251 research outputs found

    Advance Reservations for Distributed Real-Time Workflows with Probabilistic Service Guarantees

    Get PDF
    This paper addresses the problem of optimum allocation of distributed real-time workflows with probabilistic service guarantees over a Grid of physical resources made available by a provider. The discussion focuses on how such a problem may be mathematically formalised, both in terms of constraints and objective function to be optimized, which also accounts for possible business rules for regulating the deployment of the workflows. The presented formal problem constitutes a probabilistic admission control test that may be run by a provider in order to decide whether or not it is worth to admit new workflows into the system, and to decide what the optimum allocation of the workflow to the available resources is. Various options are presented which may be plugged into the formal problem description, depending on the specific needs of individual workflows

    Optimum Allocation of Distributed Service Workflows with Probabilistic Real-Time Guarantees

    Get PDF
    This paper addresses the problem of optimum allocation of distributed real-time workflows with probabilistic service guarantees over a set of physical resources. The discussion focuses on how such a problem may be mathematically formalized, in terms of both constraints and objective function to be optimized, which also accounts for possible business rules for regulating the deployment of the workflows. The presented formal problem constitutes a probabilistic admission control test that may be run by a provider in order to decide whether or not it is worth to admit new workflows into the system and to decide what the optimum allocation of the workflow to the available resources is. Various options are presented, which may be plugged into the formal problem description, depending on the specific needs of individual workflows. The presented problem has been implemented using GAMS and has been tested under various solvers. An illustrative numerical example and an analysis of the results of the implemented model under realistic settings are presented

    Quality of service based data-aware scheduling

    Get PDF
    Distributed supercomputers have been widely used for solving complex computational problems and modeling complex phenomena such as black holes, the environment, supply-chain economics, etc. In this work we analyze the use of these distributed supercomputers for time sensitive data-driven applications. We present the scheduling challenges involved in running deadline sensitive applications on shared distributed supercomputers running large parallel jobs and introduce a ``data-aware\u27\u27 scheduling paradigm that overcomes these challenges by making use of Quality of Service classes for running applications on shared resources. We evaluate the new data-aware scheduling paradigm using an event-driven hurricane simulation framework which attempts to run various simulations modeling storm surge, wave height, etc. in a timely fashion to be used by first responders and emergency officials. We further generalize the work and demonstrate with examples how data-aware computing can be used in other applications with similar requirements

    Survey and Analysis of Production Distributed Computing Infrastructures

    Full text link
    This report has two objectives. First, we describe a set of the production distributed infrastructures currently available, so that the reader has a basic understanding of them. This includes explaining why each infrastructure was created and made available and how it has succeeded and failed. The set is not complete, but we believe it is representative. Second, we describe the infrastructures in terms of their use, which is a combination of how they were designed to be used and how users have found ways to use them. Applications are often designed and created with specific infrastructures in mind, with both an appreciation of the existing capabilities provided by those infrastructures and an anticipation of their future capabilities. Here, the infrastructures we discuss were often designed and created with specific applications in mind, or at least specific types of applications. The reader should understand how the interplay between the infrastructure providers and the users leads to such usages, which we call usage modalities. These usage modalities are really abstractions that exist between the infrastructures and the applications; they influence the infrastructures by representing the applications, and they influence the ap- plications by representing the infrastructures

    Elastic admission control for federated cloud services

    Get PDF
    This paper presents a technique for admission control of a set of horizontally scalable services, and their optimal placement, into a federated Cloud environment. In the proposed model, the focus is on hosting elastic services whose resource requirements may dynamically grow and shrink, depending on the dynamically varying number of users and patterns of requests. The request may also be partially accommodated in federated external providers, if needed or more convenient. In finding the optimum allocation, the presented mechanism uses a probabilistic optimization model, which takes into account eco-efficiency and cost, as well as affinity and anti-affinity rules possibly in place for the components that comprise the services. In addition to modelling and solving the exact optimization problem, we also introduce a heuristic solver that exhibits a reduced complexity and solving time. We show evaluation results for the proposed technique under various scenarios

    An Empirical Analysis of Scheduling Techniques for Real-Time Cloud-Based Data Processing

    Get PDF
    In this paper, we explore the challenges and needs of current cloud infrastructures, to better support cloud-based data-intensive applications that are not only latency-sensitive but also require strong timing guarantees. These applications have strict deadlines (e.g., to perform time-dependent mission critical tasks or to complete real-time control decisions using a human-in-the-loop), and deadline misses are undesirable. To highlight the challenges in this space, we provide a case study of the online scheduling of MapReduce jobs executed by Hadoop. Our evaluations on Amazon EC2 show that the existing Hadoop scheduler is ill-equipped to handle jobs with deadlines. However, by adapting existing multiprocessor scheduling techniques for the cloud environment, we observe significant performance improvements in minimizing missed deadlines and tardiness. Based on our case study, we discuss a range of challenges in this domain posed by virtualization and scale, and propose our research agenda centered around the application of advanced real-time scheduling techniques in the cloud environment

    On-the-fly scheduling vs. reservation-based scheduling for unpredictable workflows

    Get PDF
    International audienceScientific insights in the coming decade will clearly depend on the effective processing of large datasets generated by dynamic heterogeneous applications typical of workflows in large data centers or of emerging fields like neuroscience. In this paper, we show how these big data workflows have a unique set of characteristics that pose challenges for leveraging HPC methodologies, particularly in scheduling. Our findings indicate that execution times for these workflows are highly unpredictable and are not correlated with the size of the dataset involved or the precise functions used in the analysis. We characterize this inherent variability and sketch the need for new scheduling approaches by quantifying significant gaps in achievable performance. Through simulations, we show how on-the-fly scheduling approaches can deliver benefits in both system-level and user-level performance measures. On average, we find improvements of up to 35% in system utilization and up to 45% in average stretch of the applications, illustrating the potential of increasing performance through new scheduling approaches
    • …
    corecore