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Abstract

Aiming at aggregating numerous distributed resources to provide immense com-

puting power, Grid computing has emerged as a promising paradigm to run com-

plex composite applications such as workflows. However, the inherent uncertain-

ties of grid systems as well as the structural complexity of workflow applications

make it extremely challenging to schedule workflows in an efficient way, regardless

of whether the objective is to minimize execution time or meet specific user and/or

system Quality of Service (QoS) requirements. For both these cases, this thesis

considers scheduling problems motivated by grid uncertainties and advances the

state-of-the-art by developing new techniques to address these problems.

First, based on existing scheduling heuristics, a Monte-Carlo approach is de-

veloped to minimize the average makespan (i.e., the overall execution time) in

the presence of task estimates exhibiting limited uncertainty in the form of (con-

trolled) random behaviour. Next, a scenario where performance prediction is

difficult to obtain and resource availability may vary over time, is considered. A

low-cost efficient just-in-time heuristic is proposed to cope with grid uncertainties.

After addressing these performance-driven scheduling problems, a QoS-driven

problem, which considers not only the aforementioned uncertainties but also the

uncertainty caused by queue-based scheduling, is examined. In order to tackle all

these uncertainties, an integrated scheduling model consisting of three supportive

techniques is developed. Extensive evaluation using simulation shows that the

proposed techniques can achieve substantial improvements towards the ultimate

goal of providing a good solution for QoS-driven workflow scheduling on the

Grid.
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Chapter 1

Introduction

This chapter provides a brief introduction of the whole thesis. Section 1.1 illus-

trates scheduling in the context of parallel execution, using a simple example.

Section 1.2 introduces Grid computing and workflow applications. Section 1.3

states the grid workflow scheduling problem. Section 1.4 describes the issues that

motivate our work. Section 1.5 presents aims and contributions of the present

research. Section 1.6 concludes the chapter with an overview of the structure of

this dissertation.

1.1 Scheduling and Parallelism

According to the Cambridge Advanced Learner’s Dictionary [Cam03], a schedule

is defined as a ‘timetable’ or ‘an official list of things’ or ‘a list of planned activities

or things to be done showing the times or dates when they are intended to happen

or be done’. In terms of the Oxford English Dictionary [SW89], scheduling is ‘the

action of entering in or drawing up a schedule’. Here, describing a scheduling

procedure as ‘drawing up a plan of activities or things to be done showing the

times or dates when they are intended to happen or be done’ comes the closest

to the topic of this thesis.

Before defining scheduling more precisely and specifically, an intuitive per-

ception is provided by introducing a simple example below, where scheduling

technique is applied to a job. Note that a job here is regarded as a collection of

multiple dependent or independent tasks.

Suppose there is a job to be done. The job consists of two tasks t1 and t2,

which are independent to each other. Two workers, w1 and w2 are hired to do the

14



CHAPTER 1. INTRODUCTION 15

Required Time w1 w2

t1 3 2
t2 4 6

Table 1.1: Execution time required by each worker to complete each task

job. One worker can only handle one task at a time, and the time each worker

needs to complete each job is predictable. As enumerated in Table 1.1, the worker

w1 needs 3 and 4 time units, respectively, to complete t1 and t2, while w2 needs 2

and 6. Apparently, different allocations of tasks to workers will lead to a different

completion time for the job. Given that the job is ready to start at time unit 0 at

the earliest, if one wants to complete the job as early as possible, he/she should

plan the job by assigning t1 to w2 and t2 to w1, and letting both workers start

at time 0. This results in a schedule which obtains the minimum job completion

time of 4 (= max{2, 4}).

Scheduling in the above example may be trivial. However, what this example

can demonstrate is manifold and well connected with the topic of this thesis.

From the example, three points can be extracted as follows.

First of all, it is illustrated that doing tasks in parallel (i.e., simultaneously

by different workers) can save the time of completing the job. In the above

example, if the tasks are both allocated to w1 or w2, correspondingly, the job

completion time will be 7 (= 3+4) or 8 (= 2+6). This example can be eas-

ily associated with the principle of parallel computing in computer science, in

which simultaneously running different parts of a computation on different CPUs

can speedup the computation. Here, a job is viewed as a computation, and

a worker a computational resource (e.g., CPU). For many years, parallel com-

puting, as well as the development of the capability of CPU, has been playing

an important role to satisfy the continuously growing computing demands from

various areas such as science, engineering and commerce. Actually, the inter-

est in parallel computing has grown even more quickly because of the physical

constraints hindering the advance of CPU capability. Nowadays, the popularity

of the Internet and the availability of high-speed networks make it possible for

geographically-distributed and decentralizedly-administered resources to collab-

orate to solve a single large-scale problem. This encourages the emergence of a

new parallel computing paradigm known as Grid computing [FK99, FK03]. Grid

computing has been widely recognized as a promising technology to aggregate the
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power of various geographically-distributed resources (e.g., personal computers,

supercomputers, clusters, storage systems, data sources and specialized devices)

owned by different organizations, to provide tremendous computational capabil-

ity in order to solve problems that are too big to be run at any single resource.

The work of this thesis is expected to contribute to the development of parallel

computing, especially grid computing technology.

Secondly, the provided example also demonstrates that a carefully crafted

schedule is crucial to the efficiency of doing tasks in parallel. An unwise sched-

ule usually results in a degradation of performance. In the example, if t1 and

t2 are allocated to w1 and w2, respectively, the job completion time will be 6

(=max{3, 6}), which is worse than the optimal result. Analogously, to explore

the promising potential of Grid computing, effective and efficient scheduling so-

lutions for grid systems are of fundamental importance.

Thirdly, the provided example depicts a generic formulation of a scheduling

problem, which is to make ‘a plan of activities or things to be done’ (i.e., a

schedule) for a given job in such a way that several constraints are respected

and some given objective is achieved. In the example, a schedule includes the

assignment of tasks and the setting of task start time. Some simple constraints

are assumed, such as ‘one worker can only handle one task at a time’ and the

objective is to ‘minimize the job completion time’. Some of these specifications,

such as the task assignment and the expected start time for each task, may also

appear in the schedule for an application in the context of grids.

1.2 Grid Computing and Workflow Applications

Nowadays, with the popularity of high-speed Internet, Grid computing has emerged

as a novel pattern of distributed computing. The main aim of Grid computing

is to form a federation of computers which may consist of multiple networked

resources within and/or across organizations to solve a grand problem that is too

big for any single personal computer. The grid resources, usually connected by

Ethernet, are often geographically distributed and from different administrative

domains. Without central administration, these resources are normally coordi-

nated by a set of open standards for pursuing common goals [Fos02]. The use

of supported resource includes not only conventional computing resources like

CPU, storage, and databases, but also various kinds of domain-specific services
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and on-line instruments [Yu09]. In practice, a considerable number of grid plat-

forms have been developed, such as EuroGrid [EG], Open Science Grid [OSG] and

TeraGrid [TG]. According to the diversity of resources, these systems can often

be categorized into Computational Grid, Data Grid, Knowledge Grid [FK99]. In

this thesis, we concentrate on Computational Grid (Grid, hereafter).

With the advance of grid technologies, it has been increasingly popular for to-

day’s grid systems to provide diverse sophisticated services to support workflow

applications (or, simply, workflows). Such applications have recently emerged

as a paradigm for representing, managing and automating complex composite

applications from diverse fields such as computational science, business and en-

gineering [DGST09]. A workflow application is a set of tasks with dependencies

between them that must be satisfied in order to achieve an overall goal. In re-

ality, there have been quite a few examples of workflow applications running on

grid platforms, such as e-Protein [EP] for biotechnology, EMAN [EM] for electron

micrograph analysis, GriPhyN [GP] for experimental physics, LEAD [LE] for me-

teorological data analysis and weather forecasting, Montage [MO] for astronomy,

and WIEN2K [WI] for quantum chemistry. All indications are that workflow

applications are and will be an important use case for Grid computing.

To achieve efficient workflow execution in grid environments, a bunch of tech-

niques are required to define, manage and execute complex workflows on the

grid resources with the above-mentioned features. An integration of these tech-

niques can be viewed as a workflow management system [YB05]. In recent years,

as the popularity of workflow applications grows, many workflow management

systems have been designed and developed, such as ASKALON [FJP+05], DAG-

Man/Condor [DA], GrADS [GR], GridFlow [CJSN03], Pegasus [PE] and Tav-

erna [OAF+04]. In general, some of the issues addressed by a workflow manage-

ment system involve how to: (i) define and represent the workflow tasks so that

they are understandable and executable for grid resources; (ii) obtain resource

information, including availability and capability of the grid resources; and (iii)

determine the appropriate allocation of tasks to resources and the start time

of executing the tasks. Although there may be diverse issues contributing to

the complicated challenge for a workflow management system to achieve efficient

workflow execution, at the core of this challenge is workflow scheduling.
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1.3 The Grid Workflow Scheduling Problem

The workflow scheduling problem considered in this thesis is the process of find-

ing a solution (which is often described as a scheduling algorithm) to determine

the assignment of the workflow tasks to resources. This may also include the

start time of these tasks on the resources so that several specified constraints

are respected and one or more given objectives are met. Typically, the workflow

scheduling problem involves a set of problem variables including the details of the

workflow, the characteristics of the underlying system, the scheduling objective(s)

etc. These variables are usually depicted by a set of parameters, which may spec-

ify the constraints on the scheduling process (e.g., dependencies between tasks)

or information about the computing environment (e.g., the number of resources,

the predicted execution time of each task on each resource).

The most common representation of a workflow is the directed graph, which

can be classified into two categories: acyclic (DAG) and cyclic (DCG) [DGST09].

The former category is much more used than the latter. In this thesis, we con-

centrate on the workflows that can be represented by a DAG. DAG scheduling is

recognized as an NP-hard problem [GJ79]. In mathematical terms, if a problem

is NP-hard, then no polynomial time algorithm exists for its solution, unless P

= NP [Uet01]. The latter condition is generally not considered to be likely. This

leads to the issue that the algorithmic approach to solve such problems becomes

a big challenge.

In addition, several inherent features of grid systems may render it more chal-

lenging to realize the efficient execution of a workflow. Firstly, the grid resource

set is normally heterogeneous, i.e., different resources may have different hardware

and/or software configuration and capability. This makes it not only important

but also difficult to obtain a proper task-resource mapping for a workflow. Mainly

due to the lack of centralized ownership and control and multiple users competing,

grid resources are inherently dynamic and unpredictable. For instance, resources

may exhibit varying availability and capability that change over time. Moreover,

in spite of the development of prediction techniques, it is inevitable that the task

execution time estimation is unlikely to be entirely accurate [JHSN05]. Thus,

from the scheduler’s point of view, the availability and capability of resource,

and the performance prediction may appear to be uncertain. Such uncertainties,

existing through the whole process of workflow scheduling, contribute to even

greater complexity of the workflow scheduling problem.



CHAPTER 1. INTRODUCTION 19

In the context of grid computing, the users and the resource owners may have

different goals. Therefore, different models may be used to capture these goals.

In turn, these models will lead to different scheduling strategies and patterns.

Two of the most commonly used models are Performance-driven and QoS-driven:

Performance-driven model is a traditional scheduling model that attempts

to optimize performance metrics, such as the completion time of workflow or

the system throughput. Performance-driven workflow management systems

(e.g., DAGMan/Condor [DA], GrADS [GR], Taverna [OAF+04]) usually

adopt conventional strategies, where a scheduling component decides which

tasks are to be executed at which resource based on some cost functions

driven by performance metrics, whereas the applications submitted by users

are normally scheduled in best-effort manner. In such a scheduling manner,

the scheduler attempts to optimize performance metrics whereas ignores

users’ various requirements on satisfaction and resource access cost (price).

QoS-driven model, in contrast, focuses on striking a tradeoff between the dif-

ferent and often conflicting requirements from users and service providers.

Although the optimization of performance metrics might be significant for

users, it is also envisaged that future fully deployed grid environments will

need to guarantee a certain level of quality of service (QoS). Such QoS is

usually based on some attributes that users find important, e.g., the dead-

line by which their jobs have to be completed. This model is often associated

with the so-called market-based grids [BB07]. From the users’ perspective,

once their QoS requirements are satisfied, they would be happy to make

the payment that is commensurate to the successful service provision and

within their budget. From the service providers’ perspective, they would

like their owned resources, which provide services, to be sufficiently utilized

so that the profit can be maximized. Like a contract in the real world, a

Service Level Agreement (SLA), which is an agreement providing an ex-

plicit statement of the expectation and obligation of both sides—the user

and the service providers—in their business relationship, plays a crucial role

in market-based grids.

In this thesis, we consider grid workflow scheduling problems based on not only

performance-driven model but also QoS-driven model. We focus on workflow

completion time (i.e., makespan) as the performance metric to evaluate the
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performance-driven model, and the satisfaction of QoS constraints on economic

budget and time deadline in QoS-driven model. In a performance-driven model,

two types of uncertainty may affect the optimization of makespan: one is the

uncertainty in task performance prediction [JHSN05], and the other is the un-

certainty caused by varying resource availability. In a QoS-driven model, these

two uncertainties can also affect the guarantee to user’s QoS requirements and

the maximization of the service provider’s profit. Moreover, with conventional

queue-based scheduling systems, which run a task when it gets to the head of

the queue, it is commonly reckoned inappropriate to provide guarantees to users’

requirements, for example, when a hard deadline is specified. As a result, advance

reservation [Mac03] is introduced into the scheduler so that a task can be made

to run on a specific resource at a precise time. Or compensation may be given

depending on how far the deadline is overshot [SCJ+05]. However, various issues

may still arise from advance reservation due to the uncertainty in performance

prediction [MSK+04]. Generally, the objective of this thesis is to develop efficient

scheduling approaches to cope with the lack of predictability in grid environments

so as to achieve different functional objectives with both performance-driven and

QoS-driven models.

As a classic problem, DAG scheduling has been extensively studied in the

context of heterogeneous systems. However, frequently, such computing environ-

ments are not viewed as dynamic as grids. A big challenge for grid workflow

management systems is how to deal with the inherent uncertainties of grid en-

vironments in the scheduling and management for workflow execution so as to

achieve high efficiency.

1.4 Motivation

Traditionally, the workflow scheduling problem that has been extensively studied

considers the static case, where it is commonly assumed that the estimation of

task execution times of a workflow is accurate. In this case, full-ahead static

scheduling heuristics are trying to take into account the structure of the graph

and the nature of the resources to build a good schedule. Two typical exam-

ple approaches that follow this scheduling pattern are presented in [THW02]

and [SZ04a]. However, accurate prediction is hardly possible in reality, espe-

cially for highly dynamic grid systems, where runtime changes may probably
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degrade the expected performance of the static scheduling heuristics that rely

upon performance estimation to make scheduling decision. Nevertheless, it can

be argued that a well-crafted static schedule can still exhibit competitive running

performance in the dynamic context with prediction uncertainty [JHSN05]. This

motivates the exploration in this study of full-ahead scheduling as a scheme to

cope with prediction inaccuracy so as to optimize application performance.

In the case of highly dynamic grid environments, where resource availability is

not guaranteed and it is hard to obtain estimation of task execution time, a just-

in-time scheduling scheme will be a better choice than a full-ahead that relies

on stable resource availability and information about performance estimation. To

avoid these uncertainties in early allocation, just-in-time scheduling approaches

make a task allocation decision only when a workflow task is ready to execute, i.e.,

the data dependency restriction has been released. These approaches have been

adopted by several workflow management systems such as DAGMan [TWML01]

and Pegasus [DBG+04]. Among the efforts on developing just-in-time schedul-

ing heuristics, the direction of seeking a deliberate execution order of tasks to

acquire best possible parallelism of ready tasks seems to be promising [Ros04].

However, the existing heuristics on this direction are based on decomposition of

DAG structure [MFR07], and thus have limitations of incomplete applicability

and high overhead. Hence, it seems worth the effort to develop a new just-in-

time scheduling heuristic, which has low cost and is useable for an arbitrary DAG

structure.

The performance-driven model, in which user applications are executed in a

best-effort manner, is naturally unsuitable to guarantee a certain level of user’s

QoS requirements. In the context of a QoS-driven model where performance es-

timation can usually be obtained, market-based grid systems may allow users to

make advance reservations to secure resource availability and guarantee users’

QoS requirements. However, due to estimation inaccuracy, problems may still

arise for not only user’s QoS guarantee but also service provider’s benefits [MSK+04].

Although there has been increasing research interests on providing QoS in market-

based grids [ABG02, ZBN+04, YB04, SY08, Qua06a, SCJ+05], few efforts so far

have tried to deal with the uncertainty in performance estimation for workflow

applications in a way that both meets user’s hard QoS constraints and maxi-

mizes service provider’s benefit. This fact also motivates a big portion of the

work present in this thesis.
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1.5 Aims and Contributions

The aim of this work is to investigate grid workflow scheduling techniques that

can cope well with the inherent unpredictability of grid systems. For this purpose,

the thesis considers both settings: (i) settings where the model followed is strictly

performance-driven and (ii) settings where the model followed is QoS-driven.

The thesis starts with investigating how the existing full-ahead static schedul-

ing heuristics behave with the stochastic deviation of task execution time in run-

time, and then develops an approach aiming to optimize the average workflow

makespan (i.e., the overall execution time of the whole workflow) with the predic-

tion uncertainty in a performance-driven model. The second goal of this thesis is

to design an efficient and effective just-in-time scheduling heuristic to deal with

such a situation in a performance-driven model, where the information the full-

ahead heuristics rely upon to make scheduling decisions (such as task execution

time and/or resource availability in the future) is hard to obtain. Then, the thesis

turns to the complex mission of tackling uncertainties for the QoS-driven workflow

scheduling. The ultimate goal of this mission is to design an SLA-based schedul-

ing model so as to guarantee users’ QoS requirements and meanwhile maximize

service providers’ benefits. This challenge is broken into three sub-problems as

follows: (i) how to efficiently find a plan about the allocation of tasks of the work-

flow to different resources to judge whether or not the user’s QoS constraints can

be met; (ii) how to make an advance reservation for each individual task of the

workflow to strike a balance between satisfying multiple users’ QoS requirements

and the benefit of service providers; (iii) how to schedule the reserved tasks with

a flexible start time in local resources to maximize the resource utilization and

service providers’ profits.

By realizing these goals, the present thesis makes the following contributions:

• A novel Monte Carlo-based approach that extends static full-ahead work-

flow scheduling heuristics to stochastic scheduling has been proposed to im-

prove the average makespan over various cases where task execution time

changes stochastically.

• A novel priority-based just-in-time workflow scheduling heuristic has been

proposed, which maximizes the parallelism of ready tasks of workflow during

runtime in order to improve the average makespan at a low cost.
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• A novel SLA-based workflow scheduling model has been developed to both

guarantee users’ QoS constraints and maximize service providers’ profit.

More precisely, this SLA-based workflow scheduling model contributes on

three aspects including planning, advance reservation and local scheduling

as follows:

– A novel workflow planning heuristic has been developed for the SLA-

based scheduling model to determine efficiently whether or not the

deadline-budget constraints specified by users can be satisfied in terms

of the existing load of resources.

– Novel advance reservation strategies have been developed for the SLA-

based scheduling model to automate the advance reservation for work-

flow applications in order to both guarantee the user’s QoS require-

ments under task execution time changes and maximize the overall

profits earned by service providers.

– A novel local scheduling policy has been developed for the SLA-based

scheduling model to reduce the utilization fragments caused by ad-

vance reservation so as to maximize the resource utilization and service

providers’ profits.

1.6 Thesis Organization

To give a concise overview, this section summarizes the contents of the following

individual chapters. The rest of this thesis consists of two main parts. Chapters

2 and 3 focus on the uncertainties of a performance-driven model and Chapters

4, 5, 6 and 7 contribute to addressing the uncertainties in a QoS-driven model.

Each chapter is intended to be rather self-contained. Figure 1.1 illustrates how

all of these chapters are organized and connected. The details of the following

chapters are itemized as follows:

Chapter 2: A Monte Carlo-based approach for full-ahead scheduling heuristics.

Since the majority of the existing workflow scheduling heuristics rely upon

traditional queue-based (i.e., best-effort) scheduler [MSK+04], the thesis

begins with an investigation aiming to make improvement on the average

performance under such a scheduling mechanism. This chapter proposes a
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novel Monte Carlo-based approach to minimize the average makespan in the

cases where task execution times can be viewed as random variables. The

simulated evaluation results suggest that the proposed approach provides

significant improvement on the average makespan compared with that of

static scheduling heuristics.

Chapter 3: A priority-based just-in-time scheduling heuristic. This work is

motivated by a simple intuition, that is, when the tasks in a workflow are

executed in such a sequence that maximize the ready tasks, the applica-

tion should obtain considerable performance even if the remote resources

change unpredictably over time. In this chapter, a priority-based heuristic is

proposed to maximize the parallelism of ready tasks. The simulated evalua-

tion suggests that the proposed heuristic not only outperforms comparative

heuristics but also runs at a lower cost.

Chapter 4: Overview of SLA-based scheduling system. This chapter depicts the

big picture of the proposed SLA-based scheduling system, reviews the state-

of-art of the existing market-based scheduling and resource management

systems and highlights the distinction of the present study.

Chapter 5: Budget-Deadline Constrained (BDC) workflow planning heuris-

tics. When a user submitted a workflow request with specified budget and

deadline constraints, the scheduling system must know in advance if it is

feasible to meet the user’s constraints in terms of current resource capacity

to decide whether accepting the request or not. In this chapter, we propose

and evaluate a new heuristic that can efficiently plan workflow applications

with considering the user-specified budget and deadline constraints as well

as the existing load of resources.

Chapter 6: SLA-based advance reservation. Based on the heuristic proposed in

Chapter 5, this chapter investigates how to appropriately overestimate task

execution time in advance reservation planning to guarantee user’s QoS con-

straints under performance prediction uncertainty. To address the problem,

several novel advance reservation strategies are designed and a simulator is

implemented to evaluate the strategies’ performance on both guarantee-

ing user’s QoS constraints and maximizing service provider’s benefit in the

scenario of multiple workflows.
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Chapter 7: SLA-based local scheduling. With overestimation of task execu-

tion time, the advance reservation strategies designed in Chapter 6 may

probably result in low resource utilization when tasks are completed earlier

than expected. This chapter presents local scheduling policies to make use

of the flexibility of SLA-base reservations to improve the resource utiliza-

tion. Here, ‘flexibility’ means that the individual reserved tasks in local

resources can be adjusted freely as long as the deadline constraints and the

task dependencies are satisfied. The proposed approach defines two impor-

tant notions to specify the earliest possible start time and latest possible

finish time for a reserved workflow task according to task dependencies, and

employs a backfilling technique to adjust the start time of reserved tasks in

local resources in order to improve the resource utilization and consequently

increase service providers’ revenue.

