14 research outputs found

    Progettazione e Controllo di Mani Robotiche

    Get PDF
    The application of dexterous robotic hands out of research laboratories has been limited by the intrinsic complexity that these devices present. This is directly reflected as an economically unreasonable cost and a low overall reliability. Within the research reported in this thesis it is shown how the problem of complexity in the design of robotic hands can be tackled, taking advantage of modern technologies (i.e. rapid prototyping), leading to innovative concepts for the design of the mechanical structure, the actuation and sensory systems. The solutions adopted drastically reduce the prototyping and production costs and increase the reliability, reducing the number of parts required and averaging their single reliability factors. In order to get guidelines for the design process, the problem of robotic grasp and manipulation by a dual arm/hand system has been reviewed. In this way, the requirements that should be fulfilled at hardware level to guarantee successful execution of the task has been highlighted. The contribution of this research from the manipulation planning side focuses on the redundancy resolution that arise in the execution of the task in a dexterous arm/hand system. In literature the problem of coordination of arm and hand during manipulation of an object has been widely analyzed in theory but often experimentally demonstrated in simplified robotic setup. Our aim is to cover the lack in the study of this topic and experimentally evaluate it in a complex system as a anthropomorphic arm hand system

    Experimental evaluation of synergy-based in-hand manipulation

    Get PDF
    In this paper, the problem of in-hand dexterous manipulation has been addressed on the base of postural synergies analysis. The computation of the synergies subspace able to represent grasp and manipulation tasks as trajectories connecting suitable configuration sets is based on the observation of the human hand behavior. Five subjects are required to reproduce themost natural grasping configuration belonging to the considered grasping taxonomy and the boundary configurations for those grasps that admit internal manipulation. The measurements on the human hand and the reconstruction of the human grasp configurations are obtained using a vision-based mapping method that assume the kinematics of the robotic hand, used for the experiments, as a simplified model of the human hand. The analysis to determine the most suitable set of synergies able to reproduce the selected grasps and the relative allowed internal manipulation has been carried out. The grasping and in-hand manipulation tasks have been reproduced bymeans of linear interpolation of the boundary configurations in the selected synergies subspace and the results have been experimentally tested on the UB Hand IV

    Motion planning using synergies : application to anthropomorphic dual-arm robots

    Get PDF
    Motion planning is a traditional field in robotics, but new problems are nevertheless incessantly appearing, due to continuous advances in the robot developments. In order to solve these new problems, as well as to improve the existing solutions to classical problems, new approaches are being proposed. A paradigmatic case is the humanoid robotics, since the advances done in this field require motion planners not only to look efficiently for an optimal solution in the classic way, i.e. optimizing consumed energy or time in the plan execution, but also looking for human-like solutions, i.e. requiring the robot movements to be similar to those of the human beings. This anthropomorphism in the robot motion is desired not only for aesthetical reasons, but it is also needed to allow a better and safer human-robot collaboration: humans can predict more easily anthropomorphic robot motions thus avoiding collisions and enhancing the collaboration with the robot. Nevertheless, obtaining a satisfactory performance of these anthropomorphic robotic systems requires the automatic planning of the movements, which is still an arduous and non-evident task since the complexity of the planning problem increases exponentially with the number of degrees of freedom of the robotic system. This doctoral thesis tackles the problem of planning the motions of dual-arm anthropomorphic robots (optionally with mobile base). The main objective is twofold: obtaining robot motions both in an efficient and in a human-like fashion at the same time. Trying to mimic the human movements while reducing the complexity of the search space for planning purposes leads to the concept of synergies, which could be conceptually defined as correlations (in the joint configuration space as well as in the joint velocity space) between the degrees of freedom of the system. This work proposes new sampling-based motion-planning procedures that exploit the concept of synergies, both in the configuration and velocity space, coordinating the movements of the arms, the hands and the mobile base of mobile anthropomorphic dual-arm robots.La planificación de movimientos es un campo tradicional de la robótica, sin embargo aparecen incesantemente nuevos problemas debido a los continuos avances en el desarrollo de los robots. Para resolver esos nuevos problemas, así como para mejorar las soluciones existentes a los problemas clásicos, se están proponiendo nuevos enfoques. Un caso paradigmático es la robótica humanoide, ya que los avances realizados en este campo requieren que los algoritmos planificadores de movimientos no sólo encuentren eficientemente una solución óptima en el sentido clásico, es decir, optimizar el consumo de energía o el tiempo de ejecución de la trayectoria; sino que también busquen soluciones con apariencia humana, es decir, que el movimiento del robot sea similar al del ser humano. Este antropomorfismo en el movimiento del robot se busca no sólo por razones estéticas, sino porque también es necesario para permitir una colaboración mejor y más segura entre el robot y el operario: el ser humano puede predecir con mayor facilidad los movimientos del robot si éstos son antropomórficos, evitando así las colisiones y mejorando la colaboración humano robot. Sin embargo, para obtener un desempeño satisfactorio de estos sistemas robóticos antropomórficos se requiere una planificación automática de sus movimientos, lo que sigue siendo una tarea ardua y poco evidente, ya que la complejidad del problema aumenta exponencialmente con el número de grados de libertad del sistema robótico. Esta tesis doctoral aborda el problema de la planificación de movimientos en robots antropomorfos bibrazo (opcionalmente con base móvil). El objetivo aquí es doble: obtener movimientos robóticos de forma eficiente y, a la vez, que tengan apariencia humana. Intentar imitar los movimientos humanos mientras a la vez se reduce la complejidad del espacio de búsqueda conduce al concepto de sinergias, que podrían definirse conceptualmente como correlaciones (tanto en el espacio de configuraciones como en el espacio de velocidades de las articulaciones) entre los distintos grados de libertad del sistema. Este trabajo propone nuevos procedimientos de planificación de movimientos que explotan el concepto de sinergias, tanto en el espacio de configuraciones como en el espacio de velocidades, coordinando así los movimientos de los brazos, las manos y la base móvil de robots móviles, bibrazo y antropomórficos.Postprint (published version

