intensity fluctuations were cross-correlated over up to 180 baselines between pairs of telescopes, producing coherence maps across the interferometric Fourier-transform plane. These measurements were used to extract parameters about the simulated stars, and to reconstruct their two-dimensional images. As far as we are aware, these are the first diffraction-limited images obtained from an optical array only linked by electronic software, with no optical connections between the telescopes.Comment: 13 pages, 9 figures, Astronomy & Astrophysics, in press. arXiv admin note: substantial text overlap with arXiv:1407.599

    Stellar intensity interferometry over kilometer baselines: Laboratory simulation of observations with the Cherenkov Telescope Array

    Full text link
    A long-held astronomical vision is to realize diffraction-limited optical aperture synthesis over kilometer baselines. This will enable imaging of stellar surfaces and their environments, show their evolution over time, and reveal interactions of stellar winds and gas flows in binary star systems. An opportunity is now opening up with the large telescope arrays primarily erected for measuring Cherenkov light in air induced by gamma rays. With suitable software, such telescopes could be electronically connected and used also for intensity interferometry. With no optical connection between the telescopes, the error budget is set by the electronic time resolution of a few nanoseconds. Corresponding light-travel distances are on the order of one meter, making the method practically insensitive to atmospheric turbulence or optical imperfections, permitting both very long baselines and observing at short optical wavelengths. Theoretical modeling has shown how stellar surface images can be retrieved from such observations and here we report on experimental simulations. In an optical laboratory, artificial stars (single and double, round and elliptic) are observed by an array of telescopes. Using high-speed photon-counting solid-state detectors and real-time electronics, intensity fluctuations are cross correlated between up to a hundred baselines between pairs of telescopes, producing maps of the second-order spatial coherence across the interferometric Fourier-transform plane. These experiments serve to verify the concepts and to optimize the instrumentation and observing procedures for future observations with (in particular) CTA, the Cherenkov Telescope Array, aiming at order-of-magnitude improvements of the angular resolution in optical astronomy.Comment: 18 pages, 11 figures; Presented at SPIE conference on Astronomical Telescopes + Instrumentation in Montreal, Quebec, Canada, June 2014. To appear in SPIE Proc.9146, Optical and Infrared Interferometry IV (J.K.Rajagopal, M.J.Creech-Eakman, F.Malbet, eds.), 201

    Stellar intensity interferometry: Experimental steps toward long-baseline observations

    Full text link
    Experiments are in progress to prepare for intensity interferometry with arrays of air Cherenkov telescopes. At the Bonneville Seabase site, near Salt Lake City, a testbed observatory has been set up with two 3-m air Cherenkov telescopes on a 23-m baseline. Cameras are being constructed, with control electronics for either off- or online analysis of the data. At the Lund Observatory (Sweden), in Technion (Israel) and at the University of Utah (USA), laboratory intensity interferometers simulating stellar observations have been set up and experiments are in progress, using various analog and digital correlators, reaching 1.4 ns time resolution, to analyze signals from pairs of laboratory telescopes.Comment: 12 pages, 3 figur

    Planet Formation Imager (PFI): Introduction and Technical Considerations

    Get PDF
    Complex non-linear and dynamic processes lie at the heart of the planet formation process. Through numerical simulation and basic observational constraints, the basics of planet formation are now coming into focus. High resolution imaging at a range of wavelengths will give us a glimpse into the past of our own solar system and enable a robust theoretical framework for predicting planetary system architectures around a range of stars surrounded by disks with a diversity of initial conditions. Only long-baseline interferometry can provide the needed angular resolution and wavelength coverage to reach these goals and from here we launch our planning efforts. The aim of the "Planet Formation Imager" (PFI) project is to develop the roadmap for the construction of a new near-/mid-infrared interferometric facility that will be optimized to unmask all the major stages of planet formation, from initial dust coagulation, gap formation, evolution of transition disks, mass accretion onto planetary embryos, and eventual disk dispersal. PFI will be able to detect the emission of the cooling, newly-formed planets themselves over the first 100 Myrs, opening up both spectral investigations and also providing a vibrant look into the early dynamical histories of planetary architectures. Here we introduce the Planet Formation Imager (PFI) Project (www.planetformationimager.org) and give initial thoughts on possible facility architectures and technical advances that will be needed to meet the challenging top-level science requirements.Comment: SPIE Astronomical Telescopes and Instrumentation conference, June 2014, Paper ID 9146-35, 10 pages, 2 Figure
    • …
    corecore