Chapter 8: Conclusion. This chapter reviews the thesis’ contributions and

discusses directions for future work.
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Figure 1.1: Thesis Structure



Chapter 2

A Monte-Carlo Approach for

Full-ahead Scheduling

Static full-ahead scheduling schemes have been extensively studied in the con-

text of heterogeneous computing systems and applied by several grid schedulers.

However, in practice, the inaccuracy in performance prediction is always un-

avoidable, and to some extent, this may place an obstacle in the way of achieving

performance-efficient schedules for workflow applications in grid environments.

In addition, since heuristics do not provide globally optimal solutions, any per-

formance prediction inaccuracies may affect the quality of their schedule even

more.

This chapter reviews the existing static full-ahead scheduling heuristics, and

extends the development of a full-ahead scheduling scheme admitting the uncer-

tainty in performance prediction and treating each task execution time estimation

as a random variable. The main contribution of this chapter is a novel full-ahead

scheduling approach which exploits the existing static scheduling heuristics’ tal-

ents to achieve minimum workflow completion time under performance prediction

uncertainty. The scheme is implemented by combining two classic static schedul-

ing heuristics respectively and evaluated by means of an extensive simulation at

the end of this chapter. The experimental results demonstrate the great advan-

tage the proposed approach has on minimizing workflow completion time with

inaccurate task execution time estimation.

27
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2.1 Background

Scheduling plays an important role in computer science when problems arise in

the control of sequential or parallel processing on a computer, or a network of

computers. An early example was scheduling in the context of multiprocessing

operating system design for a single computer [Sim78, LKB77]. With the de-

velopment of parallel computing, more and more research interests have been

attracted to investigating how multiple tasks can be mapped across processors

or machines to speedup the sequential performance of applications in parallel.

During the late 1980s and early 1990s, scheduling studies mainly concentrated

on multiple-processor and homogeneous environments [KA99]. Later on, as large

scale distributed computing systems emerged, heterogeneous resources were en-

couraged to cooperate to resolve large problems. As a consequence, this motivated

a great many further scheduling studies (for example, [THW99, BBR02a]) which

take the heterogeneity of resources into account. Nowadays, with the popularity

of grid computing paradigms, and the growing demand for workflow applications

(especially those which can be presented by directed acyclic graph (DAG)), there

has been a recent increase of efforts to research DAG scheduling in dynamic

computing environments.

DAG scheduling problems have already been extensively explored in the con-

text of heterogeneous systems, and it is well-known that the DAG scheduling

problem is NP-complete for most of its variants [GJ79]. This means that the

algorithmic approach to resolving such problems is a big challenge. As a result,

many heuristics have been proposed, which behave well in practice but generally

provide no guarantee of excluding the worst case of solution quality and com-

putation cost. These heuristics may be highly diverse in terms of scheduling

objectives and/or assumptions about the target computing environments. How-

ever, the majority of them are characterised as being deterministic full-ahead

scheduling heuristics with the aim of minimizing the overall execution time of

DAG application, i.e., makespan.

In a broad sense, the models of scheduling problems can be classified into

two types: deterministic and stochastic; and the heuristic solutions of scheduling

problem can be grouped into two categories: full-ahead and just-in-time [WHP08].

In the deterministic model, all problem input data (for example, the task exe-

cution times, communication costs) are assumed to be known with certainty in

advance; while in stochastic model, some of the input data, which is the task
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execution time in this thesis, may be subject to random fluctuation [SB99]. More

precisely, it is assumed that the execution time of any task is governed by a

corresponding random variable and its actual value becomes known only upon

completion. Full-ahead heuristics, which deal with the problem totally before the

execution of the whole application starts, are particularly suitable for a problem

model where the input data is completely pre-known (for example, the determin-

istic model). In contrast, just-in-time heuristics make scheduling decision during

runtime, namely each task is only scheduled at the time when the task is released

from task dependency constraint to execution. The idea behind such an algo-

rithmic paradigm is to mitigate the negative impact which arises in a situation

in which there is hardly any effective information, either accurate or inaccurate,

about the problem data. We consider only the full-ahead heuristics in this chapter

and leave the just-in-time heuristics to the discussion in the next chapter.

Deterministic full-ahead scheduling heuristics, which have been extensively

studied for heterogeneous systems, are not suitable in the context of grid com-

puting. First of all, these heuristics are not directly applicable to such computing

environments where the task execution times may be highly uncertain due to the

following factors:

• The inherently non-dedicated grid resources are usually shared by multiple

users. This means that the number of resources available for a single task

may vary over time.

• It is still infeasible to accurately predict the performance of an arbitrarily-

given task according to the state of art prediction techniques.

• Some tasks themselves may be inherently random (for example, simulated

annealing, genetic algorithm).

Given these factors, it is argued that the stochastic model should be preferable

to the deterministic model for DAG scheduling problems based-on grid resources.

For instance, rather than giving the execution time of a task a constant valuation

of 10 seconds, it can be assumed that the possible execution time varies from

5 to 15 seconds and a random variable can be used to depict this uncertainty.

It should be noted that, in such a stochastic model, the deterministic heuristics

may be applicable by using the mean values of these random variables. However,

this approach, as shown in [SZ04b, KL05], does not lead to the best schedule in
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most cases. And this will also be verified by the evaluation later in this chapter.

It is worth mentioning that some deterministic schedules produced by full-ahead

heuristics which obtain good makespan results in the deterministic model are

somehow likely to exhibit a good average performance in the stochastic model.

This is also indicated in [CJSZ08]. Therefore, it may be worth exploring the space

of developing a novel approach based on the exhaustive deterministic full-ahead

scheduling studies to resolve the scheduling problem with uncertain performance

prediction in dynamic computing environments, such as grids.

Given this motivation, this research focuses on developing full-ahead DAG

scheduling with the stochastic model. In this chapter, a Monte-Carlo based ap-

proach is proposed to minimize the average makespan of a given DAG application

in the stochastic model. The remainder of the chapter is organised as follows.

The stochastic scheduling problem and associated assumptions are introduced in

Section 2.2. In Section 2.3, a taxonomy of the existing deterministic full-ahead

scheduling heuristics is presented, and the research efforts on DAG scheduling

aimed at minimizing makespan under performance prediction uncertainty are re-

viewed. The proposed Monte-Carlo based approach is presented in Section 2.4

and evaluated in Section 2.5. Finally, the chapter is concluded in Section 2.6.

2.2 Problem definition and assumptions

The specification of a scheduling problem may vary with the numerous character-

istics of applications and underlying resources, and different performance metrics

concerned. The contents of a scheduling problem which need to be specified usu-

ally include: (i) the modelling of the application (for example, independent tasks

or dependent tasks represented by DAG); (ii) the concerned performance pa-

rameters and relevant definitions (for example, optimizing makespan may involve

time parameters while improving network utilization may depend on bandwidth);

(iii) the setting of the underlying system (for example, the number of available

resources); (iv) a series of assumptions (for example, the scheduled tasks are

non-preemptive) etc.

Although diverse circumstances in different underlying distributed systems

may be considered in scheduling problems, the general pattern of resolving these

problems seldom changes. Essentially, a scheduling solution consists of decisions

about the allocation of tasks to resources (this may be trivial in homogeneous
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systems) and the execution start time of the tasks assigned to each resource.

These decisions are normally made based on an analysis of the problem input

data, i.e., some available information about the tasks and resources, and produced

by following the procedure defined by a certain scheduling algorithm.

In this section, all of the above-mentioned specifications related to the stochas-

tic scheduling problem contents will be presented. It will begin by describing the

model and definitions for the deterministic scheduling on heterogeneous resources,

which is relatively simple and has been popularly studied. Then these concepts

will be extended into the stochastic context. Finally, the associated assumptions

will be listed at the end of the section. Most of the specifications presented in

this section apply throughout this thesis. It should be noted that the focus is on

time issues of application performance, and therefore, time parameters are of the

main concern in this thesis.

2.2.1 Deterministic DAG Scheduling Model

Workflow applications can often be represented by a DAG, a generic model for

applications consisting of a set of interdependent tasks. A DAG is normally

denoted by G = (N , E), where N is a set of nodes, and E is a set of directed

edges between the nodes. A node i ∈ N is used to represent a task, which can be

regarded as an indivisible computation unit like a program statement, an atomic

sub-routine or even an entire program [GY92] (Therefore, the terms “node” and

“task” are used interchangeably hereafter). An edge e ∈ E connecting node i and

j is denoted by i→ j, which means that i is the parent node and j is the child,

i.e., the input of j relies on the output of i. A path p is a sequence of edges among

which each pair of neighbour edge share the adjacent endpoint. The path from i0

to in is of the form (i0 → i1), (i1 → i2), · · · (in−2 → in−1), (in−1 → in). It should

be noted that there is no cycle path which satisfies i0 = in in a DAG. Edges

indicate the precedence constraints of child nodes. A child node(task) can only

begin execution when all of its parents are completed and all of the required input

data of the task is available at the resource to which the child task is allocated.

A node without any parent is called an entry node and a node without children

is an exit node. Any node except the entry and exit should have one or more

parents and children. Apparently, DAG G can equivalently be transformed with

multiple entry nodes and/or exit nodes into G′ with a single entry node and/or

an exit node. For the sake of standardization, all of the DAGs in this thesis are
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assumed to have only one entry node and one exit node. Each node and edge

is assigned a weight in a DAG. In this thesis, the weight of a node i implies the

computation volume of the task, and the weight of an edge e is the amount of

data which needs to be transmitted from node i to j.

There is a set of heterogeneous resources R. In order to determine the compu-

tation and communication time costs for tasks, besides the weights of nodes and

edges, it is also necessary to consider the resources to which tasks are allocated

and the transmission rate between these resources. In heterogeneous systems, the

time required to execute a task to different resources may vary dramatically. Let

eti,p denote the execution time of node i on resource p, and tl(i,p)→(j,q) represent

the latency of transmitting data from node i (allocated to resource p) to its child

node j (allocated to resource q). This transmission latency is computed by

tl(i,p)→(j,q) = di→j × trp,q (2.1)

where di→j is the weight of edge i → j, and trp,q means the transmission rate

between resource p and q (i.e., the time taken to transmit a single unit of data

between p and q). If both i and j are allocated onto the same resource, the

transmission latency is assumed to be zero.

In the deterministic scheduling model, it is assumed that eti,p and tl(i,p)→(j,q)

are pre-known as constant values where i, j ∈ N and p, q ∈ R. These values

can normally be estimated by a performance model which predicts the perfor-

mance of tasks, with or without historical data, on a set of specified machines.

Although accurate performance prediction is crucial to the scheduling decision,

the discussion about prediction techniques is beyond the scope and focus of this

thesis.

To provide a concrete instance, a DAG application G is assumed, consisting

of 12 nodes and running on 3 resources. As shown in Figure 2.1(a), node 0 is the

entry node, node 11 is the exit node, and the number associated with each edge

is the number of data units which need to be transferred between the two nodes,

i.e., the edge weight. The estimation of the execution time of each node and the

transmission rate between each pair of three resources are shown in Figure 2.1(b)

and (c) respectively. In later Sections 2.3 and 2.4 this example will be used for

illustration purposes.
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(a) topology of DAG G

(b) task execution time estimations of G
on three heterogeneous resources

(c) transmission rates between resources

Figure 2.1: An Example of Deterministic Scheduling

2.2.2 Definitions of Deterministic DAG Scheduling

The result of a deterministic DAG scheduling heuristic is called a static schedule,

which is generated by executing the scheduling heuristic on the model as described

in Section 2.2.1 to achieve a pre-defined performance objective. One schedule may

be represented in various forms, while the typical information contained in the

schedule may essentially include: (i) the allocation of tasks to resources; and (ii)

the start time of each task on its assigned resource. It should be noted that

the second part usually indicates the execution order of the tasks in the same

resource. This section provides several important definitions for deterministic

DAG scheduling. Table 2.1 summarizes a list of terms and notations used in

deterministic DAG scheduling.

Given that node i is allocated to resource p, besides the start time sti,p, there

are also several time parameters to be considered with in a schedule such as data

available time (dati,p), resource available time (rati,p), and finish time (fti,p).

Data available time dati,p denotes the time at which all of the data required by

node i arrives at resource p, which indicates the earliest possible time when task

i can start according to the task dependency constraint. Thus we have:

dati,p = max
k∈Pred(i)

{ftk,r(k) + tl(k,r(k))→(i,p)} (2.2)

where Pred(i) denotes the set of all immediate predecessors (i.e., parent tasks) of

task i, and r(k) means the resource to which k has been assigned. Moreover, task
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Notation Definition
G DAG G.
N The set of nodes of G.
E The set of edges of G.

i, j, k Task (node) i, j, k.
i→ j The edge linking the node i and j, where i is the parent of j.
p, q Resource p, q.
eti,p The Execution Time of task i on resource p, which is a constant

in deterministic model, but a random variable in stochastic model.
sti,p The start time of task i on resource p.
fti,p The finish time of task i on resource p.

tl(i,p)→(j,q) The transmission latency between task i and j, which are
separately allocated to resource p and q.

dati,p Data Available Time, the arrival time of all required data needed
by task i on resource p.

rati,p Resource Available Time, the earliest time when resource p can
execute task i.

CCR Communication to Computation Ratio.
CP Critical Path.

makespan The overall execution time of application.

Table 2.1: Terms and notations used in deterministic DAG scheduling

i is queued in resource p and has to wait until the preceding tasks are completed

and the resource is freed. Therefore, the start time sti,p also depends upon when

the assigned resource can become available. Given that ftl∗,p is the completion

time of the last preceding task of i, then rati,p = ftl∗,p, and the start time of task

i on resource p is defined by

sti,p = max{rati,p, dati,p} (2.3)

In addition, given that the estimated execution time of task i is eti,p, the fti,p

can be computed by

fti,p = eti,p + sti,p (2.4)

especially we have ftentry node,r(entry node) = etentry node,r(entry node) given that the

entry node starts at time 0, and the makespan of workflow equals to ftexit node,r(exit node).

For each DAG application, the ratio between the computation and com-

munication costs is defined as being the Communication-to-Computation Ratio
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(CCR). A small (large) CCR usually indicates that the corresponding application

is computation-intensive (communication-intensive). This application feature is

of importance, since different designs of scheduling heuristic may apply to appli-

cations with different features.

Another important concept in a deterministic DAG scheduling problem is the

Critical Path (CP). The definition of DAG differs in various contexts. Given a

parallel application, the CP indicates a sequence of tasks which must be executed

sequentially and which consume the maximum time duration. For the DAG itself,

the CP represents the longest path among all paths from the entry node to the

exit node. Here, the length of a path is defined by the sum of the weight of

nodes and edges constituting the path. For the DAG scheduling in homogeneous

systems, the weight of a node and an edge is identical with the execution time of

the task and the data transmission time between resources respectively. In such

a case, the length of CP can be regarded as being the lower bound of the overall

execution time of the application. However, this does not apply to heterogeneous

systems, where the weight of the node is normally defined by the mean value

of task execution times over different resources. Even so, the CP still play an

important role of indicating the priority of each node in the graph, and this is often

considered when making scheduling decisions. The CP can also be represented

in a schedule, as shown in [SZ04b], where the CP is defined as the path with the

least slack time from the first task which begins the execution to the last task

which finishes. It should be noted that the CP in a schedule may not be the same

as the one in a graph.

2.2.3 Stochastic DAG Scheduling Model

As previously mentioned, when a DAG application is executed in a dynamic

distributed computing system such as Grids, the actual execution time of each

task may exhibit variance over time. This section considers the full-ahead DAG

scheduling model in a stochastic manner.

The majority of the description of the model and definition of deterministic

scheduling can be reused in the stochastic context, for instance the representation

of DAG, the definitions of CCR and CP etc. Moreover, to concentrate on the

impact of performance prediction uncertainty on computational resources, the

network performance, i.e., the transmission rates between resources is considered

to be constant. Therefore, the transmission latency between interdependent tasks
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is assumed to be deterministic.

The main difference between the models of deterministic and stochastic schedul-

ing is the estimation of the time of the task execution. In the latter case, the

performance estimation of a task on a resource is considered to be a random vari-

able with a mean and a standard deviation instead of a constant value. Given a

task i on resource p, the execution time prediction is denoted by ETi,p with the

mean of µi,p and the standard deviation of σi,p, wherein the mean value µi,p can

actually reflect the heterogeneity of resources. Similarly, as a counterpart of sti,p,

fti,p, dati,p and rati,p respectively, there are random variables STi,p, FTi,p, DATi,p

and RATi,p, to which the relevant equations Eq.(2.2), Eq.(2.3) and Eq.(2.4) still

apply. As a result, when computed based on these variables, the makespan of the

application is also randomized. Therefore, the scheduling objective here turns to

be the minimization of the expected value of the makespan.

Table 2.2 summarized the distinct notations used for stochastic DAG schedul-

ing.

Notation Definition
ETi,p The Execution Time Estimation of task i on resource p,

random variable.
µi,p The mean value of ETi,p.
σi,p The standard deviation of ETi,p.

STi,p The start time of task i on resource p, random variable.
FT (i, p) The finish time of task i on resource p, random variable.

DAT (i, p) Data Available Time, the arrival time of all required data needed
by task i on resource p, random variable.

RAT (i, p) Resource Available Time, the earliest time when resource p can
execute task i, random variable.

makespan The completion time of application, random variable

Table 2.2: Terms and notations used in stochastic DAG scheduling

2.2.4 Assumptions

There are numerous issues which may affect the performance of a DAG scheduling

heuristic, for example, the structure of the application, the characteristics of

the underlying system, and the topology of the network. When all of these

issues are taken into account, resolving a specific scheduling problem may become
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highly complex. In order to avoid the unnecessary complexity due to redundant

considerations and focus on the specific scheduling problem itself, appropriate

assumptions need to be made according to the scheduling objective in the design

of scheduling heuristic. Some major assumptions commonly made by many of

the existing scheduling heuristics [Zha06] and the work described in this chapter

are summarized as follows:

• One task at a time. It is assumed that at any given moment, a maximum

of one task is allowed to be executed on one resource.

• Full task-resource compatibility. It is assumed that any resource is capable

of executing any task.

• Precedence constraint. It is assumed that a task j cannot start running

before all of its parent task i has been completed.

• Non-preemptive scheduling. It is assumed that the execution of a task can-

not be interrupted until its completion.

• Zero communication at the same resource. It is assumed that the commu-

nication cost between task j and its parent task i is zero if these two tasks

are allocated to the same resource.

• Zero setting-up cost for communication. It is assumed that the data trans-

mission from a parent task i to a child begins immediately after task i has

been completed. The delay for setting up communication is negligible.

• Full network connection. It is assumed that all resources are fully-connected,

namely that there is always a network link between any two resources to

allow data transmission.

• Deterministic communication. It is assumed that the network linking all of

the resources has unlimited transmission capacity and that the transmission

between two resources is only considered to be carried out via their directed

link.

• Pre-known information. It is assumed that all information required (for

example, the number of resources, the prediction of task execution time (ei-

ther deterministic or stochastic), the prediction of data transmission time),

is retrievable before the scheduling starts.
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2.3 Related Work

In terms of related work, the existing static DAG scheduling heuristics in Sec-

tion 2.3.1 are firstly investigated, after which a review is provided of the schedul-

ing research efforts, focusing on minimizing the makespan under the performance

prediction inaccuracy in Section 2.3.2.

2.3.1 Investigated Static Heuristics

There is abundant literature involving deterministic full-ahead DAG scheduling

heuristics. Due to the NP-hardness of general DAG scheduling problems [GJ79],

heuristic algorithms have been popularly proposed to avoid an exhaustive search

for an optimal solution. Focusing on the performance of computational dis-

tributed systems, these heuristics are mainly designed for minimizing the makespan

of DAG application. This is normally achieved via a sequence of steps using some

obtained parameters as described in Section 2.2.1 with the assumptions presented

in Section 2.2.4 to make a scheduling decision in order to find optimal or near op-

timal schedules. A thorough study of the current deterministic DAG scheduling is

not regarded as being trivial in stochastic scheduling research. In the first place,

there have been considerable research efforts put into the development of deter-

ministic scheduling heuristics, which are worth investigating further in terms of

their average performance in a stochastic model. Moreover, despite their different

models of predicting task execution time, deterministic scheduling and stochastic

scheduling still have quite a few scheduling issues in common, which is to say

that the latter can be regarded as being an extension of the former, but with a

more dynamic setting. This implies the possibility of developing new effective

stochastic scheduling solutions based on the deterministic ones.

The remainder of this section will firstly present a taxonomy of the existing

static full-ahead scheduling heuristics, and will then selectively introduce two

representative heuristics which have proved to be efficient, and which will be em-

ployed in the implementation of this study’s proposed scheduling approach. It

should be noted that the focus is on those heuristics designed with the consid-

eration of resources heterogeneity, which distinguishes this taxonomy from that

one presented in [KA99] which focuses on scheduling heuristics for homogeneous

systems.
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Taxonomy

Various thoughts applied to the design of scheduling approaches endow different

heuristics with their own design features, according to which, a taxonomy is

provided as shown in Table 2.3. The provided taxonomy divides the existing

static DAG scheduling heuristics into five categories: list scheduling, workflow-

based scheduling, clustering based scheduling, guided search scheduling, and task

duplication based scheduling, each of which is briefly described below.

• List Scheduling . List scheduling [Cof76] is a widely studied scheduling

method which makes an ordered list of tasks by assigning them some pri-

orities and then schedules the tasks one by one in the descending order

of priority. List scheduling heuristics may consist of three operations: (i)

weighting: computing the weight of a task or an edge; (ii) listing: comput-

ing the priorities of tasks in a set according to the computed weights and

sorting these tasks into an ordered list; and (iii) scheduling: picking up the

task with the highest priority in the list, and giving it a scheduling decision

including the resource to which it will be allocated and the execution order

in the target resource. Operation (ii) and (iii) are repeated until all tasks

are scheduled. According to the characteristics of task priority assignment

patterns, they can be further grouped into static priority, dynamic priority,

critical path-based priority, level-based priority, and look-ahead priority

heuristics, as explained below:

– Static priority means that the priorities of all tasks are computed be-

fore any task is scheduled, and these do not change during the schedul-

ing procedure [KA99].

– Dynamic priority refers to the task priority which may be computed

in the scheduling procedure, and which consequently varies as the

scheduling proceeds [KA96].

– Critical path-based priority highlights the priorities of the CP nodes

in the listing phase [THW02].