    Human to robot hand motion mapping methods: review and classification

    Get PDF
    In this article, the variety of approaches proposed in literature to address the problem of mapping human to robot hand motions are summarized and discussed. We particularly attempt to organize under macro-categories the great quantity of presented methods, that are often difficult to be seen from a general point of view due to different fields of application, specific use of algorithms, terminology and declared goals of the mappings. Firstly, a brief historical overview is reported, in order to provide a look on the emergence of the human to robot hand mapping problem as a both conceptual and analytical challenge that is still open nowadays. Thereafter, the survey mainly focuses on a classification of modern mapping methods under six categories: direct joint, direct Cartesian, taskoriented, dimensionality reduction based, pose recognition based and hybrid mappings. For each of these categories, the general view that associates the related reported studies is provided, and representative references are highlighted. Finally, a concluding discussion along with the authors’ point of view regarding future desirable trends are reported.This work was supported in part by the European Commission’s Horizon 2020 Framework Programme with the project REMODEL under Grant 870133 and in part by the Spanish Government under Grant PID2020-114819GB-I00.Peer ReviewedPostprint (published version

    Design and Implement Towards Enhanced Physical Interactive Performance Robot Bodies

    Get PDF
    In this thesis, it will introduce the design principle and implement details towards enhanced physical interactive performance robot bodies, which are more specically focused on under actuated principle robotic hands and articulated leg robots. Since they both signicantly function as the physical interactive robot bodies against external environment, while their current performance can hardly satisfy the requirement of undertaking missions in real application. Regarding to the enhanced physical interactive performances, my work will emphasis on the three following specific functionalities, high energy efficiency, high strength and physical sturdiness in both robotics actuation and mechanism. For achieving the aforementioned targets, multiple design methods have been applied, rstly the elastic energy storage elements and compliant actuation have been adopted in legged robots as Asymmetrical Compliant Actuation (ACA), implemented for not only single joint but also multiple joints as mono and biarticulation congurations in order to achieve higher energy effciency motion. Secondly the under actuated principle and modular nger design concept have been utilized on the development of robotic hands for enhancing the grasping strength and physical sturdiness meanwhile maintaining the manipulation dexterity. Lastly, a novel high payload active tuning Parallel Elastic Actuation (PEA) and Series Elastic Actuation (SEA) have been adopted on legged robots for augmenting energy eciency and physical sturdiness. My thesis contribution relies on the novel design and implement of robotics bodies for enhancing physical interactive performance and we experimentally veried the design effectiveness in specic designed scenario and practical applications

