4 research outputs found

    Advanced deep flux weakening operation control strategies for IPMSM

    Get PDF
    This paper proposes an advanced flux-weakening control method to enlarge the speed range of interior permanent magnet synchronous motor (IPMSM). In the deep flux weakening (FW) region, the flux linkage decreases as the motor speed increases, increasing instability. Classic control methods will be unstable when operating in this area when changing load torque or reference speed is required. The paper proposes a hybrid control method to eliminate instability caused by voltage limit violation and improve the reference velocity-tracking efficiency when combining two classic control methods. Besides, the effective zone of IPMSM in the FW is analyzed and applied to enhance stability and efficiency following reference velocity. Simulation results demonstrate the strength and effectiveness of the proposed method

    Flux-Weakening Control of Dual Three-Phase PMSM Based on Vector Space Decomposition Control

    Get PDF
    This paper proposes a flux-weakening (FW) control for dual three-phase ermanent magnet synchronous machine (DT-PMSM) based on vector space decomposition (VSD) control, where the output voltage in αβ sub-plane is employed for voltage feedback in the flux-weakening control loop. As the fundamental components are mapped to αβ sub-plane while the 5th and 7th harmonics are projected to harmonic z1z2 sub-plane, the flux-weakening current from this new control in αβ sub-plane is sixth harmonic-free regardless of the 5th and 7th harmonics being resulted from the non-sinusoidal back EMF or inverter non-linearity. The proposed control is compared with the conventional FW feedback control extended for DT-PMSM, where the FW control is applied to the two sets of three-phase windings separately. The experimental results show that the proposed FW control based on VSD is superior to the conventional FW control in terms of reduction in current unbalance and harmonic currents

    Advanced Angle Field Weakening Control Strategy of Permanent Magnet Synchronous Motor

    No full text

    Novel Flux-weakening Control of Permanent Magnet Synchronous Machines with Particular Reference to Stability Issues

    Get PDF
    For many applications, such as electric vehicles and washing machines, flux-weakening control is required for permanent magnet synchronous machine (PMSM) drives to extend the operation speed range and maximize the power capability under the voltage and current constraints. Voltage magnitude feedback flux-weakening control is widely employed due to its advantages of simple and standard control structure, robustness against parameter variation, both linear and over modulation flux-weakening operation, and automatic flux-weakening operation. However, stability problems are prone to occur in the flux-weakening region since the PMSM drive will operate on the boundary of the voltage limit. In this thesis, based on a non-salient-pole PMSM, the factors that could cause stability problems in the flux-weakening region with voltage magnitude feedback flux-weakening control are investigated and the corresponding solutions are developed. Firstly, based on a d-axis current voltage feedback controller, an adaptive control parameter method is proposed for the PMSM machine without maximum torque per voltage (MTPV) region, which aims to ensure the stability in a wider speed range. Then, a current reference modifier (CRM) and a voltage limit reference modifier (VRM) are incorporated with the conventional voltage feedback controller in order to improve the stability in the over modulation region. As for the PMSM machine with MTPV region, an extra feedback controller is introduced with an MTPV penalty function. The MTPV penalty function is optimized in terms of its effect on the steady-state performance, the dynamic performance, and the stability in the MTPV region. Afterward, the MTPV controller is properly selected and designed. Furthermore, two flux-weakening control methods accounting for MTPV, i.e. dq-axis current based feedback flux-weakening control, and current amplitude and angle based feedback flux-weakening control, are developed and compared in terms of the stability. It shows that the two methods exhibit complimentary merits and demerits in different regions, and consequently, a hybrid feedback flux-weakening control is proposed to combine their synergies and overcome their demerits. As the feedback voltage ripples that origin from the non-ideal drive system can be amplified by a conventional speed PI controller, the oscillation may even occur if a good speed dynamics is required in the flux-weakening region. An adaptive fuzzy logic speed controller is proposed and implemented to reduce the feedback voltage ripples while maintaining good speed dynamics
    corecore