– Level-based priority considers level, a kind of topological information

of DAG, in making decision to prioritize [OH96].

• Clustering-based Scheduling . Clustering-based scheduling heuristics [CJ01]

merge the tasks of a DAG into clusters (i.e., clustering), and then map each
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HEFT [THW02]
HBMCT [SZ04a]

PCT [MS98]
Static k-DLA [WY02]

Priority- MSBC [Che05]
based OLB [AHK98]

MET [AHK98]
MH(MCT) [ERL90]

LDCP [DK08]
ETF [BCT95]
FLB [RvG00]

Min-min [BJD+05]
List Dynamic Max-min [CLZB00]

Scheduling Priority- Duplex [CLZB00]
based DPS [ADUM97]

Existing BIL [OH96]
Full-ahead GDL(DLS) [SL93]

Deterministic ILHA [BBR02a]
DAG MCP [WG90]

Scheduling FCP [RvG00]
Heuristics Critical CPOP [THW02]

Path-based HCPT [HJ03]
DCP [KA96]

Level-based priority LMT [IOF95]
ILS [LPX05]

Workflow-based WBA [BJD+05]
GA [WSRM97]
SA [CP96]

Guided Search-based GSA [CFW98]
Tabu [BSB+01]

Clustering-based Triplet [CJ01]
TDS [RA00b]
STDS [RA00a]

Task Duplication-based HNPD [BD05]
LDBS [DO02]

Table 2.3: A taxonomy of the existing deterministic DAG scheduling heuristics
on heterogeneous resources.
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cluster onto an available resource (i.e., mapping). The whole process nor-

mally consists of four steps: (i) clustering, (ii) refining, (iii) mapping and

(iv) local scheduling. In the clustering step, each task is initially separated

into one cluster, and then they are merged with each other into several

clusters to eliminate the communication overhead between the dependent

tasks by allocating them to the same cluster, which will be mapped to one

resource. Then, a refining step of merging clusters may be repeated until

the number of clusters no longer exceeds the number of resources. Next,

the mapping step assigns each cluster to a resource by employing some

heuristics, e.g., list scheduling. Finally, in the local scheduling step, the

mapped tasks are sorted for execution in each resource. Clustering-based

scheduling has been popularly studied and applied for homogeneous sys-

tems. However, its performance may be limited in heterogeneous systems,

since the heterogeneity of resources may hardly be sufficiently considered

in clustering.

• Workflow-based Scheduling . Scheduling which considers the whole

workflow rather than a set of ready tasks in scheduling is called workflow-

based [BJD+05]. Workflow-based scheduling heuristics normally generate

an initial schedule in the beginning, and then refines the schedule by a series

of modifications (for example, swapping tasks across resources, reallocating

assignments) in order to improve the application performance. The idea of

scheduling the whole workflow is to avoid the possibility of short-sighted

local decisions in the ready task-based scheduling by measuring the per-

formance of the whole workflow. However, this global consideration may

result in high complexity and an unacceptable algorithm overhead.

• Guided Search Scheduling . Guided search techniques, which have been

widely used in studies of optimization problems, can also be applied to

resolve deterministic DAG scheduling problems. Such methods are called

guided search scheduling heuristics, and typically include Genetic Algorithm

(GA), Simulated Annealing (SA) etc [Win92]. These heuristics normally

start by generating an initial schedule by some simple algorithm (for exam-

ple, random allocation), then apply random search techniques to produce

a new schedule based on the current one, and evaluate the newly produced

schedule to determine whether or not this schedule will be kept. The search
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and evaluation is repeated until a desired schedule is found or a time limit is

reached. Generally, such an exhaustive search approach results in a better

performance than heuristic-based ones (for example, list scheduling), but

requires much more storage space and scheduling time, and consequently,

it may not be suitable for large scale applications.

• Task Duplication-based Scheduling . As its name suggests, a task

duplication-based scheduling heuristic schedules a DAG application by al-

locating some of its tasks redundantly to more than one resource [LCWZ03].

The main idea of doing this is that the communication overhead between

two directly dependent tasks (i.e., a parent and a child) will be reduced

if they are mapped to the same resource. Normally, these heuristics fulfill

duplication after an initial schedule has been constructed by some simple

algorithm. A typical duplication consists of two steps: (i) a computation

step which computes some specific parameters (for example, the latest start

time of child tasks) to decide whether or not the duplication is necessary,

and (ii) a mapping step, which decides the proper resource to accommodate

the duplication. The final schedule will be obtained after the completion

of the duplication phase. Although task duplication-based heuristics may

have an advantage of reducing communication cost by utilizing resource idle

time to allocate dependent tasks onto the same resource, their complexity

is considerably high. This trade-off implies that such heuristics are particu-

larly suitable for those applications which emphasise communication issues,

for example, data intensive applications.

Description of Selective Heuristics

HEFT (Heterogeneous Earliest Finish Time) [THW02] is a static priority-based

list scheduling heuristic which aims to minimize the makespan of DAG appli-

cations on a bounded number of heterogeneous resources. As described in Fig-

ure 2.2, the heuristic applies bottom-level to prioritize tasks in the listing phase,

and then, in turn, selects the resource which manages to minimize the estimated

finish time of the given task in the scheduling phase. It is worth mentioning

that, when estimating the finish time of a task on a resource, HEFT enables the

task to be inserted into the existing task queue of the resource as long as task
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dependencies permit. The bottom-level of a task i is defined below:

bLevel(i) = wi + max
j∈Succ(i)

{wi→j + bLevel(j)} (2.5)

where Succ(i) means the set of all of the immediate successors (i.e., child tasks)

of task i, and wi and wi→j are respectively weights of nodes and edges, computed

by

wi = (
∑

p∈R
eti,p)/(|R|) (2.6)

wi→j = (
∑

p,q∈R
tl(i,p)→(j,q))/(|R| · |R|) (2.7)

where |R| is the number of resources.

Input: A DAG application G.
Output: A schedule for G.

Compute the weights of nodes and edges.
Compute the bottom-level for each node.
Sort all tasks in the descending order of priority and put them into list L.
while there are unscheduled tasks in L

Select task i with the highest priority from list L.
Compute fti,m on each resource p.
Allocate i to the resource p′ that gives the minimum fti,p′ considering possible insertion.
Remove i from list L.

endwhile

Figure 2.2: The HEFT Heuristic

HEFT is one of the most popular of the scheduling heuristics which are evalu-

ated and extended for different computing environments (for example, ASKALON [WPF05])

with various assumptions. For instance, M-HEFT (Mixed-parallel HEFT) was

presented in [BBR02b], which considered extending the HEFT heuristic in a more

realistic parallel model with a more sophisticated resource structure and config-

urations. In addition, a HEFT-based adaptive rescheduling algorithm (AHEFT)

was proposed in [YS07] to cope with the uncertainties in dynamic computing

systems. However, this thesis only focuses on the original version of HEFT. A

sample schedule of the above presented HEFT heuristic is given in Figure 2.3,

where the heuristic is applied to the DAG example given in Figure 2.1.
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Figure 2.3: The example schedule generated by HEFT

HBMCT (Hybrid Balanced Minimum Completion Time) [SZ04a] is another

effective static priority-based list scheduling heuristic, which simply uses bottom-

level in the listing phase, but employs sophisticated optimizing techniques in

the scheduling phase. The basic idea behind this heuristic is to divide all tasks

into different groups comprising only independent tasks, and then apply BMCT,

which is a scheduling heuristic for independent tasks, to minimize the maximum

finish time of task in each group in order to optimize the makespan of the whole

application. The heuristic detail is presented in Figure 2.4.

The HBMCT heuristic has not only demonstrated a comparable performance
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Input: A DAG application G.
Output: A schedule for G.

Compute the weights of nodes and edges.
Compute the bottom-level for each node.
Sort all tasks in the descending order of priority.
Scan tasks in the sorted order and divide them into different groups according to their
dependencies so that there are no dependent tasks in the same group.
for each group, in the descending order of the priorities of tasks in the group

Schedule all tasks in this group by the BMCT heuristic presented in Figure 2.4(b).
endfor

(a) the outline of HBMCT

Input: A set of independent tasks S.
Output: A schedule for all tasks in S.

In the descending order of task priority, map each task to the resource that gives the minimum
execution time.
for each resource

Sort all assigned tasks in the ascending order of the earliest start time ST .
endfor

Avg FT []← a vector of all tasks in ascending order of their average finish time across all
resources.
repeat

m← the resource giving the maximal finish time, MFT .
Mark all tasks allocated to resource m in Avg FT [] as unchecked and the rest checked.
while there are unchecked tasks and move task is false

t← next unchecked task in Avg FT [].
for each resource n except m.

Compute ftt,n with the assumption that t was inserted into the resource’s
task list.

endfor

n← the resource with the minimum ftt,n.
if ftt,n < MFT then

Reallocate t from resource m to n.
move task ← true.

else

Mark t as checked.
endif

endwhile

until move task is false.

(b) The BMCT Heuristic

Figure 2.4: The description of HBMCT Heuristic
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Figure 2.5: The example schedule generated by HBMCT

with HEFT in a variety of evaluations [SZ04a], but also exhibited active exten-

sibility for more advanced scheduling problems, for example, resource reserva-

tion [ZS06a], multiple DAG scheduling [ZS06b] etc. HBMCT can also be consid-

ered to be adapted to stochastic scheduling problems, which will be presented in

detail in Section 2.4. A sample schedule of HBMCT is given in Figure 2.5, as a

result of applying the heuristic to the DAG example shown in Figure 2.1.
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2.3.2 Other Works Related to Stochastic Scheduling

Given a DAG application in a dynamic distributed computing system (such as a

grid), the deterministic schedule generated by a deterministic full-ahead schedul-

ing heuristic is bound to exhibit a variable performance as a result of unpre-

dictable situations occurring at runtime. In such a situation, it may be of in-

terest to investigate the issues of (i) how the deterministic schedule behaves in

a dynamic environment, which is reflected by the makespan and its variation of

the schedule as the task execution time varies, and (ii) whether or not any robust

full-ahead schedule exists which can guarantee the overall performance of the ap-

plication at runtime, namely, which can achieve a reasonably good makespan in

various cases of run-time changes. The concept of the robustness of a schedule,

defined as being the average makespan of the schedule and the variation of the

makespan, is proposed to measure the behaviour of the deterministic schedule in

dynamic environments.

Motivated by the lack of studies attempting to investigate the determinis-

tic scheduling heuristics in terms of their behaviour in dynamic environments,

we contributed an implementation of heuristics to evaluate the robustness of the

schedules they produce. Twenty of the heuristics listed in the previously provided

taxonomy were selected for the evaluation, and some of the most widely used and

cited were included in the selection while taking the algorithm overhead into ac-

count. These 20 heuristics, in alphabetical order, are: BIL, CPOP, DPS, Duplex,

FCP, FLB, GDL, HBMCT, HCPT, HEFT, k-DLA, LMT, MaxMin, MCT, MET,

MinMin, MSBC, OLB, PCT and WBA.

The evaluation and its results are published in [CJSZ08], where the stochastic

model used to assess the robustness of deterministic schedules is depicted. In the

stochastic model, task execution time is modelled as a normally distributed ran-

dom variable. A deterministic schedule is generated by a deterministic heuristic

using the mean as input. At each measurement, the execution time of a task on

a resource is generated using the counterpart random variable and the makespan

of the deterministic schedule is computed based on these generated values. It

is worth mentioning that the initially computed task start and end times of the

deterministic schedule may not be satisfied due to the variation in task execution

time. In order to address this problem, two solutions are considered, one of which

is called sequence strategy, which fully respects the order of the tasks specified

by the deterministic schedule, i.e., task i is scheduled to be executed only after
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the completion of all of the tasks which must be executed before task i, according

to the deterministic schedule. The other solution is called assignment strategy,

which respects the assignment of task to resources, but schedules a task for exe-

cution as soon as it becomes ready. These strategies are both evaluated in each

measurement. Over a large number of measurements, the average makespan of

each evaluated heuristic and the standard deviation of the makespan are obtained

and analysed in the comparison between all heuristics.

The evaluation results in [CJSZ08] demonstrate that (i) it is better to respect

the order of tasks in a deterministic schedule (i.e., use the sequence strategy) than

to change this order in the run-time (i.e., use the assignment strategy); (ii) the

robustness and deterministic makespan are somehow correlated: as it has been

found elsewhere [SZ04b], the schedules which perform well in a deterministic case

(i.e., when the mean of task execution time is used) tend to be the most robust;

(iii) for the studied cases, heuristics including HEFT, HBMCT, GDL and PCT,

are among the best for both average makespan and robustness.

There is a variety of workflow scheduling approaches to deal with the unpre-

dictability of dynamic environments, and the first is to schedule every task only

when it becomes ready (namely, when all of the tasks the current task depends on

have been completed). Based on this idea, some heuristics [MFR07] have been de-

veloped to determine some particular order of task execution in order to improve

application performance. Nevertheless, the evaluation in [SB08a] indicates that,

without considering task execution costs in the scheduling of tasks, the practical

effectiveness of these heuristics is limited in their current form. Another approach

is rescheduling, which means producing an initial schedule for application based

on a static prediction and then rescheduling the allocated tasks according to the

variation during run-time. In many cases, rescheduling can indeed improve the

application performance compared to a schedule which is generated based on a

static prediction. However, this approach is costly, since it has to introduce ex-

tra scheduling efforts during run-time, which is a time-consuming solution even

though some selective policy aimed at reducing the cost can be applied [SZ04b].

To tackle unpredictability, in addition to taking action during run-time as the

aforementioned approaches do, it is also important to craft a static schedule with

good properties (for example, minimizing the makespan) before the task execution

starts (namely, full-ahead). A well-crafted static schedule without rescheduling

can, not only save the extra scheduling efforts during run-time, but also obtain a
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better application performance (to be demonstrated later) compared to a worse-

crafted one with rescheduling. In addition, even if rescheduling is used, relevant

studies [SZ04b] still indicate that a good initial schedule will help to reduce the

extra cost of rescheduling [CJSZ08].

In the context of heterogeneous computing systems, there are a couple of

scheduling studies, which consider the stochastic model of task execution times.

In [DÖ01] and [DÖ04], stochastic scheduling approaches based on a Genetic Algo-

rithm were proposed to minimize the scheduling length. With the same objective,

in [KL07], in addition to the mean value of the random weights of DAG nodes, the

standard deviations are considered to extend Min-Min and Max-Min algorithms

in deriving a schedule. In [SJC+03], it is indicated that generic algorithms will

cope well with deviations from the task execution time prediction. However, all

of these approaches focus only on applications composed of independent tasks

with no data dependencies. That is to say, DAG applications are not considered.

For DAG applications, Lòpez and Senar [LHS06] analyse the performance of

several DAG scheduling heuristics and their counterpart dynamic version (with

rescheduling) with the stochastic model. However, their study does not address

the issue of how to produce an efficient schedule before run-time. In [KL05], static

DAG scheduling heuristics including ETF and DLS were extended by estimating

the earliest start times of tasks in a stochastic manner to minimize the scheduling

length. This work introduced a computation and comparison of random variables

to the process of computing the earliest start time for a task to make a mapping

decision. However, a computation of random variables tends to be complicated

and can hardly be possible for arbitrary random distributions. In contrast, the

approach of this study avoids the complex manipulation of random variables by

applying the Monte-Carlo approach to generate the resulting schedule.

2.4 A Monte Carlo-based Approach

The basic idea of the proposed approach is derived from the Monte-Carlo method [HH75],

a popular solution for various problems which are infeasible or impossible to re-

solve by deterministic computation. The main characteristic of the Monte Carlo

method is that it normally utilizes repeated random sampling to obtain numerous

random samples of a stochastic problem, and computes its final results based on

the obtained samples to resolve the problem. A common pattern of the Monte
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Carlo method usually comprises the following steps:

1. defining a space comprising possible input values;

2. taking an independent sample randomly from the space;

3. performing a deterministic computation using the taken sample as input

and keeping the result;

4. repeating Steps 2 and 3 until the pre-specified maximum repetition is reached;

5. aggregating the kept results of the individual computations into the final

result.

The proposed Monte-Carlo based Scheduling approach (MCS hereafter) adapts

the above-mentioned operations into a DAG scheduling scenario. Suppose that

a DAG G = (N , E) is being scheduled on a set of resources R, the adapted

operations can be interpreted as follows:

• Defining Input Space. In contrast to the generic Monte-Carlo method, the

input space of MCS (denoted by I) is a set consisting of the random task

execution time predictions of the given application, namely

IG = {ETi,p : i ∈ N , p ∈ R} (2.8)

• Random Sampling. In MCS, taking a sample from the space is defined as

sampling each random prediction in the space and resulting in a set of static

predictions. This can be expressed by function fsmp : V|N | 7→ C|N | as below.

PG = fsmp(IG) = {ti,p : i ∈ N , p ∈ R} (2.9)

where PG can be viewed as being a set of static task execution time pre-

dictions of G, ti,p is a random sampling of ETi,p, |N | means the number of

tasks in DAG G, V|N | represents the space of all random vectors of size |N |,

C|N | denotes the space of all such vectors each of which has |N | constant

components. Particularly, PG = {µi,p : i ∈ N , p ∈ R} is used to denote the

estimation set consisting of the means of task execution time predictions,

where µi,p is the expected value of ETi,p.
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• Deterministic Computation. There are two types of deterministic computa-

tions defined in MCS, one of which is to compute a static schedule. Given a

DAG G and the associated set of static predictions PG, any static scheduling

heuristic H (as listed in Section 2.3.1) can be applied to generate a static

schedule ΩG, namely,

ΩG = Static SchedulingH(G,PG) (2.10)

Particularly, we have the mean static schedule which is obtained by applying

H to PG, namely,

ΩG = Static SchedulingH(G,PG) (2.11)

The other type of computation is to calculate the static makespan of a

generated schedule on the assumption that the exact execution time of each

task on each resource is known as P∗
G. This computation can be denoted by

m∗ = Calculate Makespan(G,P∗
G, ΩG) (2.12)

Generally, MCS consists of two main phases, namely, ‘producing ’ and ‘select-

ing ’. In the producing phase, a considerable number of samples are taken from

the Input Space and accordingly a long list of different static schedules are gen-

erated by employing a specific static scheduling heuristic. Again, in the selecting

phase, a certain number of samples are taken to evaluate the generated schedules,

which are then compared to obtain the selected schedule for output.

The outline of MCS is depicted in Figure 2.6, where a static scheduling heuris-

ticH is employed by MCS. Here, the heuristicH applied (Line 5) can be any static

DAG scheduling heuristic. In the outline, the first while loop (Line 3 through

7) describes the producing phase and the second while loop (Line 8 through 14)

presents the selecting phase. Before the loops start, the mean static schedule

ΩG is computed and kept, and M std = Calculate Makespan(G,PG, ΩG) is also ob-

tained as a base of the threshold to be used later (Line 2). Next, the producing

phase repeatedly takes a sample of the random prediction of the task execu-

tion time, i.e., PG (Line 4), and produce a static schedule ΩG by using H (Line

5). If ΩG has ever been produced before, ΩG is discarded immediately. Other-

wise, MΩ = Calculate Makespan(G,PG, ΩG) is computed and compared with the
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Input: A DAG application G with stochastic performance prediction IG .
Output: A full-ahead schedule ΩG for G.

1: Create an empty schedule list L.
2: Compute the mean static schedule as defined in Eq.(2.11) and put it into L.
3: while the termination conditions of producing phase is not met repeat

4: Take a sample of the stochastic performance prediction as defined in Eq.(2.9),
which results in a set of static task execution time predictions PG .

5: Generate a static schedule ΩG by applying a static heuristic H to PG , as defined
in Eq.(6.1).

6: Add ΩG into L if ΩG is never produced before and QUALIFIED.
7: endwhile

8: while the limitation of loops in selecting phase is not reached repeat

9: Take a sample of the stochastic performance prediction as defined in Eq.(2.9),
which results in a set of static task execution time predictions P∗

G .
10: for each schedule ΩG in L do

11: Evaluate the makespan of ΩG by assuming that P∗
G depicts the

actual task execution times of G as defined in Eq.(2.12).
12: endfor

13: endwhile

14: Compute the average makespan for each ΩG over the loops of evaluation.
15: Return the schedule with the minimum average makespan as the result schedule.

Figure 2.6: The outline of MCS

above-mentioned threshold. If MΩ < M std · (1+∆), the schedule is QUALIFIED

and recorded, and the counterpart PG is also kept. Otherwise, the schedule is

discarded, where ∆ ∈ R is a variable weight to control the strictness of the thresh-

old. The idea behinds this threshold is to reduce the evaluation overhead in the

selecting phase. Apparently, if a produced schedule ΩG does not have a reason-

ably short MΩ, it is unlikely that it will achieve a good average makespan, and so

it is unnecessary to record it. Once the producing phase has been completed, the

selecting phase starts loops to evaluate the quality of the produced and recorded

schedules. In each loop, a random sample P∗
G is taken (Line 9), and each recorded

schedule is evaluated by computing m∗ = Calculate Makespan(G,P∗
G). (Line 10).

This loop is repeated until a specified limit is reached, after which the schedule

with the minimum average value of m∗ over these loops is selected as the final

result. (Line 15).

It should be noted that the heuristic H used in the MCS approach can be any

deterministic DAG heuristic, while those of low complexity, with little overhead

and a good performance on static scheduling problems are preferred. Based on

this consideration, HEFT and HBMCT are adopted in this implementation. By
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applying MCS to the DAG example shown in Figure 2.1, two sample schedules are

obtained, as shown in shown in Figures 2.7 and 2.8. The former is generated by

MCS using HEFT, and the latter by HBMCT. As can be seen, these schedules are

quite different from the sample schedules generated by deterministic scheduling

(as shown in Figures 2.3 and 2.5) and obtain a better makespan with the same

setting of task execution times (i.e., the mean).

However, MCS is an iterative approach. Therefore, the number of repetitions

executed in both the selecting and producing phases is closely related to the

quality of the makespan obtained by the MCS, as well as the extra cost intro-

duced. To achieve an efficient and effective output, it is crucial to determine the

appropriate limitations of the necessary loops, i.e., how many iterations should

be taken in the loops of the producing and selecting phases (Lines 3 and 8). In

order to illustrate these issues, an investigation using a concrete DAG example is

presented in the next section.

2.4.1 An Example

In this section, the DAG example provided in Figure 2.1(a) is used, with its

stochastic prediction model, to investigate how MCS performs with a varying

setting of loop terminations. The test DAG has 12 nodes, and the size of the

data to transmitted between each two interdependent tasks is denoted by the

value associated with the edge between two connected nodes. It is assumed that

the DAG is run on 3 resources. For each random task execution time ETi,m of task

i on resource m, it is assumed that the mean µi,m is the same as the estimation

present in Figure 2.1(b), and that the standard deviation is σi,m = 0.167µi,m.