    Design, Fabrication, and Control of an Upper Arm Exoskeleton Assistive Robot

    Get PDF
    Stroke is the primary cause of permanent impairment and neurological damage in the United States and Europe. Annually, about fifteen million individuals worldwide suffer from stroke, which kills about one third of them. For many years, it was believed that major recovery can be achieved only in the first six months after a stroke. More recent research has demonstrated that even many years after a stroke, significant improvement is not out of reach. However, economic pressures, the aging population, and lack of specialists and available human resources can interrupt therapy, which impedes full recovery of patients after being discharged from hospital following initial rehabilitation. Robotic devices, and in particular portable robots that provide rehabilitation therapy at home and in clinics, are a novel way not only to optimize the cost of therapy but also to let more patients benefit from rehabilitation for a longer time. Robots used for such purposes should be smaller, lighter and more affordable than the robots currently used in clinics and hospitals. The common human-machine interaction design criteria such as work envelopes, safety, comfort, adaptability, space limitations, and weight-to-force ratio must still be taken into consideration.;In this work a light, wearable, affordable assistive robot was designed and a controller to assist with an activity of daily life (ADL) was developed. The mechanical design targeted the most vulnerable group of the society to stroke, based on the average size and age of the patients, with adjustability to accommodate a variety of individuals. The novel mechanical design avoids motion singularities and provides a large workspace for various ADLs. Unlike similar exoskeleton robots, the actuators are placed on the patient\u27s torso and the force is transmitted through a Bowden cable mechanism. Since the actuators\u27 mass does not affect the motion of the upper extremities, the robot can be more agile and more powerful. A compact novel actuation method with high power-to-weight ratio called the twisted string actuation method was used. Part of the research involved selection and testing of several string compositions and configurations to compare their suitability and to characterize their performance. Feedback sensor count and type have been carefully considered to keep the cost of the system as low as possible. A master-slave controller was designed and its performance in tracking the targeted ADL trajectory was evaluated for one degree of freedom (DOF). An outline for proposed future research will be presented

    Simulation-based functional evaluation of anthropomorphic artificial hands.

    Get PDF
    This thesis proposes an outline for a framework for an evaluation method that takes as an input a model of an artificial hand, which claims to be anthropomorphic, and produces as output the set of tasks that the hand can perform. The framework is based on studying the literature on the anatomy and functionalities of the human hand and methods of implementing these functionalities in artificial systems. The thesis also presents a partial implementation of the framework which focuses on tasks of gesturing and grasping using anthropomorphic postures. This thesis focuses on the evaluation of the intrinsic hardware of robot hands from technical and functional perspectives, including kinematics of the mechanical structure, geometry of the contact surface, and functional force conditions for successful grasps. This thesis does not consider topics related to control or elements of aesthetics of the design of robot hands.The thesis reviews the literature on the anatomy, motion and sensory capabilities, and functionalities of the human hand to define a reference to evaluate artificial hands. It distinguishes between the hand's construction and functionalities and presents a discussion of anthropomorphism that reflects this distinction. It reviews key theory related to artificial hands and notable solutions and existing methods of evaluating artificial hands.The thesis outlines the evaluation framework by defining the action manifold of the anthropomorphic hand, defined as the set of all tasks that a hypothetical ideal anthropomorphic hand should be able to do, and analysing the manifold tasks to determine the hand capabilities involved in the tasks and how to simulate them. A syntax is defined to describe hand tasks and anthropomorphic postures. The action manifold is defined to be used as a. functional reference to evaluate artificial hands' performance.A method to evaluate anthropomorphic postures using Fuzzy logic and a method to evaluate anthropomorphic grasping abilities are proposed and applied on models of the human hand and the InMoov robot hand. The results show the methods' ability to detect successful postures and grasps. Future work towards a full implementation of the framework is suggested

    Advances in Robot Kinematics : Proceedings of the 15th international conference on Advances in Robot Kinematics

    Get PDF
    International audienceThe motion of mechanisms, kinematics, is one of the most fundamental aspect of robot design, analysis and control but is also relevant to other scientific domains such as biome- chanics, molecular biology, . . . . The series of books on Advances in Robot Kinematics (ARK) report the latest achievement in this field. ARK has a long history as the first book was published in 1991 and since then new issues have been published every 2 years. Each book is the follow-up of a single-track symposium in which the participants exchange their results and opinions in a meeting that bring together the best of world’s researchers and scientists together with young students. Since 1992 the ARK symposia have come under the patronage of the International Federation for the Promotion of Machine Science-IFToMM.This book is the 13th in the series and is the result of peer-review process intended to select the newest and most original achievements in this field. For the first time the articles of this symposium will be published in a green open-access archive to favor free dissemination of the results. However the book will also be o↵ered as a on-demand printed book.The papers proposed in this book show that robot kinematics is an exciting domain with an immense number of research challenges that go well beyond the field of robotics.The last symposium related with this book was organized by the French National Re- search Institute in Computer Science and Control Theory (INRIA) in Grasse, France
    corecore