In addition, the data transmission rates between the 3 resources are provided in

Figure 2.1(c). In order to implement MCS, two static DAG scheduling heuristics

HEFT and HBMCT are employed. As depicted in Figures 2.9, 2.10 and 2.11,

the details of the investigation which applied MCS to the test random DAG are

presented as below.

In the first stage of the investigation, the taking of random sampling in the

producing phase of MCS was repeated for a considerable number of times to

observe how the number of differently produced schedules (Nps) and the elapsed

time evolves. The evolution result is shown in Figures 2.9(a) and 2.9(b), where

HEFT and HBMCT are separately used. In both figures, Nps is scaled by the left

Y axis, and the elapsed time by the right one. It should be noted that in both X
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Figure 2.7: The schedule result produced by MCS using HEFT

axis and right Y axis, a Log10 scale is adopted. In the case of using HEFT, the

producing lasted for about 8 hours and a total of 9020 different schedules were

obtained. On average, one iteration lasted about 0.2 milliseconds. In the first

5000 loops which lasted about 1 second in total, 291 new schedules were found,

and then the emergence of new schedules became rarer and rarer as the iteration

was repeated. The situation was similar when HBMCT was used. After about 8

hours, the repeated loops produced a total of 9394 schedules and each repetition

lasted about 0.19 microseconds. 246 new schedules were found in the first 5000

repetitions, while the number of schedules produced every 5000000 repetitions

became fewer than 10 by the end of the producing phase. At this stage, it was

presumed that the sample space of the schedules which each heuristic can produce

had been extensively explored.

Next, up to 200 samples were taken in the selecting phase to evaluate the
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Figure 2.8: The schedule result produced by MCS using HBMCT

produced schedules and to observe how the index of the selected output schedule

(denoted by Isel) evolved as the number of samplings in selecting phase (evaluation

sampling, hereafter) increased. Figure 2.10 shows the evolution of Isel when the

number of evaluation samplings changed. It can be seen that, when the number

of evaluation samplings used is small (for example, fewer than 10), the result

of Isel may not be stable. However, the result of Isel tends to converge into a

constant value as the number of evaluation samplings becomes large. Especially

in the case of HEFT, the result of Isel remains the same when more than 10

evaluation samplings are used. In the case of HBMCT, three schedules may

possibly be selected when more than 10 evaluation samplings are used. These

schedules actually obtain average makespans which are close to each other. These

are 164.33, 163.91 and 163.85 respectively in detail. This implies that as long as

sufficient evaluation sampling is taken, the makespan of MCS will fall into a small
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(b) using HBMCT

Figure 2.9: Evolution of Nps and Elapsed Time during the producing phase of
MCS for the test random DAG
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Figure 2.10: Evolution of Isel during the selecting phase of MCS for the test
random DAG
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range, even though the selection of the result schedule may be variable.
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Figure 2.11: Evolution of Msel as the number of produced schedules varies for the
test random DAG

Finally, how the performance of MCS, which can be reflected by the average

makespan evaluated in the selecting phase (Msel), evolved as the number of pro-

duced schedules grew, was investigated. As shown in Figures 2.11(a) and 2.11(b),

the result of Msel achieved significant improvement as the first hundreds of sched-

ules were produced, but there was little improvement afterwards. In the case of

using HBMCT, the Msel dropped 9.5%, from 181.48 to 164.23 after the first 500

different schedules were produced, which means that less than 10 seconds were

spent on the producing phase according to Figure 2.9(a). This Msel continued to

be improved, but slowly, as more new schedules were produced. Subsequent im-

provement was only 0.23% until the end of the producing phase, which lasted for

8 hours. Similarly, in the case of HEFT, the Msel was improved by 10.5% after the

first 500 schedules were produced and no further improvement was made there-

after. This implies that exhaustive exploration in the producing phase, which

may find numerous possible schedules but results in heavy overheads for MCS,

may be unnecessary, because the majority of the improvement is usually achieved

by the first few iterations.

In summary, it can be seen from the above example that (i) in the producing

phase of MCS, a reasonable number of loops are sufficient to produce a ‘good’

schedule, which can significantly improve the average makespan, in the schedule

list; (ii) in the selecting phase of MCS, only around 20 random samples are

necessary in the evaluation of the produced schedules to pick up a ‘good’ schedule
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from the list as the result schedule. This indicates that it may be feasible for MCS

to substantially reduce its overheads without significantly losing its performance

by setting a small limit of the repeated samplings in both the producing and

selecting phases, and consequently, applying it to the large applications consisting

of many tasks.

2.5 Evaluation

In order to evaluate the performance of MCS, several experiments were conducted

to compare the makespan of the schedule obtained by MCS employing static

scheduling heuristic H with schedules generated by other approaches which are

respectively denoted as Static, Autopsy and Static Schedule with Rescheduling.

• Static refers to the schedule which is computed by applying H to the mean

of the random task execution time predictions (i.e., µi,p).

• Autopsy refers to the schedule which is constructed by H after the actual

task execution times are known.

• Static Schedule with Rescheduling (ReStatic, for short) means the proce-

dure which firstly generates an initial schedule by the Static approach and

then recalls the heuristic used in the Static approach to reschedule all of the

remaining non-executed tasks each time a task is about to begin execution.

In addition, applying rescheduling to MCS, denoted by ReMCS was also consid-

ered. ReMCS uses the result of MCS as the initial schedule, and then calls the

heuristic used in MCS to reschedule all of the remaining non-executed tasks each

time a task is about to begin execution. It should be noted that when making a

rescheduling decision, ReMCS adopts the task execution time sample PG, which

is recorded with ΩG, as input.

The loop termination condition was set for the MCS compared in the evalu-

ation. In detail, the producing phase terminates when it reaches the time limit

of 60 seconds or the number of produced schedules reaches 10000, and in the se-

lecting phase, each produced schedule is evaluated and compared by an average

makespan over 20 random samplings. ∆ = 0.02 was set as the threshold used in

the producing phase.
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The above-stated scheduling approaches were compared using four types of

DAGs, with different structures and sizes, running on three heterogeneous re-

sources. The selected DAGs included fMRI [ZWF+04] with 17 nodes, Mon-

tage [BGL+04] with 34 nodes, AIRSN [HDW+05] with 53 nodes and LIGO [DKM+02]

with 77 nodes as shown in Figure 2.12. These DAGs were derived from various

scientific applications and could cover a wide spectrum of DAG topologies and

DAG sizes. It should be noted that Figure 2.12 was derived from a collection of

screenshots of the evaluation program where all of the DAGs were standardized

to have only one entry node and one exit node. The method in [ASMH00] was

adopted to model the heterogeneity of the mean of task execution time prediction

which was randomly generated in the range of [1, 100]. In the method, in brief,

two values are respectively selected from a uniform distribution at the range of

[1, 10], and then the product of the two selected values is computed and adopted

as a generation of a task execution time. The communication-to-computation

ratio (CCR) was randomly chosen from the interval [0.1, 1]. As assumed in MCS,

the actual execution time of each task was randomly distributed within a certain

boundary around the mean of execution time estimation. Similar to the notion

QoI defined in [SZ04b], the notion of Quality of Estimation (QoE, denoted by

0 < δ < 1) was to describe the upper boundary of percentage deviation which the

actual task execution time may have in respect of the mean value. For example,

given that δ = 0.5 and the mean estimated task execution time is µi,p = 50,

then the task execution time estimation is an uniform random variable ETi,p dis-

tributed at intervals of [(1− δ)µi,p, (1 + δ)µi,p] = [25, 75], and the actual time is

a random sample of ETi,p.

In one experiment, a DAG was generated to which the relevant parameters

stated above were applied. By varying the setting of QoE from 0.1 to 0.5 (0.1 per

step), a different scheduling approach was applied to the DAG. The makespan

of each approach for this DAG averaged over 100 random generations of actual

execution time. Such an experiment was repeated 50 times and the average result

of each approach is considered. Also, the average time cost of applying MCS to a

DAG was considered, and all of the experiments were run on a PC with Pentium

4 CPU of 3.2 Ghz and 1 GB Memory.

The performance results of each of the five different approaches on four dif-

ferent types of DAGs are shown respectively in Figures 2.13, 2.14, 2.15, and 2.16.
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(a) fMRI (b) Montage

(c) AIRSN (d) LIGO

Figure 2.12: DAG examples
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Figure 2.13: Average makespan (over fifty fMRI DAGs with 17 nodes running on
3 resources) of five compared scheduling approaches

In the case of fMRI DAG with 17 nodes (Figure 2.13), it is interesting to see

that, when using either HEFT or HBMCT, MCS outperforms other scheduling

approaches in almost all QoE settings. In all of the settings of QoE, MCS can

achieve an average makespan which is 10% better than Static. However, when

HEFT is used, the results are surprising: (i) ReStatic with HEFT in this case can

worsen the makespan of Static, especially when QoE is small; (ii) ReMCS does

not perform as well as expected, which degrades the performance of MCS even

more; (iii) Autopsy does not exhibit a good performance when QoE is less than, or

equal to, 0.2, but performs second best when QoE is equal to 0.3 or larger. When

HBMCT is used, the result is not that surprising. Although ReMCS still degrades

the performance of MCS, it performs the second best except when QoE is equal to

0.5. As expected, by using HBMCT, Autopsy obtains a better average makespan

than ReStatic which, in turn, performs better than Static. By comparing HEFT

with HBMCT, it can be seen that: for MCS, using HEFT obtains a shorter

average makespan than using HBMCT, while for ReMCS, using HBMCT turns

out to be better than using HEFT.

In the case of Montage DAG with 34 nodes (Figure 2.14), there seems to

be little difference between using HEFT and HBMCT. Therefore the following

analysis applies to both scenarios where HEFT and HBMCT are used separately:

Static always obtains the worst average makespan in all settings of QoE. MCS

and ReMCS performs best when QoE is equal to 0.1. When QoE is equal to

0.2, ReStatic and Autopsy performs as well as, or better than, MCS but worse
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Figure 2.14: Average makespan (over fifty Montage DAGs with 34 nodes running
on 3 resources) of five compared scheduling approaches

than ReMCS. When QoE is equal to 0.3, ReMCS and Autopsy perform the best,

while ReStatic performs better than MCS. When QoE becomes larger, Autopsy

outperforms other approaches, while the results of comparing other approaches

remains the same.
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(b) using HBMCT

Figure 2.15: Average makespan (over fifty AIRSN DAGs with 53 nodes running
on 3 resources) of five compared scheduling approaches

In the case of AIRSN DAG with 53 nodes (Figure 2.15), Static produces

the worst performance in all settings of QoE and when using for both HEFT

and HBMCT. ReStatic can improve the result of Static to obtain an average

makespan close to the result of Autopsy when QoE is less than 0.3. When QoE

is small (for example, less than 0.2), MCS obtains the best average makespan,
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while ReMCS takes the top place when QoE is equal to 0.3 and 0.4. When QoE

is equal to 0.5, by using HEFT, Autopsy performs the best while, when using

HBMCT, ReMCS outperforms other approaches. In terms of using HEFT or

HBMCT, MCS can usually obtain better results by using HEFT, while ReMCS

obtains similar results when using them, especially when QoE is larger than 0.4.
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Figure 2.16: Average makespan (over fifty LIGO DAGs with 77 nodes running
on 3 resources) of five compared scheduling approaches

In the case of LIGO DAG with 77 nodes (Figure 2.16), again, the displayed

results appear to be similar when using either HEFT or HBMCT. Static still

displays the poorest performance in all of the settings of QoE. The performance

of ReStatic is always located in the position between Static and Autopsy. MCS

performs better than Autopsy when QoE is less than 0.3, but worse when QoE

is greater than 0.3. ReMCS always achieves a better average makespan than

Autopsy, but does not perform as well as MCS when QoE is equal to 0.1.

In summary, several deductions can be made from the above observations, as

follows:

• MCS can usually obtain a better average makespan than Static with run-

time changes of task execution time;

• Applying rescheduling to the schedule produced by MCS usually performs

better than applying rescheduling to the schedule generated by the Static

approach;

• The rescheduling technique is more effective in a highly dynamic context

than a low one;
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• When the distribution of the random task execution time estimation is

known, applying MCS and/or ReMCS can achieve even better results than

the Static with perfect task execution time estimation, i.e., Autopsy.

These deductions demonstrate the advantages of the proposed Monte-Carlo based

scheduling approach. When the performance prediction is uncertain, the pro-

posed approach can outperform the existing solutions on minimizing a workflow

makespan in most of cases.

Apart from comparing the performance of MCS with other scheduling ap-

proaches, the time cost of MCS was also measured with the aforementioned pa-

rameter setting in the experiments. The average time cost results of two separate

MCS approaches using HEFT and HBMCT are shown in Tables 2.4 and 2.5. In

each table, the average time costs for the producing phase and the selecting phase

are also measured. As can be seen from the results, in most cases, the average

time cost of running MCS is around 60 seconds. When finding 10000 newly qual-

ified schedules, the producing phase is completed sooner than the time out limit

of 60 seconds, while the time cost of the selecting phase implies the number of

schedules produced in the producing phase.

Combined with the performance evaluation results, the time cost results sug-

gest that, apart from the substantial improvement made on application perfor-

mance during run-time with task execution time changes, the MCS may also

introduce a significant overhead during scheduling, compared to the list schedul-

ing heuristics [SZ04a]. However, this may not be a fundamental limitation of a

static full-ahead scheme [KL05], especially in cases where the scheduler has suf-

ficient time to make scheduling decisions before the application is ready to start

execution. In addition, as demonstrated in Section 2.4.1, by carefully setting the

termination conditions of the producing and selecting phases, the scheduler can

easily strike a good trade-off between the scheduling overhead and the perfor-

mance improvement.

2.6 Closing Remarks

This chapter addressed a stochastic workflow scheduling problem which models

the uncertainty of task time estimation, which affects the performance of work-

flow execution in a stochastic manner. The chapter began by investigating the

extensively studied deterministic scheduling problem, after which an overview
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Total Time Cost for MCS (= Producing Phase + Selecting Phase)

fMRI (17 nodes) Montage (34 nodes) AIRSN (53 nodes) LIGO (77 nodes)
δ = 0.1 60036.26 39871.54 57114.24 61745.68
δ = 0.2 60467.22 57990.40 62156.14 68109.30
δ = 0.3 61006.52 64058.22 65455.24 71790.94
δ = 0.4 59597.84 63437.18 64288.72 68218.80
δ = 0.5 56771.92 62227.22 63044.04 63587.80

(a) Average Time Cost for the whole MCS

Time Cost for Producing Phase
fMRI (17 nodes) Montage (34 nodes) AIRSN (53 nodes) LIGO (77 nodes)

δ = 0.1 60000.00 26423.82 37793.28 35382.52
δ = 0.2 60000.00 47711.66 45953.98 45180.66
δ = 0.3 59399.02 57642.94 53856.22 55331.62
δ = 0.4 57097.52 59703.14 57142.74 59435.92
δ = 0.5 53920.44 60000.00 58992.52 60000.00

(b) Average Time Cost for the Producing Phase

Time Cost for Selecting Phase
fMRI (17 nodes) Montage (34 nodes) AIRSN (53 nodes) LIGO (77 nodes)

δ = 0.1 36.26 13446.12 19318.8 26361.28
δ = 0.2 467.22 10278.12 16200.3 22927.74
δ = 0.3 1607.2 6414.04 11599.02 16458.68
δ = 0.4 2500.0 3734.04 7145.98 8782.88
δ = 0.5 2851.48 2226.92 4051.2 3587.8

(c) Average Time Cost for the Selecting Phase

Table 2.4: Average time cost (in msec) for applying MCS with HEFT to different
types of DAG with different settings of QoE (denoted by δ)

was given of the common concepts and assumptions adopted in the deterministic

scheduling problem. This was then extended into the stochastic context.

The existing techniques to resolve the deterministic scheduling problems were

summarized, and an extensive taxonomy of well-known deterministic scheduling

heuristics was presented. An example was provided to enhance the depiction of

the problem and support the understanding of the described heuristics. The ma-

jority of these heuristics were implemented, and contributed to the evaluation of

the robustness of a deterministic heuristic in the stochastic context, which enabled

the conclusion of the limitation of these heuristics in the stochastic context.

This chapter has proposed a full-ahead scheduling scheme to tackle the schedul-

ing problem with a stochastic performance prediction. Based on the Monte-Carlo

method, the proposed approach, MCS, seeks such a full-ahead schedule which can

obtain a competitive average makespan no matter how the stochastic task execu-

tion times vary. An extensive simulated evaluation was undertaken and the exper-

imental results demonstrated that an MCS employing a deterministic scheduling

heuristic could always outperform the application of the heuristic using the mean
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Total Time Cost for MCS (= Producing Phase + Selecting Phase)

fMRI (17 nodes) Montage (34 nodes) AIRSN (53 nodes) LIGO (77 nodes)
δ = 0.1 60041.00 44829.74 63494.46 69759.04
δ = 0.2 60384.96 62396.58 64106.80 73858.46
δ = 0.3 61078.64 64714.08 67489.44 69855.30
δ = 0.4 60553.42 63827.76 66163.76 65694.08
δ = 0.5 60195.62 62185.28 64478.68 62158.14

(a) Average Time Cost for the whole MCS

Time Cost for Producing Phase
fMRI (17 nodes) Montage (34 nodes) AIRSN (53 nodes) LIGO (77 nodes)

δ = 0.1 60000.00 32081.66 45287.90 42455.26
δ = 0.2 60000.00 52415.94 46609.00 52959.36
δ = 0.3 60000.00 58324.40 54146.52 57701.64
δ = 0.4 58894.68 60000.00 57821.92 59869.90
δ = 0.5 58265.24 60000.00 60000.00 60000.00

(b) Average Time Cost for the Producing Phase

Time Cost for Selecting Phase
fMRI (17 nodes) Montage (34 nodes) AIRSN (53 nodes) LIGO (77 nodes)

δ = 0.1 41.0 12747.14 18204.96 27303.78
δ = 0.2 384.02 9979.7 17496.22 20899.1
δ = 0.3 1079.64 6389.06 13342.92 12153.34
δ = 0.4 1658.1 3827.46 8341.54 5823.22
δ = 0.5 1930.06 2184.96 4478.36 2158.14

(c) Average Time Cost for the Selecting Phase

Table 2.5: Average time cost (in msec) for applying MCS with HBMCT to dif-
ferent types of DAG with different settings of QoE (denoted by δ)

of random performance prediction by an average makespan. In some cases, the

schedules obtained by MCS, with or without rescheduling, could even perform

better, on average, than those schedules built after the accurate execution time

prediction for each task on each resource is known. It was also suggested that

MCS can be applied to larger applications with controllable overheads.

Although it can improve workflow performance under prediction uncertainty,

the proposed Monte-Carlo scheduling approach, as a full-ahead scheme, has to

rely on performance prediction to make a scheduling decision. The next chap-

ter will consider the problem of how to schedule a workflow to cope with grid

uncertainties in a situation where there is no means to obtain a performance

prediction.



Chapter 3

Just-in-time Scheduling to

Maximize Ready Tasks

The previous chapter focuses on a full-ahead scheduling scheme which requires

the stable availability of a set of resources and information about performance

estimation. However, in some practical Grid computing situations, workflow

scheduling may be faced with severe uncertainty, where, hardly any information

can be obtained about the underlying platform. In such a scenario, a just-in-time

scheduling scheme is often a better choice than a full-ahead scheme. This chapter

concentrates on the development of a just-in-time scheduling scheme when limited

information about the environment is available.

The main contribution of this chapter is a novel low-cost just-in-time schedul-

ing heuristic for DAG applications, which is not only useable for any possible

DAG, but also exhibits a comparable or better performance than the existing

solutions.

3.1 Background

Although many full-ahead static heuristics have been proposed for DAG schedul-

ing to minimize the makespan (the whole application execution time) for het-

erogeneous systems [THW02, SZ04a], these approaches may not be suitable for

highly dynamic Grid environments due to the limitation of their assumptions.

Full-ahead scheduling schemes normally rely on future information and assume

that (i) the resources will always be available when needed, and (ii) the inter-

dependent task communication time and task execution time can be accurately

67
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predicted. However, in some cases, there may be no knowledge about environ-

mental information, or the information may be too hard to be obtained in grids

with a temporal unpredictability [MFR07]: (i) the interdependent task communi-

cation over the Internet may not be stable; (ii) the non-dedicated Grid resources

in charge of executing the DAG tasks may exhibit uncertain availability and/or

task processing rate. Some approaches have been suggested to address a partic-

ular part of this uncertainty, for example, the unpredictability of the task execu-

tion time has been taken into account in rescheduling [SZ04b] and the stochastic

scheduling work presented in the previous chapter, whereas they still rely on the

guaranteed availability of resources.

In contrast, a just-in-time scheduling scheme attempts to minimize the impact

caused by grid uncertainties by making scheduling decisions on-the-fly [AG91,

PLR+95], which means that the allocation of a task will not be decided until

the task becomes ready for execution, i.e., its parents have finished their exe-

cution. Without considering any task-resource mapping before the execution of

an application, a just-in-time scheduling heuristic only determines an allocation

order of the application’s tasks. During runtime, ready tasks are allocated in

the allocation order to resources for execution. With increasing attention in re-

cent years, the just-in-time scheduling scheme has been adopted in quite a few

practical grid projects such as Condor [TTL05], Pegasus [DBG+04] and Triana

[TPS+02, TSW03], where some simple scheduling strategies, for instance FIFO,

have been used. A scheduling pattern which allocates ready tasks to resources

immediately when they become available, is encouraged in large computation en-

vironments where, from a user’s point of view, free resources may quickly become

busy if not allocated immediately [SB08a]. In this case, it has been observed that,

due to the aforementioned temporal unpredictability, using FIFO to sequence the

allocation of tasks may lead to an ineffective execution of an application with

complex task dependencies [MRY06]. This is because the FIFO, which does not

have any deliberate prioritization of task allocation, may encounter a so-called

gridlock [MRY06], namely, there is no ready tasks for allocation when a set of

resources requests arrive.

In order to minimize the risk of encountering this situation, a new scheduling

goal has been suggested by a series of papers [MRY06, MFR07] to schedule the

tasks of a DAG application in such an order that the number of ready tasks

generated during execution is as large as possible for assignment to the resources
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becoming available. Intuitively, once the tasks of an application are executed

in such a order, the application should obtain a considerable parallel speedup

and the resource requests should be better utilized no matter how the dynamic

resources behave. Following the suggested scheduling goal, a decomposition-

based heuristic named IC-Optimal (ICO, hereafter) and its extension have been

proposed in [MFR07]. It is shown in [HRV07] that ICO outperforms some simple

scheduling strategies on the maximization of the number of ready tasks, and the

makespan.

Compared to full-ahead scheduling heuristics, ICO has an important advan-

tage, in that it takes the DAG structure only as input and does not require any

information about performance estimation. It may be argued that overlooking

task execution and communication cost may result in a degraded scheduling per-

formance. In a case where the task execution cost has a significant impact on

the scheduling process and a performance prediction can somehow be obtained,

the classic critical path based scheduling heuristic may outperform ICO [SB08a].

Nevertheless, when the actual task execution and communication time is trivial

to the scheduling process [MFR07] or the performance estimate is highly inac-

curate [SB08b], the scheduling method which focuses on maximizing ready tasks

can still be a better choice.

The strategy of maximizing the number of ready tasks may be promising

for DAG scheduling on the Grid. However, restricted by the decomposition-

based design feature, ICO may have the following three disadvantages: (i) high

complexity, (ii) incomplete applicability — the decomposition procedure may fail

at some DAG topologies in terms of the algorithm description, and (iii) oversight

of global optimization — the optimum schedule may possibly be ignored due to

the decomposition. This indicates the necessity and the possibility of developing

a new approach with lower execution cost, complete applicability for arbitrary

DAG topology and better performance to achieve the same scheduling goal.

Given this motivation, the focus is put upon developing a low-cost just-in-

time approach with the aim of maximizing the number of ready tasks in order

to resolve the workflow scheduling problem with temporal unpredictability. This

chapter proposes a novel priority-based heuristic (PB), which uses a numerical

priority, instead of the decomposition-based techniques used by ICO, and has

advantages of: (i) low running costs, (ii) complete applicability to arbitrary DAG

topologies, and (iii) improved performance with respect to the scheduling aim.
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The proposed heuristic is therefore expected to provide an efficient solution of a

just-in-time scheme for Grid computing systems.

The remainder of the chapter is organized as follows: the preliminaries and

the problem statement are presented in Section 3.2; the related work is reviewed

in Section 3.3; the proposed heuristic is introduced in Section 3.4; the complexity

of the heuristic is analysed in Section 3.5; the performance of the heuristic is

evaluated in Section 3.6; finally, a summary is provided in Section 3.7.

3.2 Preliminaries

We focus on workflow applications which can be represented by a DAG modelled

as follows: a DAG G = {N, E} is a directed graph consisting of a set of nodes

N and a set of edges E, each of which is of the form (i→ j), where i, j ∈ N . A

node i represents the counterpart task, and an edge i→ j denotes the inter-task

dependency between i and j. The execution of j cannot begin until the execution

of i has been completed, and j becomes a ready node when all of its parents

are completed. Given an edge from i to j, i is called a parent node of j, and j

a child of i. Parentless nodes are called source nodes, and childless nodes sink

nodes. For standardisation, it is specified that the DAG has a single entry node

and a single exit node, since all DAGs with multiple entry or exit nodes can be

equivalently transformed to this specification. Apparently, an entry node of G

must be a source node, and an exit node must be a sink node.

As mentioned in Section 3.1, the goal is to determine a schedule S for the given

DAG G (a permutation of tasks indicating the order of assigning tasks to resources

in this chapter) which maximizes the number of ready tasks for mapping to new

resources when they become available. The study proceeds under an idealized

assumption that tasks will be executed in the order of their allocation [MRY06].

Thus, the goal becomes to produce as many ready tasks as possible after each task

execution. NRS(i) is used to represent the number of ready tasks produced at the

completion of the ith task in the order of execution. Obviously, NRS(n− 1) ≡ 1

due to the DAG standardisation adopted. A schedule S∗ is called the optimal

schedule if it maximizes the number of ready tasks at the completion of each

task, i.e.,

(∀i)NRS∗(i) = max
S′∈SG

{NRS′(i)} (3.1)

where SG is the set of all possible schedules of G and 0 ≤ i < n. It is worth
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mentioning that some DAGs do not admit any optimal schedule [MRY06], and

for these DAGs, a metric called normalized AREA [CR09] (denoted by V (S)) as

defined below, is used to describe the implicit quality of a schedule.

V (S) =

n−1
∑

i=0

NRS(i)

n
(3.2)

Given these definitions, the scheduling problem is to sort all of the tasks of a given

DAG into a suitable order to obtain the optimal schedule if the DAG admits one,

or to maximize V (S) if it does not.

3.3 Related Work

The DAG execution model presented in Section 3.2 can be formalized by the

Internet-Computing (IC) Pebble Games which uses pebbles to model the exe-

cution of a DAG. The placement and/or removal of various types of pebbles

are used to represent the transition of task status (for example, ready and com-

pleted). Such games have been studied in [Ros04, RY05, MR05, MR06] for exe-

cuting DAGs on the Internet. These studies were extended to the ICO algorithm

proposed in [MRY06] to obtain optimal schedules for DAGs with some a specific

structure. Simulation experiments carried out in [HRV07] indicate that ICO sig-

nificantly improves the execution time of a large class of DAGs over three simple,

intuitively compelling scheduling heuristics. Malewicz et al. [MFR07] extended

the ICO algorithm to a practical heuristic applied in the Condor Project [TTL05],

and the usefulness of its implementation was assessed in [SB08a, SB08b].

The ICO heuristic is discussed based on the paper of [MFR07]. Although some

other improvements of the ICO are published in [CMR06, CMR07b, CMR07a,

SCR08], they do not conflict with the discussion. As mentioned in Section 3.1, the

ICO is a decomposition-based heuristic derived from the observation that some

simple DAGs, (so-called Connected Bipartite Building Blocks (CBBB) [MRY06])

consisting entirely of source nodes and sink nodes, can easily obtain an optimal

schedule by first running all of their source nodes in a certain order followed by

the sink nodes in an arbitrary order. A couple of examples of CBBB (as shown

in Figure 3.1) are provided in [MRY06, CMR06], where most of the CBBBs are
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Figure 3.1: Examples of CBBBs

named after letters suggested by their topologies, and several integers which spec-

ify their source and/or sink numbers (as the name shown beneath the CBBBs in

Figure 3.1). Some scientific applications can be considered to be a composition of

CBBBs, such as Laplace, FFT, and Fork-join [SZ04a] as illustrated in Figure 3.2.

In addition, more patterns of CBBBs have been expanded in [CMR07a] to allow

for the composition of larger families of DAGs. This grounds the idea of decom-

posing the DAG application to blocks, like some kinds of CBBBs, obtaining the

ICO schedule for all of the blocks and then combining them to form the final

schedule for the whole application.

As shown in Figure 3.3, the procedure of ICO consists of six steps, which are

briefly described as follows (the detailed description and illustration is referred to

[MFR07]): (i) remove every short cut (i.e., every edge from node u to v satisfying

that v can be reached from u other than going through this edge [MFR07]) of

G; (ii) decompose G into building blocks (can be CBBB or not); (iii) generate

a schedule for every building block; (iv) compute inter-block priority (priority

within every pair of building blocks); (v) determine the execution order of the

building blocks; (vi) combine the schedule of every building block to build the

final schedule.

Although ICO has been evaluated to transcend some simple scheduling schemes,
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Figure 3.2: Examples of Scientific Application: Laplace(Left), FFT(Center), and
Fork-join(Right)

for example, FIFO for just-in-time schedulers [MFR07, HRV07], the decomposition-

based design feature of ICO causes it to have inevitable drawbacks, which include:

• Difficulty of implementation. According to the algorithm described in

[MFR07], ICO greatly relies on the manipulation of some complex graph

data structures, e.g., building block, CBBB, super dag [MFR07] etc, which

are usually difficult to implement.

• High Overhead. As presented in Section 3.5, the complexity of ICO is

high. Moreover, the manipulation of graph data structures may be complex,

especially for DAGs which have an irregular topology, e.g., LIGO (as shown

in Figure 2.12(d)). These facts, as will be demonstrated in Section 3.6.3,

may result in a high computational overhead for ICO.

• Failure to capture the optimal schedule in some cases. This may be caused

by two limitations, one of which is the decomposition-combination mech-

anism. ICO combines the building block schedules to construct the entire

schedule in the following way: given building blocks B1 with schedule S1

and B2 with S2, where B1 has higher priority than B2. A combined schedule

is then formed by executing all non-sinks of B1 then all non-sinks of B2 and

finally all sinks in an arbitrary order. Supposing that the optimal schedule

of B1 + B2 requires the execution of the first part of sources in B1 then

some sources in B2, this cannot be captured by the presented combination.

The other limitation is that the optimal schedule has to be captured by

matching a decomposed block with the predefined CBBBs. However, this

should be finite. Once a block actually has an optimal schedule but is not
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Figure 3.3: Six steps of ICO algorithm [MFR07]

(isomorphic to) a CBBB, the optimal schedule may be overlooked. A DAG

example, for which ICO fails to obtain the optimal schedule, is provided in

Section 3.6.2.

• Failure to decompose some specific DAGs. The ICO heuristic proposed in

[MFR07] is claimed to be able to process all DAGs. However, there is a

limitation in its decomposition which may lead to failure when processing

some specific DAGs. This is demonstrated by an analysis of a concrete

DAG example in Appendix A.

In contrast, PB, a new scheduling heuristic with a different task prioritizing

technique is proposed, as presented in Section 3.4, to provide a new just-in-

time scheduling solution with higher efficiency, better performance and a wider

applicability for DAG applications.

3.4 The Priority-based (PB) Heuristic

The key idea of the PB heuristic is to award each DAG node a numerical priority

to describe its ability to produce ready tasks. A node, which can enable more
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ready tasks instantly or potentially (expressed by the priority) by its comple-

tion, is considered stronger and should be executed preferentially. This principle

determines the prioritized sequence of task execution, i.e., the result schedule.

In contrast to the ICO heuristic, which prioritizes DAG nodes in a decomposi-

tion manner, the PB heuristic calculates the priority of nodes according to their

inter-dependencies, for example, in-degrees (the number of parent tasks). This

approach has the following advantages:

• Scheduling costs (including both time cost and memory cost) can be saved

by manipulating simple numerical values instead of complex topological

structures;

• The risk of overlooking the optimal schedule can be reduced by considering

the schedule globally instead of locally as ICO does (within building blocks);

• The heuristic can be applied to DAGs with any topological structure.

Four concepts are defined to make up a combined priority to compare the

capability of a node to produce the ready tasks. For each node:

Direct Quotient (DQ) depicts the direct contribution a node can make to

producing ready tasks. This is defined as the number of tasks which become

ready immediately after the completion of the current node. Apparently, to

achieve the optimal schedule, the scheduled node must have the highest DQ.

Level Quotient (LQ) depicts a node’s topological position in the DAG. This

is defined as the maximum length from a node to the exit node. It is assumed

that the exit node is at level 0. Then, a node with a maximum length l to the

exit node is placed onto level l. Apparently, the entry node is located at the

highest level. Given a collection of ready tasks, it is preferable that the node on

the highest level is run first unless there is any other node with higher DQ.

Export Quotient (EQ) and Import Quotient (IQ) are recursively defined.

EQ is a value only used for two tasks which have the same DQ and LQ to

distinguish the priority of tasks. IQ is not used to compare task priority, but to

help to calculate the value of EQ for each task. This can be illustrated by the



CHAPTER 3. JUST-IN-TIME SCHEDULING TO MAXIMIZE READY TASKS76

Input: A DAG application G.
Output: A schedule for G.

1: Compute the initial DQ, LQ, EQ and IQ for each node in G.
2: Add the entry node into the Ready List L.
3: while L is not empty repeat

4: Schedule the node v in L with the highest priority P , the comparison of task priority
is jointly decided by DQ, LQ and EQ following the decision tree shown in Figure 3.5.

5: Remove v from L.
6: Remove v from G.
7: for each child x of v in G do

8: Decrease the in-degree of x.
9: UpdatePriority(x).

10: endfor

11: Add new ready tasks into L.
12: endwhile

where UpdatePriority is a recursive procedure presented as below:
UpdatePriority(currentNode)
if the in-degree of currentNode is NOT equal to 0

Update the IQ of currentNode.
for each parent p of currentNode do

Update the EQ and DQ of p.
UpdatePriority(p).

endfor

endif

Figure 3.4: The PB Heuristic

following definition. Given a node v

IQv =

{

0 : v ∈ Ssole ∪ Sready

(EQv + 1)/IDv : otherwise
(3.3)

EQv =







0 : v ∈ Ssole
∑

u∈Succ(v)

IQu : otherwise (3.4)

where IDv means the in-degree of node v, Succ(v) denotes the set of child tasks

of v, Sready means the set of ready nodes and Ssole is the set of sole nodes. A sole

node is a node which can only be executed exclusively, for instance, the entry

node and the exit node of a DAG. Therefore, EQexit node = 0.

Based on the definitions of DQ, LQ, EQ and IQ, the detail of the PB heuris-

tic is presented in Figure 3.4. It should be noted that LQ does not change as

the scheduling heuristic is executed, but DQ, EQ and IQ do. As an example,
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Figure 3.5: The decision tree of comparing task priority

Figures 3.6 and 3.7 illustrate how DQ, EQ and IQ vary as the scheduling goes

on.

Given the DAG G on the left-hand side of Figure 3.6, the initial values of

DQ, EQ and IQ for each node can easily be calculated from their definition

(results in the right half of Figure 3.6). Every pair of numbers in the position

of the counterpart node is in the form of < DQ, EQ, IQ >. When node 0 has

been completed, nodes 1 and 2 become ready. Therefore, the IQ value of nodes

1 and 2 turns to zero, while their DQ and EQ do not change. Subsequently,

node 2 is selected because it has a higher DQ than node 1. When node 2 has

been completed, DQ and EQ of node 1 are accordingly updated as shown in

Figure 3.7.
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Figure 3.6: An example of computing the initial < DQ, EQ, IQ >

Figure 3.7: Computing the updated < DQ, EQ, IQ > after node 2 is scheduled

3.5 Complexity Analysis of PB and IC-Optimal

Preliminaries Given a DAG G, the number of nodes, denoted by |V |, is con-

sidered as the input size to analyse the complexity of PB and ICO. Let |E| denote

the number of edges. In the case where ICO decompose G into several building

blocks, let n denote the number of building blocks comprising G, |Bi| denote the

number of nodes in building block i, |Ei| denote the number of edges in building

block i, |Si| denote the number of source nodes in each building blocks, src denote

the number of source nodes of DAG G, snk denote the number of sink nodes of

DAG G. Then, the direct or indirect connection between these variants and |V |

is provided by the following equations:

1. |E| = c0|V |2, therefore O(|E|) = O(|V |2)

2. |E| =
n−1
∑

i=0

|Ei|, especially when |E0| = |E1| = · · · = |En−1| = e, e = |E|
n

=

c1|V |
2, therefore O(|Ei|) = O(|V |2)

3. |V | =
n−1
∑

i=0

|Si| + snk, especially when |S0| = |S1| = · · · = |Sn−1| = s,
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s = |E|−snk

n
, therefore O(|Si|) = O(|V |2)

4. |V | =

n−1
∑

i=0
|Bi|+snk+src

2
, especially when |B0| = |B1| = · · · = |Bn−1| = b,

b = 2|V |−snk−src

n
, therefore O(|Bi|) = O(|V |)

Complexity of PB Based on the algorithm described in Section 3.4 and the

above definitions, a complexity analysis of PB is provided in Table 3.1. The sum

of the values of the complexity column presents the complexity of PB, which is

O(|V |3).

PB (G) Complexity Explanation

Line 1 O(|V |2) traverse every edge of G
Line 2 O(1) only one time
Line 3 O(|V |) WHILE loop, one node is scheduled per loop

until all complete
Line 4 O(|V | × log |L|) |L| is the length of L at each WHILE loop

and 0 < |L| ≤ |V |
Line 5 O(|V |) one time per WHILE loop
Line 6 O(|V |) one time per WHILE loop
Line 7 O(|V |2) FOR loop, no more than number of edges of G
Line 8 O(|V |2) one time per FOR loop
Line 9 O(|V |3) no more than number of edges of G per WHILE loop
Line 10 O(|V |2) one time per FOR loop
Line 11 O(|V |2) one time per WHILE loop
Line 12 O(|V |2) one time per WHILE loop

Table 3.1: The complexity analysis of PB

Complexity of IC-Optimal In a similar way, the complexity of the ICO

heuristic described in [MFR07] is analysed, although this is a more compli-

cated process. The analysis result for each step of ICO is presented in Ta-

ble 3.2. The sum of the complexity column suggests that the complexity of

ICO is O(|V |3 × log |V |).

Summary The worst-case complexity of PB and ICO is analysed, which is de-

termined by a dynamic priority calculation for the former, and DAG decomposing

for the latter. Apparently, the complexity analysis shows that ICO has a higher

complexity than PB, since DAG decomposing is a more complicated process than
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IC-Optimal (G) Complexity

Step 1 O(|V |α), where α = log2 7
Step 2 O(|V |3 × log |V |)
Step 3 O(|V | × log |V |)
Step 4 and 5 O(|V |2)
Step 6 O(n× log n)

Table 3.2: The complexity analysis result of ICO

dynamic priority calculation, which is also the crucial difference between PB and

ICO.

3.6 Experimental Evaluation

This section compares PB against ICO and two simple, intuitively compelling

just-in-time scheduling heuristics, namely FIFO and GREEDY, as defined in Sec-

tion 3.6.1. The experiment is designed to investigate the following three aspects

of a heuristic:

• How quickly can the heuristic schedule a DAG, which is evaluated by the

metric of time cost, i.e., the execution time of the heuristic;

• How well can the heuristic maximally generate ready tasks, which is eval-

uated by the metric of turnout of ready tasks, i.e., a sequential set of the

numbers of ready tasks produced at the completion of each task;

• Based on the scheduling result of the heuristic, how quickly can the applica-

tion be completed in the batch mode as described in Section 3.6.2, which is

evaluated by the metric of batched-makespan, i.e., the number of resource

batches needed to complete a DAG application.

3.6.1 Competing Heuristics

Descriptions of FIFO and GREEDY are provided as follows, given a DAG G,

FIFO Heuristic

1. FIFO initially schedules G’s source nodes and put them into a ready task

pool P ;
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2. When a remote resource R becomes available, FIFO allocates a task t from

P to R, while the allocation is enforced in the order of the DAG definition,

which can be regarded as ‘randomly’;

3. When t is completed, it is removed from P , and those of t’s children which

have become ready are placed into P ;

4. Steps 2 and 3 are repeated until all of the nodes of G have been executed.

The GREEDY Heuristic

1. GREEDY initially puts G’s source nodes into a prioritized queue Q in non-

decreasing order of out-degree, and those nodes of equal out-degree are

enqueued in random order;

2. When a remote resource R becomes available, GREEDY allocates the task

t at the head of Q to R ;

3. When t is completed, it is removed from P , and GREEDY enqueues those of

t’s children which have become ready in non-decreasing order of out-degree,

and those nodes of equal out-degree are enqueued in random order.

4. Steps 2 and 3 are repeated until all nodes of G are executed;

It should be noted that both FIFO and GREEDY have random steps in pro-

ducing the order of task execution. This means that their scheduling results are

not stable. Therefore, in subsequent experiments, the above-mentioned metrics

of these two heuristics were evaluated by the average value over multiple mea-

surements.

3.6.2 The Experimental Setup

Similar to the description in [HRV07], it is assumed that a DAG application is

executed in a batch mode (a variant of which is studied in [MR05]): A READY

pool is maintained to hold the ready tasks for the assignment to task execution re-

quests from resources. These available resources appear batch by batch. As each

batch arrives, the ready tasks are allocated by means of one task per resource.

If more resources arrive than ready tasks, the unused resources will simply dis-

appear, and can be regarded as utilized by other applications. If fewer resources
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arrive than ready tasks, the unallocated tasks will be returned to the pool. It is

assumed that all of the tasks allocated at the ith batch will be completed before

the (i+1)th batch arrives. More concretely, given that a DAG application with n

nodes is run by schedule S. When the ith coming batch appears with ri resources

and there are ti ready tasks in the ready-task pool, then min (ri, ti) tasks will be

allocated and executed. Suppose that resource batches arrive constantly until all

of the tasks are completed, the number of resource batches required to complete

a DAG are counted, and defined as the metric of a batched-makespan.

Classification of DAGs There are a various types of DAG applications which

can be used to compare the four competing heuristics. As described below, these

DAGs are classified into three categories according to the features of their com-

position methods.

1. Category A: Based on the compositions of CBBBs, a method of generating

complex DAGs is provided in [HRV07]. The provided method attempts to

ensure that all generated DAGs admit so-called IC-optimal schedules, i.e.,

for all of these DAGs, ICO can obtain optimal schedules. These DAGs

are classified into Category A. The majority of known applications like

LAPLACE [SZ04a], FFT [SZ04a], MONTAGE [BJD+05], LU [BBR02a],

STENCIL [BBR02a], FORK-JOIN [BBR02a], DOOLITTLE [BBR02a], and

LDM t [BBR02a] belong to this category. Since the comparisons based on

these DAGs obtain similar results, LAPLACE (shown in Figure 3.2) is

selected to represent them.

2. Category B: For some composites of CBBBs, PB can produce optimal sched-

ules, whereas ICO, FIFO and GREEDY cannot. These DAGs are classified

as Category B. As shown in Figure 3.8(a), a typical example of this cat-

egory is a building block composed of the CBBBs W[5,2] and W[2,6] as

depicted in Section 3.3. In this example, it can easily be imagined that

node 7 must be scheduled before node 0 through 3 to obtain an optimal

schedule. This schedule can be captured by PB but not ICO. Such building

blocks, varying in source numbers, sink numbers or even topologies can be

used to construct more complex DAGs which still fall into Category B.

3. Category C : There are still lots of randomly generated DAGs, which may

not be composite of CBBBs. For these DAGs, it is likely that none of the
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four heuristics can produce the optimal schedule. These DAGs are classified

as Category C. Random DAGs of Category C are generated by the method

described in Appendix B, and an example of this DAG category is provided

in Figure 3.8(b).

Figure 3.8: Examples for DAG Category B (left) and Category C (right)

The Time Cost Experiment This experiment was undertaken to investigate

how the time cost for each heuristic grows as the number of nodes increases. The

investigation covered all DAG categories (or their representative). By specifying

the number of nodes, a DAG was generated for each of them, and each of the

competing heuristics was executed 50 times for the generated DAG. The average

time cost was measured over these 50 executions to make the comparison. The

selected numbers of nodes were 25, 100, 400, 900, 2500, 3600 and 6400.

The Turnout of Ready Tasks Experiment This experiment was undertaken

to investigate the number of ready tasks produced after each task execution of

a DAG. Recalling the definition in Section 3.2, once a heuristic is applied to a

DAG G with n nodes and then schedule S is produced, its turnout of ready tasks

can be depicted by a n-entry vector VS =< NRS(0), NRS(1), · · · , NRS(n−1) >.

Given two vectors V 1
S and V 2

S , their comparison results can be classified into the

following six cases:

1. V 1
S == V 2

S : for each step i, NR1
S(i) = NR2

S(i);

2. V 1
S � V 2

S : for each step i, NR1
S(i) ≥ NR2

S(i) and ∃ step j, NR1
S(j) 6=

NR2
S(j);
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3. V 1
S � V 2

S : for each step i, NR1
S(i) ≤ NR2

S(i) and ∃ step j, NR1
S(j) 6=

NR2
S(j);

4. V 1
S > V 2

S : none of case 1, 2 and 3 is satisfied, and
∑

NR1
S(i) >

∑

NR2
S(i);

5. V 1
S < V 2

S : none of case 1, 2 and 3 is satisfied, and
∑

NR1
S(i) <

∑

NR2
S(i);

6. V 1
S ? V 2

S : none of case 1, 2 and 3 is satisfied, and
∑

NR1
S(i) =

∑

NR2
S(i);

1000 DAGs were generated for each DAG category by means of a random

selection of the aforementioned selected numbers of nodes. Each of the competing

heuristics was applied to each generated DAG, and its turnout of ready tasks was

obtained in the form of vector VS separately. Four vectors were compared in pair,

and the number of times by which a particular case was hit according to the

comparison result was accumulated. These numbers can suggest which heuristic

delivers the better turnout of ready tasks.

The Batched-makespan Experiment Recalling that it is assumed that DAG

applications are executed in the batch mode described in Section 3.6.2, in more

detail, the number of resources arriving at each batch is assumed to be a random

variable following exponential distribution with a mean value in the set of {2, 4,

· · · 210}. Two DAGs with two different sizes were used for each DAG category.

The DAG sizes were around 100 and 900 respectively. In detail, two Laplace

DAGs with 100 nodes and 900 nodes were used in Category A; two special cases

of CBBB composites, one containing W[2,48] and M[49,2] with a total of 105

nodes, the other containing W[2,448] and M[449,2] with a total of 905 nodes,

were adopted for Category B. In terms of the DAGs of Category C, which may

be diverse in topology even of the same size, 50 DAGs were generated for a specific

size (100 or 900) and average results were obtained. For each generated DAG,

every competing heuristic was executed in the batch mode 500 times, and the

means of the observed batched-makespan, MPB, MICO, MFIFO and MGREEDY ,

were obtained separately.

3.6.3 Experimental Results and Discussion

Time Cost Results

The results of the time cost experiment are shown in Figure 3.6.3. The curves

depict the growth of the mean cost of each competing heuristic on each DAG
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category. In all cases of different DAG types, the cost of ICO is much more

than other heuristics as the DAG size increases due to its higher complexity. In

contrast, PB maintains comparable cost with simple heuristics such as FIFO and

GREEDY. PB is distinguished from ICO in terms of time costs, not only by a

lower complexity but also the manipulation of simple numerical values instead

of a complex data structures. Moreover, ICO may exhibit various efficiencies

from one DAG category to another due to the structural variety of DAG. In the

case of Category A, i.e., LAPLACE, the cost of ICO is not too expensive, since

the decomposition is easy and the decomposed building blocks can simply be

matched to one of the pre-defined CBBBs. However, in the case of Category C,

the decomposition may be difficult because of the complex task dependencies,

and the decomposed building blocks are usually not matchable to any CBBB.

Therefore, the cost of ICO increases dramatically in this DAG category, whereas

it appears that PB does not suffer from this problem.
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Turnout of Ready Tasks Results

The results of the turnout of ready tasks provided in Figure 3.10 indicate the

main difference between the three DAG Categories. For Category A, the pair-wise

comparison shows that PB and ICO always capture the same optimal schedule,

as opposed to FIFO and GREEDY. Therefore, at the completion of each task,

PB and ICO obtain the same number of ready tasks, and the number is greater

than, or at least equal to, the FIFO and GREEDY obtained. For Category B,

PB achieves the optimal schedule, while other heuristics fail to do so. Therefore,

PB always obtains at least the same, if not more, ready tasks compared to the

others. For the last Category, where the optimal schedule can hardly be acquired,

PB maintains advantages over other heuristics. It is suggested in this table that,

every time PB is compared with other heuristics, the comparison results always

fall into the cases which favour PB.

Batched-Makespan Results

In the batched-makespan experiment, various DAG sizes and resource batch

sizes were specified to simulate a wide spectrum of dynamic computing circum-

stances. To compare PB against other competing heuristics, it is assumed that

the batched-makespan of PB is 1, and the batched-makespan of other competi-

tors is normalised by computing the ratio of RICO = MICO ÷ MPB, RFIFO =

MFIFO ÷MPB, and RGREEDY = MGREEDY ÷MPB. Therefore, the reported val-

ues of other competing heuristics larger than 1.0 represent the advantage of PB.

The results in Figure 3.11 show that, in all cases, PB obtains at least equal, if

not less, batched-makespan compared with other heuristics. It should be noted

that, when the resource supply is sufficient enough for the request of ready tasks,

the batched-makespan is simply determined by the length of the critical path

of a DAG. In this extreme condition, all heuristics will perform as well as each

other. Otherwise, PB can normally improve the batched-makespan by 10-20%

compared to FIFO and GREEDY for the DAG Category A and B. Even in Cat-

egory C, which has the slightest advantage, about 5-10% improvement can still

be expected. Moreover, it is indicated that the results of the batched-makespan

are in accordance with the turnouts of the ready tasks, i.e., the heuristic which

produces a better turnout of ready tasks can usually obtain a better batched-

makespan. This verifies the effectiveness of the scheduling goal to maximize the

number of ready tasks.
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Figure 3.10: Pairwise comparing results on turnout of ready tasks

3.7 Closing Remarks

This chapter presents a novel just-in-time scheduling heuristic, the Priority-Based

heuristic, aimed at maximizing the number of ready tasks at each step of execut-

ing a DAG application. When such a scheduling goal is achieved, the application

is expected to perform efficiently on the remote resources, even though their be-

haviour changes unpredictably over time. With low-cost, PB is applicable to

any DAG with an arbitrary structure, therefore it is compatible with any poten-

tial DAG application. The experimental evaluation reveals that, compared with

ICO, PB achieves significant improvement in the aspects of time cost and appli-

cability, and has a certain advantage in terms of the turnout of ready tasks and
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Figure 3.11: Normalized Batched-makespan results (RICO = MICO ÷ MPB,
RFIFO = MFIFO÷MPB, and RGREEDY = MGREEDY ÷MPB) for specified DAGs
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batched-makespans. Compared with FIFO and GREEDY, PB makes notable

progress on the latter two metrics with comparable costs. In general, it is sug-

gested that, when considering DAG structure only as the input, PB outperforms

other existing just-in-time heuristics when scheduling applications on dynamic

remote resources, therefore can become a competitive scheduling solution for the

increasingly popular Internet computing, e.g., the Grid.

Either via full-ahead or just-in-time scheduling scheme, the thesis so far have

attempted to optimize the makespan of workflow under various uncertainties in

the grids of a performance-driven model, where, nevertheless, Quality-of-Service

is not considered. The next part of the thesis moves to a different scheduling

problem with different scheduling objectives, namely, to address the uncertainties

in workflow scheduling in the grids of a QoS-driven model.



Chapter 4

SLA-based Workflow Scheduling

As mentioned in Chapter 1, this thesis consists of two main parts, the first of

which, i.e., Chapters 2 and 3, addressed workflow makespan optimization prob-

lems under various grid uncertainties in the performance-driven model where no

Quality-of-Service (QoS) is considered. The next part, beginning with this chap-

ter, moves on to bypass grid uncertainties with workflow scheduling by using a

QoS-driven model, where users need their QoS constraints to be satisfied by grid

systems which provide grid services, and the service providers want to maximize

their benefits. This is the approach normally followed by market-based grids.

This chapter provides background material on market-based scheduling sys-

tems, surveys the current state of the art, and outlines the study’s SLA-based

workflow scheduling model designed for both guaranteeing users’ QoS require-

ments and maximizing service providers’ benefits. The chapter is organized as

follows: Section 4.1 compares scheduling in the QoS-driven model with schedul-

ing in the performance-driven model. Section 4.2 provides a survey of a number

of existing market-based scheduling studies and identifies the outstanding issues

to guarantee QoS for workflow applications under grid uncertainties. Section 4.3

presents the study’s model of an SLA-based scheduling system and analyzes the

complex SLA-based workflow scheduling problem to solve. Section 4.4 concludes

the chapter.

4.1 Background

In the context of Grid computing, many users may need their workflow applica-

tions to be completed within a specific period, for example, weather forecasters

90
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may run climate modelling workflow simulation for forecasting [QAY08]. Essen-

tially, what these users require from the Grid system is Quality-of-Service (QoS).

Here, the term of QoS refers to a guaranteed level of performance (for example,

completing a job in less than 10 minutes) [qos], rather than the achieved service

quality. Apparently, from these users’ points of view, only when a certain level

of QoS is delivered, can a Grid be regarded as an efficient and effective system.

Many of the traditional workflow scheduling approaches are based on the

performance-driven model, which is naturally unable to guarantee QoS. In the

dynamic case where resources exhibit varying availability, there is obviously no

chance to ensure the completion of workflow. Even in a case where a stable

set of resources is assumed, the enactment of workflow often relies on queue-

based scheduling systems, i.e., a workflow task cannot be run until it reaches

the head of the queue. Since the actual task execution time usually differs from

the estimation, the completion time of tasks in a queue may approximate to

‘whenever’ [MSK+04]. As a result, the execution time of the whole workflow

may be even more uncertain, due to the task dependencies. Although some

efforts have been made to cope with the grid uncertainties (e.g. [JHSN05]), as

in the previous chapters of this study, many traditional grid systems still try to

complete applications as they come, without any guarantee on their completion

time [ES01, ABJ+04, LAH+04, DBG+04, CJSN03, ST04]. Therefore, without a

good prediction for the whole system [JFI+07], it is difficult for a user to know,

even approximately, when the application can be completed.

To handle the issues stated above, advance reservation of resources has been

suggested to allow a user to reserve resources in order to ensure that they will

be available for task running within a requested period. However, this approach

in its suggested form, (i.e., one task exclusively occupies a precise period on a

resource), may have drawbacks due to the unpredictability of task execution time.

If the task finishes earlier than the reserved time, the resource will be left idle,

which is undesirable for the service provider; if the task finishes later than the

reserved time, the QoS guarantee may fail and the user’s requirement will not

be met. Therefore, more sophisticated approaches must be developed in order to

not only satisfy the user’s QoS requirements but also hold the resource owner’s

benefits, even though these two objectives are often contrary.

Currently, there has been an increasingly popular trend for Grid technologies

to progress towards a market-based paradigm to strike the trade-off between the



CHAPTER 4. SLA-BASED WORKFLOW SCHEDULING 92

conflicting requirements of users and service providers. In market-based grids,

users are allowed to consume services based on their QoS (Quality of Service)

requirements and in turn make payment for a successful service provision. In

such a paradigm, it is envisaged that there may be conflicting requirements of the

user and/or the system, such as application deadline, user’s budget and resource

owner’s profit. Therefore, a major shift in the underlying scheduling technology

is needed to deal efficiently with these requirements while still taking the grid

uncertainties into account, and SLA-based workflow scheduling may provide a

promising solution to achieving this.

Analogous to a contract in the real business world, Service Level Agree-

ments [Hil93] (SLA) play a crucial role in a market-based Grid. An SLA is a

bilateral contract between the user and the service provider. Applying SLAs

is a mandatory prerequisite for a market-based Grid, since this provides an ex-

plicit statement of the expectation and obligation of both sides—the user and the

service provider, in their business relationship. SLAs are an important link con-

necting the flow of processing a user application in a market-based Grid. Firstly,

in order to run an application, the user needs to send a request to the Grid

system and specify his/her QoS requirements, which are usually expressed as a

set of constraints. Next, the QoS requirements need to be agreed upon by the

user and the service provider before the application can be executed. Then, if an

agreement is reached, the user needs to make advance reservations for his/her ap-

plication. SLAs act as a material which records all of the agreed QoS constraints

and advance reservations, and then guides the execution of the workflow in the

right direction to fulfill the QoS requirements of the user. At the end of running

the application, if the QoS requirements are met, the user pays the service fees

specified in the SLA, and the service providers receive income. Otherwise the

service providers pay the penalty specified in the SLA and the user receives com-

pensation. Therefore, such a scheduling scheme in the context of market-based

Grid is known as ‘SLA-based scheduling’.

Scheduling in the QoS-driven model, namely SLA-based scheduling, is quite

different from those in the performance-driven model. Firstly, there are far more

issues, such as multiple QoS constraints, advance reservation, and service price,

to be considered in the former model as opposed to the latter. Secondly, with an

attempt to guarantee that the workflow will be executed within a specific period,

there is a big shift in scheduling objectives. In SLA-based scheduling, instead of
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pursuing the optimization of the makespan, the scheduler may focus on meeting

the user’s hard constraints, while maximizing the profit for the service providers.

Moreover, there are always multiple workflows requiring QoS guarantee in market-

based Grids, and this probably leads to resource competition, and consequently

makes the scheduling problem even more complex. At present, although there

has been an increasing academic interest on market-based Grids, the study of

a SLA-based workflow scheduling is still in its infancy. This provides the main

motivation of the work on SLA-based scheduling in this thesis.

4.2 Review of State of The Art

Essentially, the SLA-based scheduling work in this thesis is to build a prototype

of a scheduling system for a market-based Grid model. In the recent decade,

numerous market-based scheduling and resource management systems have been

proposed with various design features, focuses and objectives for a Grid com-

puting platform. To depict the state of the art and distinguish this work from

other related work, in this section, a taxonomy and a survey of the published

market-based scheduling and resource management works is provided.

4.2.1 Taxonomy

Based on related work [YB06a], which presented a taxonomy of market-based re-

source management systems for so-called utility-driven cluster computing, several

taxonomies were considered for the market-based Grid scheduling systems with a

focus on scheduling issues. The taxonomies are considered from five perspectives:

Market Model, Resource Model, Application Model, QoS, and Scheduling.

Market Model Perspective

The taxonomy from the Market Model perspective examines how the concepts

present in economics are derived and incorporated into the design of the market-

based Grid model. This also depicts the features of the underlying infrastructure

on which the application scheduling is carried out. In the market model perspec-

tive taxonomy, two sub-taxonomies are considered: economic model and benefit

focus, which are illustrated in Figure 4.1.

The economic model derived from [YB06a] indicates how resources or services
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Figure 4.1: The taxonomy from Market Model Perspective

are traded in a market-driven computing environment. A particular economic

model is normally determined by the market interaction between users and service

providers.

• In the commodity market, service providers specify service prices and users

pay for the service they consume in terms of the price. There are various

pricing policies, which can be flat or variant and depends on different fac-

tors e.g., the current supply and demand. The charge to the user can be

calculated using various parameters such as usage time and usage quantity.

• In an auction market, multiple users submit bids through an auctioneer,

who acts as a coordinator and sets the rules of the auction, to negotiate

who wins the access to a single service. The negotiation continues until the

highest bid is accepted.

• In the contract-net market, the user first announces his/her requirements

to invite bids from potential service providers. These service providers then

evaluate the requirements, and decide to respond with bids or ignore the

announcement according to their interests and capabilities. The user who

receives the bids thus selects the most suitable service provider and sends

a contract which specifies conditions needing acceptance and confirmation

for the selected provider to sign.
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• In the bartering market, there are a group of community members, who

can be either users or service providers, sharing resources and services with

each other. Thus, a corporative sharing environment is formed.

In addition to the set of common economic models as listed above, a more com-

plete list can be found in [BAGS02].

The benefit focus identifies the party for whom the market-based scheduling

system aims to achieve benefits. As the name implies, having a user benefit focus

means that the scheduling system aims to meet the requirements specified by the

users, and to optimize their perceived benefits. Similarly, having service provider

benefit focus means that the profits of the resource owners is the dominant ob-

jective of the scheduling system. In contrast, the trade-off benefit focus has no

particular bias to users or service providers, but instead, aims to strike a trade-off

which can be accepted by both parties.

Resource Model Perspective

The taxonomy from the Resource Model perspective distinguishes the character-

istics of the grid resources which are modelled in scheduling studies. This features

the particular computing platform which the market-based scheduling system fo-

cuses on and significantly influences the design of the scheduling approaches. The

resource model perspective taxonomy consists of four sub-taxonomies as outlined

below and shown in Figure 4.2.

Management Control depicts how resources are organized and controlled in

Grid systems. The control can be centralized, i.e., all resources can be fully

controlled and managed by a central grid scheduler; or decentralized, namely dif-

ferent groups of resources are controlled by different local managers respectively;

or hierarchical, which is a mixture of centralized and decentralized where local

managers are coordinated by a global manager.

Resource Diversity identifies whether the resources which comprise the com-

puting system are homogeneous or heterogeneous, namely whether these resources

are identical or diverse in one or more aspect (e.g., configuration, performance,

load etc.).

Execution Support classifies resource models into two categories, according to

how many tasks they support to execute at the same time: single-programming

means it is assumed that, at most one single task can be executed on a resource
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Figure 4.2: The taxonomy from Resource Model Perspective

at the same time, while multiprogramming means that, multiple tasks can be

concurrently executed on a resource [WHP08].

The Existing Load may be considered in some market-based scheduling sys-

tems or non-considered in others. In the former case, scheduling approaches

must prevent the new scheduled application from disrupting the previously made

scheduling decisions, while, in the latter case, all resources are assumed to be

entirely free of load within the period during which the current application is

scheduled to run.

Application Model Perspective

The taxonomy from the Application Model perspective categorizes attributes of

applications which are considered to be scheduled and executed in market-based

Grid systems. Market-based scheduling systems must take these attributes into

account to ensure that the specific requirement rising from various application

types can be successfully fulfilled. As illustrated in Figure 4.3, the application

model perspective taxonomy is considered in three facets as follows:

The Application Composition depicts how multiple tasks are collected within

an application defined by the user. It should be noted that, with a focus on a
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Figure 4.3: The taxonomy from Application Model Perspective

distributed computing platform, only multiple-task applications are considered

here. In terms of the connection between the tasks within one application, the

application composition can be classified into two categories: independent tasks

and dependent tasks. The former means that all tasks can be independently

executed in different resources at the same time, while the latter means that

some tasks may depend on input data which can only be computed upon the

completion of other tasks.

The Task Processing describes the type of processing a task requires. For a

sequential type of task processing, the task must be sequentially executed in a

single processor, while, for a parallel type of task processing, the task may require

the use of multiple processors.

The Application Arrival portrays the scenario in which how many and how the

application requests arrive and how they are considered in terms of scheduling.

Generally, there are three different scenarios which have appeared in the existing

scheduling studies:

• single application, i.e., the scheduling system only concentrates on the

scheduling process on a single application;

• multiple applications at a time, i.e., the scheduling system schedules multi-

ple applications in a batch, which can be regarded as arriving at the same
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time;

• multiple applications in sequence, namely, the scheduling system investi-

gates scheduling issues over a bunch of applications arriving sequentially

within a certain period.

QoS Perspective

The taxonomy from a QoS perspective specifies how the QoS related parameters

and policies are set in a market-based scheduling system, which also influences

the design of a specific scheduling approach. As shown in Figure 4.4, the QoS

perspective taxonomy proposed here consists of three aspects: QoS Attribute,

QoS Specification and QoS Guarantee.

Figure 4.4: The taxonomy from QoS Perspective

The QoS Attribute describes the kind of requirements that users require the

system to deliver. The attribute can be time, economic cost or some other met-

rics (e.g., reliability, security etc.) which are not as common as the first two

mentioned. A typical example of a time QoS attribute is the deadline required

by the user for the application to be completed. The economic cost attribute



CHAPTER 4. SLA-BASED WORKFLOW SCHEDULING 99

is normally monetary and reflects the budget the user is willing to pay for the

successful running of the application.

The QoS Specification depicts how users perceive satisfaction with the QoS at-

tributes concerned. A QoS specification can be Constraint-based, Optimization-

based or some other form. The constraint-based QoS specification normally de-

fines a range of value for a particular QoS metric, and the success or failure of

the service provision depends on whether the delivered QoS result falls within

the defined range or not. The optimization-based QoS specification expresses the

user’s desire to optimize a particular QoS metric.

The QoS Guarantee distinguishes how the scheduling system reacts to a rec-

ognized breach of the user’s QoS requirements. The rigid QoS guarantee is usu-

ally supported in the case of a constraint-based QoS specification, in which the

scheduling system stop scheduling the rest of the application once it is detected

that the QoS constraint has been violated and the service providers receive no re-

ward from a failed service provision. In contrast, a pliable QoS guarantee ensures

that the application will be accomplished, although a certain number of penalties,

as pre-specified in the contract, will be applied to the service providers.

Scheduling Perspective

The Scheduling perspective taxonomy analyzes the assumptions and designs

adopted in various scheduling approaches for different market-based scheduling

systems. Four sub-taxonomies are considered in the scheduling perspective tax-

onomy, as shown in Figure 4.5.

The Prediction Accuracy determines whether or not the inherent uncertainty

of performance prediction is considered in the scheduling study. The accurate

represents the fact that the actual task performance is assumed to be always

the same as its estimate, while the inaccurate means that the prediction error is

modelled and taken into account in the design of the scheduling approach.

The Planning Scheme classifies scheduling approaches into two main groups

in terms of the moment when the scheduling decision is made. The full-ahead

planning denotes the fact that the whole application is scheduled before its ex-

ecution starts, while just-in-time scheduling makes scheduling decisions for each

individual task only when the task is ready to start.

The Advance Reservation distinguishes whether or not the advance reservation

mechanism is supported or non-supported in the design of the market-based
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Figure 4.5: The taxonomy from Scheduling Perspective

scheduling system.

The Schedule Update determines whether or not the scheduling result of a

task, which includes the assignment to a resource and the scheduled start time, is

static (i.e., unable to be modified) or dynamic (i.e., adaptive to run-time changes).

4.2.2 Survey

This section provides a survey covering a selective collection of the market-

based scheduling and resource management systems developed for Grid com-

puting platforms. The selected scheduling systems include: Faucets [KKP+04],

Nimrod [BA09], VGE [BBES05], Gridbus [YB09], SLA-based Scheduling Heuris-

tics (SLA-BSH, hereafter) [SY08], GridFlow [CJSN03] and SLA-aware Execu-

tion Framework (SLA-AEF, hereafter) [Qua06a]. Some published works which

focus on market mechanisms for resource management rather than scheduling

issues, such as RESERVOIR [RBL+09], SweGrid [GEJ+08], MOSIX [ASL+08],

Bellagio and Mirage [ABC+09], Tycoon [SLAO06], Catallaxy-based [AAE+06,

ERS+05], CATNET [ERA+03], G-commerce [WPBB01], Gridmarket [CYL04],

and OCEAN [PHP+03], are omitted. Using the taxonomies presented in the pre-

vious section, the survey is summarized in five tables respectively: the Market
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System/Paper Economic Model Benefit Focus
Faucets Contract-Net, Bartering Service Provider
Nimrod/G Commodity User
VGE Commodity User
Gridbus Commodity User
SLA-BSH Commodity Service Provider
GridFlow Bartering User
SLA-AEF Commodity User

Table 4.1: Survey using the Market Model perspective taxonomy

Management Resource Execution Existing
System/Paper Control Diversity Support Load
Faucets centralized NA Multiprogramming Considered
Nimrod/G Decentralized Heterogeneous Multiprogramming Considered
VGE Decentralized Heterogeneous Single-programming Non-Considered
Gridbus Decentralized Heterogeneous Single-programming Considered
SLA-BSH Decentralized Homogeneous Multi-programming Considered
GridFlow Hierarchical Heterogeneous Multi-programming Considered
SLA-AEF Decentralized Heterogeneous Multi-programming Considered

Table 4.2: Survey using the Resource Model perspective taxonomy

Model Perspective (Table 4.1); the Resource Model Perspective (Table 4.2); the

Application Mode Perspective (Table 4.3); the QoS Perspective (Table 4.4); and

the Scheduling Perspective (Table 4.5). Similar to [YB06a], the ‘NA’ keyword is

used in the tables to represent the fact that either the specified sub-taxonomy is

not addressed by the particular scheduling system or there is insufficient infor-

mation from the references to determine. Following these summarized tables, the

details of each selected market-based scheduling system are briefly presented.

Faucets

Faucets is a framework proposed to target a computational grid. The framework

supports a market-driven Compute Server [KKP+04] selection. Two of the main

aims of Faucets is to achieve (i) user friendliness, which frees users from manually

Application Task Application
System/Paper Composition Processing Scenario
Faucets NA Parallel Multiple Applications in Sequence
Nimrod/G Independent Tasks Sequential Multiple Applications at a Time
VGE Dependent Tasks Sequential Single Application
Gridbus Dependent Tasks Sequential Single Application
SLA-BSH Independent Tasks Parallel Multiple Applications at a Time
GridFlow Dependent Tasks Parallel Multiple Applications in Sequence
SLA-AEF Dependent Tasks Parallel Single Application

Table 4.3: Survey using the Application Model perspective taxonomy
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QoS QoS QoS
System/Paper Attributes Specification Guarantee
Faucets Time Constraint-based Pliable
Nimrod/G Time,Cost Optimization-based Rigid
VGE Time,Cost Optimization-based NA
Gridbus Time,Cost Optimization-based Pliable
SLA-BSH Time,Cost Constraint-based Pliable
GridFlow Time Optimization-based Pliable
SLA-AEF Time,Cost Optimization-based NA

Table 4.4: Survey using the QoS perspective taxonomy

Prediction Planning Advance Schedule
System/Paper Accuracy Scheme Reservation Update
Faucets Accurate Just-in-time NA Dynamic
Nimrod/G Accurate Just-in-time Non-Supported Dynamic
VGE Inaccurate Full-ahead, Just-in-time Supported NA
Gridbus Inaccurate Full-ahead Supported Dynamic
SLA-BSH Accurate Full-ahead Supported Dynamic
GridFlow Inaccurate Full-ahead, Just-in-time NA Dynamic
SLA-AEF Accurate Full-ahead NA NA

Table 4.5: Survey using the Scheduling perspective taxonomy

discovering the best resources and monitoring the job execution, and (ii) improved

utilization of the Compute Server.

Aiming to maximize resource utilization, Faucets adopts a contract-net eco-

nomic model to facilitate server selection. In the framework, every user announces

a QoS contract for his/her job, and then Compute Servers compete for the job by

submitting bids via a bidding and evaluation system. Finally, the user chooses

the most suitable Compute Server when all of the bids are collected. It is claimed

in [KKP+04] that the Faucets architecture is also suitable for establishing a bar-

tering economic model.

Faucets uses a Central Faucets Server (FS) to mange and control grid re-

sources (i.e., Compute Server). Each resource has multiple processors and sup-

ports several applications to be run simultaneously as long as the number of

required processors does not exceed the number of processors this resource has.

The existing load of the resource must be analyzed in Faucets in order to avoid

the situation of resource processors being left idle. Faucets does not mention

whether its resources should be homogeneous or heterogeneous.

The application modelled in Faucets is a kind of adaptive job, which is a

parallel program which can change the number of required processors in runtime.

The fewer processors used, the longer it takes to complete the job. It is not clear

how an adaptive job is composed, but it is certain that parallel processing is
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needed to execute the job. The characteristics of adaptive jobs enable the design

of a smart job scheduler, which is triggered when a new job arrives in the system

to analyze the job’s deadline and processor requirements and then to decide if

the job can be accepted or not. This implies that the scheduler focuses on the

scenario of ‘multiple applications arriving in sequence’.

In terms of QoS attributes, users in Faucets require their application to

be completed before a specified deadline. In the state described in [KKP+04],

Faucets adopts a pliable QoS guarantee. In order to maximize resource utiliza-

tion, Faucets may shrink the allocated processor number of the existing jobs to

cater to the requirement of a new incoming job when there are insufficient avail-

able processors to satisfy the new job. This may result in a delay of the existing

jobs and a loss of profit.

In Faucets, it is the users who specify the amount of time needed to complete

the job. Thus, the uncertainty of task execution time prediction is not taken

into account. The scheduling decision is made in a just-in-time manner, while

advance reservation is not mentioned. The schedule update is indicated to be

dynamic, since the allocated processor numbers of the existing jobs are adaptive

in runtime.

Nimrod/G

Nimrod/G is an extended work of Nimrod [ASGH95] in order to support the

execution of parameter sweep applications in Grid environments. The design of

Nimrod/G is based on a commodity market model. In Nimrod, there is a broker

acting on behalf of each user. The broker obtains service prices, which may vary

from one application to another, depending on the user’s QoS constraints and the

resources meeting these constraints. Nimrod/G has its benefit focused on users

and aims to optimize users’ QoS requirements.

Each broker in Nimrod/G is respectively associated with a scheduler, which

works independently for resource discovery, resource trading, resource selection

and job assignment. Therefore, the management control of resources in Nim-

rod/G can be viewed as being decentralized. Nimrod/G targets heterogeneous

resources each of which allows multiple tasks to be run on it simultaneously. Ex-

isting loads of resource are profiled and analyzed by a dispatcher and a set of

actuators to perceive the ability of the resource and assign jobs accordingly.

Nimrod/G supports parameter sweep applications each of which consists of
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multiple independent tasks with different parameter values which can be executed

sequentially on a processor. Multiple applications are considered in a batch in

the scheduling process of Nimrod/G [BGA00].

Users in Nimrod/G specify deadline and budget QoS constraints for the ap-

plication to run, and specify whether they would like one or both of the metrics

to be optimized. Therefore, both constraint-based and optimization-based QoS

specifications are considered in Nimrod/G. The QoS guarantee is rigid, since Nim-

rod/G stops allocating resources to the remaining tasks of a job once the job’s

deadline or budget constraints are violated.

Uncertainty of task execution time prediction is not taken into account in the

scheduling of Nimrod/G, nor is Advance Reservation. Although the scheduling

adviser in Nimrod/G creates a schedule for an application based on users’ require-

ments before the application begins to be executed, resources may be discovered

and allocated progressively for the application depending on the perspective to

achieve the user’s QoS constraints.

SLA-based Scheduling Heuristics

SLA-based Scheduling Heuristics is an EPSRC-funded research project which

aims to provide different level of service in Grid environments by forging a Service

Level Agreement between different parties in Grids, such as user, broker and

service provider.

Based on a commodity market model, the research presented in [YS06] evalu-

ates the effectiveness of several simple scheduling heuristics with various pricing

settings with the aim of maximizing resource utilization and income.

The research targets on autonomous and homogeneous resources, which have

multiple processors to support multi-programming execution. Therefore, a decen-

tralized resource management control is modelled. Moreover, the existing load of

resource must be considered in the scheduling to maximize resource utilization.

The research investigates the process of scheduling multiple applications ar-

riving at a time. Each application consists of multiple independent tasks which

require parallel processing.

For each application, the user specifies deadline and budget constraints and

signs an SLA with the broker who, in turn, negotiates with service providers to

find suitable services to satisfy the user’s QoS requirements. A breach of deadline

constraint will result in a loss of profit, while the application will be completed.



CHAPTER 4. SLA-BASED WORKFLOW SCHEDULING 105

That is to say, a pliable QoS guarantee is provided.

A full-ahead planning scheme is adopted in the research with the assumption

that the task execution time estimated by the user is the same as the actual

duration. A form of dynamic advance reservation is supported in the research,

which allows rescheduling at run-time.

VGE

Vienna Grid Environment (VGE), currently utilized in the context of EU Project

GEMSS, is a service-oriented Grid infrastructure based on standard Web Service

technologies [BBES04].

A pricing model is considered in VGE, therefore a commodity market is es-

tablished. Users of VGE may consider multiple QoS constraints each of which

is associated with a weight ranging between 0 and 1. The weights of all con-

straints add up 1 and for each constraint, the result parameter is normalized by

multiplying the weight. The aim of the scheduling in VGE is to maximize the

user’s objective function, which is defined as being the sum of the normalized

parameters of all constraints.

In VGE, resources which provide various services may be decentralizedly

managed and controlled by different service providers. The services of VGE

are installed on heterogeneous resources, each of which is viewed as a single-

programming. The existing load of resource is not considered in VGE.

VGE supports workflows which are comprised of multiple dependent tasks.

The tasks require sequential processing in a processor. In the scheduling scenario

of VGE, only one single application is considered.

Users of VGE usually have a QoS requirement on the criterion of begin time,

end time, and budget. Optimized results on these criterion are preferred. There-

fore, pliable QoS guarantee is provided by VGE.

Two alternative planning approaches, namely static planning and dynamic

planning [BBES05, ZBN+04], are considered in VGE. The selection of planning

approach depends on whether or not the meta data required for performance pre-

diction is statically known. Running evaluation on real machines, VGE admits

inaccuracy in performance prediction. Nevertheless, there is insufficient informa-

tion to know the exact detail about the schedule update in VGE.
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Gridbus

In the Gridbus Project developed by GRIDS Laboratory in the University of

Melbourne, a series of research into economy-based application scheduling on

global Grids has been carried out [YB04, YB06b, YB07, YB09, TKB07]. These

scheduling studies are based on an infrastructure with commodity market model

and aims to maximize the user’s utility.

Decentralized resource management and control is implemented in the Grid-

bus workflow enactment engine based on a tuple-space model [YB04]. In Grid-

bus scheduling studies, grid resources are modelled to be heterogeneous, single-

programming and the existing load of resource is considered.

The scheduling studies in Gridbus focus on workflow applications consisting

of multiple dependent tasks. These tasks require sequential processing. In the

evaluation of the proposed scheduling algorithms, normally one single application

is considered in Gridbus.

The workflows submitted to Gridbus are usually associated with budget and

deadline constraints. The workflow scheduling for Gridbus focus on the opti-

mization of one or two of the QoS constraints. Thus, a pliable QoS guarantee is

provided.

Many full-ahead evolutionary-based planning heuristics have been proposed to

deliver users’ QoS requirements in Gridbus [YB06b, YB07, TKB07] to resolve the

multi-objective optimization problem in the context of utility computing [Be09].

In these heuristics, inaccuracy of performance prediction, advance reservation and

rescheduling are taken into account.

GridFlow

GridFlow [CJSN03] is a Grid workflow management system developed by the

High Performance Systems Group at the University of Warwick. This system

is built on the top of the PACE prediction toolkit [NKP+00], TITAN local re-

source manager [SCT+02] and ARMS (an agent-based resource management sys-

tem [CJS+02]) which uses the A4 (Agile Architecture and Autonomous Agents)

methodology [CST+02].

The economic model of GridFlow can be regarded as bartering, as monetary

price for resource usage is not considered while multiple agents, each of which

plays as a representative of local grid, are coordinated to optimize workflow exe-

cution time.
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A hierarchical structure is adopted in GridFlow where simulation, execution

and monitoring are provided at the global grid level which work on top of ARMS

system. At each local grid, sub-workflow scheduling [CJSN03] and conflict man-

agement are processed on top of TITAN and PACE. Here, sub-workflow is a

flow of closely related tasks that can be executed in a predefined sequence on re-

sources of a local grid. The resources considered in GridFlow are heterogeneous

and multi-programming. The existing load is taken into account. Only MPI and

PVM applications are considered in GridFlow, where multiple applications can

be submitted via the GridFlow User Portal.

GridFlow focuses on makespan optimization for workflows. Thus the QoS

specification is optimization based and the QoS guarantee is pliable. A fuzzy

timing technique is applied in GridFlow to address the inaccuracy of task execu-

tion time prediction. Full-ahead planning is adopted in the global grid level and

just-in-time scheme is used in the local resource scheduling. It is not clear whether

advance reservation is supported in GridFlow, while rescheduling is applied when

large delays of some sub-workflows occur.

SLA-aware Execution Frame

The SLA-aware Execution Frame is a PhD project [Qua06a] which aims to sup-

port SLA for a workflow in the Grid environment. The work focuses on supporting

the execution of a workflow on reserved Grid resources within the scope of a busi-

ness contract, and provides a mapping mechanism, an SLA negotiation protocol,

and an error recovery mechanism for workflows within an SLA context.

With determined prices for various services, the SLA-based Execution Frame

adopts a commodity market model and focuses benefit on minimizing the total

economic cost for users.

In the SLA-aware Execution Frame, decentralized resource management and

control are considered. Heterogeneous resources supporting multi-programming

and belonging to different resource management systems are modelled. Existing

loads of resource are taken into account to cope with the competition of a limited

number of processors in a resource.

The SLA-aware Execution Frame considers workflow applications consisting

of sub-jobs, which can be sequential or parallel programs. In the scheduling

evaluations, only a single workflow scenario is considered.
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Users in an SLA-aware Execution Frame is assumed to require constraint-

based time requirement and optimization-based cost requirement, while it is not

certain whether the QoS guarantee is delivered in a rigid or a pliable fashion.

In the context of the SLA-aware Execution Frame, a full-ahead mapping mech-

anism is implemented to satisfy the specific user’s runtime requirement and to

optimize the cost. The mapping mechanism includes three sub-algorithms. L-

Tabu finds cost optimal mapping solution for light workflow in which the amount

of data to be transferred among sub-jobs is small. H-Map finds a cost optimal

mapping solution for heavy workflows in which the amount of data to be trans-

ferred among sub-jobs is large. w-Tabu finds the runtime optimal solution for

both cases of workflows. The uncertainty of performance prediction is not con-

sidered in these scheduling studies. The SLA-aware Execution Frame does not

talk about issues of advance reservation and schedule update.

4.2.3 Summary

It can be seen from the survey that the majority of the existing market-based

scheduling systems consider applications consisting of independent tasks and/or

mainly aim at optimizing user-specific objectives, e.g., to complete the applica-

tion as quickly as possible, to minimize the user’s economic costs etc. Among the

surveyed systems, Nimrod/G, VGE, Gridbus, GridFlow and the SLA-aware Exe-

cution Frame mainly concentrate on maximizing the user’s benefits; although the

research of SLA-based Scheduling Heuristics aims to maximize resource utiliza-

tion and income, only applications consisting of independent tasks are considered.

Therefore, there is lack of research efforts focusing on both guaranteeing hard QoS

constraints for workflow applications and maximizing service providers’ profits.

Moreover, there is also a lack of investigation into how to tackle the grid uncer-

tainties, which affect the performance of a market-based scheduling system. This

thesis proposes an SLA-based scheduling system to fill these gaps.

4.3 A Model of An SLA-based Workflow Schedul-

ing System

During the recent years, research into market-based Grid models, especially in

terms of workflow scheduling and resource management, has led to various designs
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and implementations based on inspiration from different business models. With

specific purposes and focuses, these designs may vary significantly in complexity

and functionality. In this section, the topology, negotiation, pricing and event flow

was modelled for a market-based Grid with a focus on an SLA-based workflow

scheduling which aims to both meet the user’s QoS requirements and maximize

the resource owner’s profits.

4.3.1 Involved Entities and Topology

In a market-based Grid, there are service providers who own the resources and

provide them to satisfy the user’s particular demand, and there are users who need

to use the services available from these resources. In the case of running workflow

applications, allowing users to communicate directly with service providers may

lead to great difficulties for users to handle sophisticated works, e.g., discovering

desired services, monitoring the running process and reacting to running errors

etc. To hide these complexities from users, it is necessary to introduce a broker

to act as an intermediary between the users and the service providers. Therefore,

a total of three entities is considered in this model: user, broker, and service

provider.

A user is the consumer of the provided services. To send an application

running request to the system, a user needs to submit the workflow application

he/she wants to run, specify his/her QoS requirements (here, the focus is on

execution time metric, i.e., the application must be completed before a certain

deadline), and a budget is set as the maximum payment he/she wants to spend.

If the request is declined, the user receives a rejection; otherwise, the user is given

an offer of a Service Level Agreement (SLA) and waits for the running results of

his/her application.

A broker acts as a virtual service provider to the user and a virtual user to

service providers. The broker does not actually possess any service. Therefore, it

cannot directly schedule the tasks to the services. Instead, it plans the submitted

application based on the retrieved information about services. If the planning

result shows that the consignment from the user is infeasible (which means that

the estimated completion time exceeds the deadline and/or the total running cost

turns out to be more than the budget in this thesis), the user’s request is rejected.

Otherwise, the broker signs an SLA with the user, reserves tasks with the planned

service providers and agrees independent SLAs with the providers.
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A service provider is also called a Local Resource Manager (LRM) who

owns resources and provides particular services available from its resources. The

information of these services is registered in a service repository to be retrieved by

the broker or published to users. A service provider respond to the enquiries from

the broker about the availability of a requested time slot of its resources, which

helps to make job planning decision. A service provider also processes advance

reservation requests from the broker and locally schedules the tasks successfully

reserved into resources for execution.

This thesis assumes a centralized topology in which all workflow applications

are submitted through a broker. For each application, a user agrees an SLA with

the broker, and in turn, the broker agrees an SLA for each task with an LRM

who owns the resource on which the task is reserved. Figure 4.6 illustrates the

topology.

Figure 4.6: The centralized topology of market-based model

4.3.2 Service Provision

In the modelled market-based Grid, there are many heterogeneous resources pro-

viding various services. It is assumed that all of these resources are fully con-

nected, and the transmission rate, i.e., the time needed to communicate per unit

of data between resources, is predictable. The resources are respectively under

the control of different administrative domains. The resources of each domain

are managed by a administrative software, i.e., Local Resource Manager (LRM).

The provided services belong to diverse service types, and for each service

type, one service instance (service, for short) is offered in each resource. Each
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service has its own configuration, including the unique identifier, the service type,

the service capacity and the service price. Different services on different resources

possess diverse processing capabilities and are assigned different prices. Normally,

it is assumed that the service hosted at the more powerful resource has the higher

capability and charges the higher price.

Advance reservation [Mac03] is supported in each resource to ensure that a

task can be executed within a specific period of time, even though the Grid

resources are non-dedicated. When a task is agreed to be executed on a resource

at some future point, a corresponding advance reservation is generated and kept

with the resource. That is to say, a specific time span is reserved for the resource.

It is commonly assumed that a resource can execute only one task at a time

without considering pre-emption [ZS06a], therefore the reserved time spans for

the same resource are not allowed to overlap.

4.3.3 Application and Constraints

Rather than applications consisting of independent tasks, workflow is the focus

of the model of application. As introduced in Chapter 1, workflow is popularly

used to represent the applications derived from problems in scientific or indus-

trial fields, such as bioinformatics and astronomy. These applications normally

consist of multiple interdependent tasks, and these tasks are executed based on

their control or data dependencies, i.e., a task cannot start execution until it

gets all of the input data from the tasks it depends on. Like many scheduling

studies [SZ04a, SZ04b, MKK+05, BJD+05, WPF05, WPF05, WPF06, YB06b,

CJSZ08, BCD+08, YBR08, WPPF08], our work particularly considers the work-

flows that can be represented by Directed Acyclic Graphs (DAGs). In each DAG,

each node denotes a task, and each directed edge represents the dependency be-

tween two interdependent tasks. If there is a directed edge from node i to node

j, node i is the parent node and j is the child node. The nodes without parent

nodes are called entry nodes, and the nodes without child nodes are called exit

nodes. Without losing generality, it is considered that a DAG has a single entry

node and a single exit node.

To use the services provided by LRMs, a user needs to specify a set of param-

eters for each DAG task, including the service type the task wants to use and

the service size which quantifies the computational demand of the task to run.

Combined with the information of running that type of service on a particular
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resource, these two parameters can be used to estimate the execution time of the

task on the resource. In addition, the sizes of data transmitted between interde-

pendent tasks also need to be specified to estimate the transmission latency.

When submitting an application to a market-based Grid, the user also needs

to specify QoS constraints. Here, QoS metrics are considered on two aspects:

time and cost. For the time constraints, the user specifies the earliest time when

the application can start running and the latest time when the application has

to be completed, i.e., the deadline. Regarding cost constraints, the user sets a

budget as the maximum amount he/she wants to pay to run the application. To

meet the user’s constraints, the system must offer an SLA with a cost below the

budget and complete the application before the deadline.

In more details, a suitable SLA for users should explicitly describe the client’s

(i.e., user’s) QoS constraints as well as the goal of the server. Some works on

the standardization of the list of basic components which should be contained

in an SLA have been carried out, e.g., WS-Agreement [WSA]. Focusing on the

aforementioned specific QoS constraints for workflows, the following guaranteed

terms of a SLA are considered in this study:

• Earliest start time of workflow, Stt

• Latest finish time of workflow, Ddl

• Total Charge, ctot

Figure 4.7 provides a graphical representation of the time constraint of a workflow

w. Supposing there is a simple workflow comprising of 4 tasks running on 2

resources. In terms of task dependencies, task 1 and 2 depends on task 0, task

3 depends on task 1 and 2, and task 1 and 2 are independent of each other.

The time line in the figure denotes wall clock time, referenced by the planner

when mapping workflow tasks to resources. Stt and Ddl are values in wall clock

time units and indicate the specific period within which the workflow must be

executed. tex represents the execution duration of the whole workflow. To meet

the time constraint, the time starting workflow (task 0, equivalently) must be

later than Sttw and the time finishing workflow (task 3, equivalently) must be

earlier than Ddlw. Moreover, the task dependencies must be respected during

execution.
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Figure 4.7: Time Constraint for a Workflow

4.3.4 Negotiation

A negotiation procedure is required in market-based Grid since there are typi-

cally conflicting objectives, from users and service providers, which need to be

addressed in order to reach an agreement which satisfies both negotiating par-

ties. It is apparent that an efficient negotiation mechanism for the market-based

Grid should have minimal time cost and interference by the user and/or service

provider. To determine a suitable negotiation mechanism for workflow appli-

cations on Grid, besides the topology of Grid, it is also necessary to take into

account the resource heterogeneity and the complex task dependencies.

It is easy to imagine that all negotiations between clients (which can be the

user or broker) and servers (which can be the broker or LRM) in the context of

market-based Grid can be logically categorized into three types [YSOG05]: (i)

Bid by Client, namely multiple clients bid for a service; (ii) Bid by Server, namely

multiple servers bid for a client request; and (iii) Match-making, which means

a third party is involved in producing an agreement to satisfy both client and

server. The first negotiation type is apparently unsuitable for the model in this

study. On one hand, there are not multiple brokers, but only one broker to bid

for the service provided by LRM; on the other hand, if multiple clients bid for a

service published by the broker, lots of user interference will have to be introduced.

Negotiation type (ii) also has drawbacks. Because there is only one broker, similar

to type (i), the case that multiple LRMs bid for a client request published by the

broker can only be considered. In this case, if the workflow is considered for the

bid as a whole, the winning LRM has to run the application independently and

thus lose scalability. Otherwise, the workflow has to be considered for multiple
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bids for several components (or tasks in the extreme case), and due to the task

dependencies of the workflow, some bids have to be negotiated sequentially. This

results in a time-consuming solution.

Figure 4.8: A single sequence of the modelled match-making negotiation

This thesis assumes a match-making negotiation mechanism (type (iii)) which

avoids the drawbacks of other negotiation types mentioned above. In the match-

making negotiation, the broker take inputs from the user (information about the

submitted workflow and the QoS constraints) and service providers (information

about the provided services and the instant capability of resources) to produce a

mapping of the workflow which is agreeable to both the user side and the service

provider side. In this way, the broker can free the user and service providers

from the negotiation procedure. Moreover, the broker can make a decision within

a reasonable time with an efficient workflow planning approach to cater to the

real-time requirement of Grid computing. A single sequence of the modelled

match-making negotiation is depicted in Figure 4.8. It should be noted that

the broker just needs to ask the LRMs about dynamic information, such as the

availability of a time slot according to the instant load of a particular resource,

to know whether it is possible to run a service on this resource during a specific
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period. Some relatively static information, e.g., which service is available from

which resource and the service type etc, is always retained by the broker. It is also

worth mentioning that when a negotiation fails, re-negotiation may be feasible

since the instant capability of resources varies over time. However, for simplicity,

a once-at-most negotiation is assumed in this thesis, namely, if the broker makes

a positive decision in the first negotiation, the agreement is reached; otherwise,

the user’s request is rejected.

4.3.5 Pricing

In terms of pricing, two main factors, which may influence the final charge for each

workflow done, were considered. One of them is how the price of task running is

computed, and the other is user’s constraint.

It should be noted that, when a user consumes a provided service, essentially,

the user runs the task on the resource which provides the service. Therefore, the

price of running a workflow task is calculated based on resource usage. Namely,

given task i is successfully completed on resource m, the price pi can be computed

by

pi = acti,m × µm (4.1)

where acti,m is the actual execution time of task i and µm is the price unit for

resource m. To set µm, a cost-plus pricing method [Han92] was adopted, which

is the primarily used pricing method in real business, since it is easy to calculate

and requires little information. In the typical form of cost-plus pricing, the cost

of the produce (or service) is calculated first, and then an additional amount is

included to represent profit. Similarly, cost unit is defined as βm (0 < βm < µm)

which denotes the cost per time unit for running the task on resource m. For a

resource m, it is assumed that µm and βm are associated with the power of m

and can be pre-specified. Details of how to standardise resource power, µm and

βm will be provided in Section 5.5.1 and 6.5.2.

The final charge of a task also depends on whether or not the user’s constraint

is met. For simplicity, a rigid way was considered to compute the final price as

below:

pi =

{

acti,m × µm : If the user’s QoS constraints are met

0 : Otherwise
(4.2)



CHAPTER 4. SLA-BASED WORKFLOW SCHEDULING 116

Accordingly, the profit which can be earned from the task is computed by:

ρi =

{

pi − acti,m × βm : If the user’s QoS constraints are met

−acti,m × βm : Otherwise
(4.3)

4.3.6 SLA-based Scheduling Problem

Based on the model described above, the SLA-based scheduling problem which

needs to be resolved is as follows: given a series of workflows that are submitted

to the scheduling system at random times, the problem is how to plan, create

and enforce an appropriate SLA for each workflow to tackle the grid uncertainties

during the scheduling of workflow applications in dynamic Grid environments, so

that not only the users’ QoS constraints can be satisfied, but also the service

providers’ profit can be maximized.

In order to fulfill the complete Grid scheduling, there may be quite a few

steps (e.g., application definition, information gathering, job submission etc.) to

go through and many issues to address [Sch03]. This may result in a massive and

complicated problem to resolve. The work present in this thesis does not cover all

of these steps. It does, however, concentrate on three key issues, highlighting the

features of an SLA-based scheduling system. These issues are: planning, advance

reservation and local scheduling.

A diagram depicting what happens in the process of SLA-based scheduling is

provided in Figure 4.9. Brief introductions of the three key issues, which will be

further explored in the next 3 chapters, are presented as follows.

Planning

Having received a workflow application request from a user with a set of QoS

constraints, to establish an SLA, whether or not it is feasible to fulfill the user’s

request must be pre-known. Thus, it is always necessary to seek a plan to allocate

services for the execution of the application to ensure that all of the constraints

from the user can be met at the same time. A plan is an initial schedule of

the submitted workflow, in which the task-resource mapping, and the estimated

start time and end time of every task is included. Given a set of pre-specified

QoS constraints, the planning phase involves the procedure carried out by the

broker to find such a plan where QoS metrics are optimized to such an extent

that all the constraints can be met, whereas account is also taken of the load (on
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Figure 4.9: SLA-based scheduling process of a single workflow
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the execution of services) already present in the environment. If such a plan can

be found, it is suggested that the user request can be accepted and the relevant

SLAs can be agreed, otherwise, the request will be rejected.

Advance Reservation

When the planning phase approves that it is feasible to meet a user’s QoS con-

straints, the broker moves on to make advance reservations for the workflow

submitted by the user. First of all, the advance reservations need to contribute

to guarantee the user’s deadline requirement in a unpredictable grid environment.

Introducing an extension into the estimated task execution time in advance reser-

vation planning is a straightforward way to tackle the temporal uncertainties of

grids in order to guarantee the user’s QoS requirement for time-critical appli-

cations. However, this extension must be restricted with considering both the

user’s and the service provider’s constraints in the context of a market-based

Grid. Therefore, it is worth investigating how to extend the estimation of task

execution time in advance reservation planning to strike a trade-off between dif-

ferent conflicting objectives from users and service providers. The aim of this

advance reservation research is to determine ‘how and to what extent the esti-

mation of task execution time ought to be extended’ in order to both guarantee

users’ QoS requirements and maximize service providers’ benefits. Moreover, on

the assumption that incoming workflows arrive sequentially and dynamically, the

whole process of the advance reservation for the current workflow must be efficient

to meet the real-time requirement of grid computing.

Local Scheduling

As a result of the aforementioned advance reservation, the reserved time for each

task is normally longer than the estimated execution time of the task. It should be

noted that a multiple-workflow scheduling scenario is considered, in which there

are often multiple reserved tasks for each local resource, which do not have to be

executed at a specific period, but must be completed before a certain point so that

the deadline constraint for the relevant workflow can be satisfied. This provides

flexibility for service providers to perform local scheduling, which reschedules the

tasks assigned to local resources in order to maximize the utilization of resources

without violating the user’s constraints written in the SLA. Thus, it is necessary

to develop novel SLA-based local scheduling strategies.
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4.3.7 Summary

In terms of the taxonomy provided in Section 4.2.1, the proposed SLA-based

scheduling system is summarized as follows: a commodity market is assumed,

where users submit workflow applications and express their constraint-based QoS

requirements on time and economic cost, and SLA-based scheduling approaches

are developed in order to both meet the user’s hard QoS constraint and maxi-

mize the service provider’s profit. Multiple heterogeneous resources are assumed,

which support single programming and advance reservation, and are decentral-

izedly controlled and managed by different local resource managers. A full-ahead

planning scheme is used by the broker to determine whether or not the user’s

constraints can be met. The uncertainty of performance prediction and the ex-

isting loads of resources are taken into account in advance reservation and local

scheduling (namely, schedule updating) during run-time.

4.4 Closing Remarks

This chapter has presented the migration from a performance-driven scheduling

to an SLA-based market-driven scheduling, and revealed the significance of ad-

dressing uncertainties in SLA-based workflow scheduling. A generic SLA-based

scheduling model is introduced and a state-of-the-art of the existing market-based

Grid scheduling systems is reviewed. Due to the complexity, the SLA-based

scheduling is broken into three sub-problems: SLA-based planning, SLA-based

advance reservation and SLA-based local scheduling, and these will be resolved

respectively in the next three chapters.



Chapter 5

SLA-based Planning

Supposing users want to make use of the services provided in the market-based

grids to execute workflow applications within hard constraints on deadline and

budget, the previous chapter designed the framework of the SLA-based scheduling

system aiming at both guaranteeing users’ QoS and maximizing service providers’

benefits under grid uncertainties. This chapter focuses on Budget-Deadline-

Constrained (BDC) planning issues for the proposed SLA-based scheduling sys-

tem. The problem of concern is how the scheduling system can plan the submitted

workflow to determine whether or not it is feasible to satisfy the user’s constraints,

and, therefore, reply accordingly to a user request to make an SLA.

The main contribution of this chapter is a novel BDC-planning heuristic which

can efficiently find a plan which allocates services for the execution of the work-

flow so that both the pre-specified deadline and budget constraints can be met.

Moreover, the load (on the execution of services) already present in the environ-

ment is also taken into account in the proposed planning heuristic.

5.1 Background

As mentioned in the previous chapter, the Service Level Agreement (SLA) plays

a crucial role to guarantee the user’s QoS requirements when a user requires the

completion of the workflow before a hard deadline and within a certain budget

in the context of a market-based grid. However, prior to establishing an SLA can

be established, whether or not it is feasible to fulfill the user’s request needs to

be known. Therefore, it is necessary to seek a plan to allocate services for the

execution of the application to ensure that all of the constraints from the user

120
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can be met at the same time. If such a plan can be found, it is suggested that the

user’s request can be accepted and the relevant SLA can be achieved. Otherwise,

the request will be rejected. This indicates the importance of the study to find a

plan which meets the specified QoS constraints for a submitted workflow in the

context of a market-based grid.

More specifically, the following planning scenario is considered: There are

service providers who own resources and provide various computational services

on these resources. A certain price will be charged by the service providers for

successful service provision. There are users who need to use the service provided

to compute their workflow applications. There is also a broker, which acts as

the planner. The planning is considered to be online [CRH08], i.e., users submit

workflows dynamically over time and the planner makes planning decisions based

on the jobs which have been accepted and reserved, which are also perceived as the

existing load of resources. Each workflow may start at a future time but must be

completed before a certain deadline, and the total charge for workflow execution

must be within the budget pre-specified by the user. A plan which meets both

the budget and deadline constraints of a workflow is called a ‘BDC-plan’. Upon

each user request, the planner must plan the submitted workflow on the provided

services and then determine whether or not a BDC-plan can be found. If it can,

the user request should be accepted; otherwise, it should be rejected. In such a

scenario, several requirements must be considered in the planning:

• The dependencies among the multiple tasks of the workflow must be re-

spected.

• The overall execution time (i.e., the makespan) and the total execution

expense of the workflow must both be optimized so that the given deadline

and budget are not exceeded.

• The planner, which does not really possess the resources, has to commu-

nicate with the owner, i.e., service provider, to make a scheduling decision

based on the existing load of the resources;

• The planning process must be completed in a short time, because (i) the

user normally expects a real-time response, and (ii) an evident planning

latency may render the existing load information used in the planning out

of date, since the load present in resources may vary over time.
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Essentially, the problem considered in this chapter is bi-criteria constraint-

based planning, which involves the planning process to optimize two metrics at

the same time to meet the specified constraints (budget and deadline, here).

A similar problem is optimization-based planning, which aims to find a solution

which is optimal in terms of all metrics. An optimization-based planning solution

can usually be applied to a constraint-based planning problem, whereas from

the problem’s point of view, the extensive attempt to optimize may not be of

particular interest, since any solution meeting the constraints can be accepted

by the problem. It should be noted that the application focus in this thesis is

DAG-represented workflows. As the bi-criteria optimization problem for DAG is

NP-complete [WPPF08], the planning problem is made a real challenge, and the

usual solution adopted is the application of heuristics.

In the context of grid computing, several scheduling algorithms, which usu-

ally have a sophisticated design, have been proposed to acquire the bi-criteria

optimization for DAG applications. It seems that these algorithms can easily be

adapted to the aforementioned constraint-based planning problem. The question

is “Are these sophisticated algorithms suitable for the constraint-based online

workflow planning of the SLA-based scheduling system?”. This chapter claims

that, in the relevant scenario, simpler planning heuristics can be a better choice

since they are as effective, more scalable and easier to implement.

To fulfill the aforementioned requirements of online workflow planning, a new

low-cost heuristic is proposed, called Budget-constrained Heterogeneous Earli-

est Finish Time (BHEFT) to address the constraint-based optimization problem

with two criteria (budget and deadline). A simulator is developed, where the

planner can communicate with service providers via message passing to make

the scheduling decision. It is demonstrated in the simulation that the proposed

heuristic, which is albeit relatively simple, can be as effective as a sophisticated

algorithm when finding a BDC-plan, but costs much less in terms of computation

and communication overheads, and can therefore meet the real-time requirement

of the online workflow planning.

The remainder of this chapter is structured as follows. The related works

are reviewed in Section 5.2. The model assumed in this study and the problem

definition are presented in Section 5.3. A novel BDC-planning heuristic (BHEFT)

is described in Section 5.4. The experimental details and simulation results are

discussed in Section 5.5. Finally, the chapter is concluded in Section 5.6.
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5.2 Related Work

The problem of online job scheduling for achieving QoS in grid has been addressed

in the literature. The work presented in [CRH07] and [CRH08] employs compu-

tational geometrical techniques in the designing of online scheduling algorithms

for homogeneous and heterogeneous systems respectively. The algorithms are

aimed to schedule multiple tasks in order to meet their start time and deadline

constraints and maximize system utilization. In these studies, the application is

modelled as a single task. Moreover, only time constraint is considered. In con-

trast, the work presented in this chapter focuses on the constraints of budget and

deadline for DAG planning. Several budget-deadline constrained scheduling stud-

ies have been carried out in [BMAV05, FSZX04], whereas the application models

take into account in these studies are still different from the DAG workflows.

Workflows are considered in [SVF06], where a grid capacity planning approach

based on 3-layered negotiation with advance reservation is proposed for a multi-

criteria QoS expressed by utility functions. In this study, every workflow task

has its own time constraint, and the allocator generates reservation offers for in-

dividual tasks via negotiation with resource providers and then the co-allocator

launches the second layer negotiation between clients and allocators to build a

co-allocation. The contentions between co-allocations are finally eliminated by

the third layer negotiation. That is to say, this study mainly discussed negotia-

tion mechanism rather than a bi-criteria planning heuristic. Moreover, our work

consider deadline only for an entire workflow.

There is an abundance of literature about DAG scheduling heuristics. Being

derived from earlier studies [SZ04a, KA99, BBR02b, THW02] of DAG schedul-

ing on heterogeneous systems, several workflow management systems [TWML01,

DBG+04, CDK+05] with scheduling heuristics have been developed to minimize

the overall execution time of application, i.e., the makespan. These single-criteria

heuristics are not suitable for being imposed in BDC-planning because the service

prices and the relevant execution costs are not considered.

A multi-criteria scheduling problem may also be studied in a different con-

text. The studies in [QK05, Qua06b] proposed mapping heuristics to meet

deadline constraints while meanwhile minimizing the reservation cost of work-

flows, whereas they regarded workflow tasks as being multiprogramming, which

is not commonly adopted in workflow scheduling studies [WHP08]. Based on the

model of Utility Grids, the time-cost constrained optimization has been studied in
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meta-scheduling [GKB08, GBS09], where the meta-broker (scheduler) is assumed

to run in batch-mode, i.e., the meta-broker waits until the end of a certain time

interval and batches all of the applications submitted during the interval into

allocation. In contrast, this study considers the planning to be online, namely

each new application is planned immediately after its submission.

Several efforts have been made to develop bi-criteria scheduling heuristics for

workflow applications. Some of these, including [WPPF08], [SZTD05] and [DO05],

do not consider the load on the existing load of resources in their assumption.

Wieczorek et al. [WPPF08] propose a two-phase algorithm (DCA) to address

the optimization problem with two independent generic criteria for workflows in

Grid environments. The algorithm optimizes the primary criterion only in the

first phase, then optimizes the secondary criterion while keeping the primary one

cost within the defined sliding constraint.

In [SZTD05] two scheduling heuristics based on guided local optimization,

LOSS and GAIN, were developed to adjust a schedule, and these may be gener-

ated by a time-optimized heuristic or a cost optimized heuristic, to meet users

budget constraints respectively.

The work presented in [DO05] focuses on a trade-off between execution time

and reliability, and proposes two bi-criteria scheduling algorithms called BDLS

and BGA. The former is an extension of the DLS algorithm [SL93], and the latter

is a genetic algorithm. Except for BDLS, these heuristics are all sophisticated,

since they all require a considerable number of searches to obtain a final result.

BDLS is a list scheduling heuristic which adopts a dynamic priority to make

scheduling decisions.

All of these heuristics are almost applicable to BDC-planning except that

without considering the existing load of resources, they tend to produce plans

which lead to reservation conflicts, i.e., the planned task may overlap the tasks of

other workflows which have already been reserved, and this may mean an overload

of resource. In order to eliminate this overlap, the heuristics can be modified in

two ways, the first of which is enquiring of the service provider whenever necessary

during scheduling. This approach, as will be demonstrated later, may introduce a

heavy communication overhead in complex heuristics. Even for BDLS, which has

to rely on the enquiry to compute dynamic priority repeatedly during scheduling,

the communication overhead can also be significant. The other way is producing

an initial schedule without considering the existing load, and then allocating each
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task to the earliest possible available time slot of the mapped resource, while

the task dependency constraint is not violated. However, this may lead to the

degradation of heuristic performance.

The existing load of resources is considered in some studies [YB06b], [YB07], [TKB07]

and [SKD07], where evolutionary algorithms (for example, Genetic Algorithms)

based heuristics have been proposed to resolve the multi-objective (time and cost,

commonly) optimization problem. Such algorithms may naturally be too time

expensive for BDC-planning. Moreover, in these studies, the service providers

usually allow the planner to retrieve free time slots of resources. This may not

be acceptable for some service providers who do not want their workload, which

may be commercially sensitive, to be exposed. Conversely, it is assumed in the

present study that the planner asks for a certain length of time slot, and the

service provider responds with the earliest availability.

Unlike the aforementioned sophisticated bi-criteria scheduling heuristics, BHEFT

is an efficient planning heuristic which does not involve a significant amount of

computation or heavy communication, but is as effective as the sophisticated

heuristics for online BDC-planning. By applying BHEFT, the SLA-based schedul-

ing system will be able to effectively determine whether a workflow request should

be accepted or rejected in a real-time manner. Therefore, the establishment of

an SLA is facilitated.

5.3 Problem Description

This section identifies the BDC-planning problem to be addressed in this chapter.

An overview of the problem is provided in Section 5.3.1 and more details about

problem model are presented in Section 5.3.2. Table 5.1 lists the notations used

in this and the next two chapters.

5.3.1 Problem Overview

There are three key roles: service provider, user and broker in the BDC-planning

model in the present study. The service providers administer multiple, hetero-

geneous resources which provide services of different capabilities and at different

costs. The user wants to make use of the provided services to run a workflow

application within a certain deadline and budget. The broker, which acts as an

intermediary between the user and the service provider to hide the complexities
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Symbol Meaning
w a submitted workflow

Schw advance reservation planning result for w
Bgtw specified budget constraint for w
Ddlw specified deadline constraint for w
Sttw the earliest possible time to execute w
τi a workflow task i
θi advance reservation for task i
tstti start time of task reservation
tend
i end time of task reservation
ci estimated charge for task reservation
εi the specified service type of task i
zi the specified task size of task i
γp resource p
αp power ratio of resource p
si,p a service which is provided in resource p and can be used by task i
Xp existing reservation load in resource p
µp price unit for resource p
rdi reserved duration for task τi on resource p

erti,p estimated task execution time of task i on resource p
fQ() the operation used by broker to enquire the earliest available time

slot from the relevant LRM
γ∗ the benchmark resource
φd constraint ratio for deadline
φb constraint ratio for budget

Table 5.1: Notations

of Grid computing, is the planner which performs the planning for the execution

of the workflow. In order to make planning decisions, the broker requires various

inputs from the user and the service providers. These inputs are modelled as

follows:

Let R represent the set of all resources and S denote the set of all provided

services. Every workflow w = (T ,D) consists of a group of tasks T and a set

of data dependencies D among the tasks. Each task τi ∈ T needs to specify the

type of service it wants to use. In order to run a workflow, every task of the

workflow must be mapped to a service belonging to the service type specified

by the task. From the perspective of τi, there is a set of services (denoted by

Si = {si,p : τi ∈ T , γp ∈ Ri}), which can be used by the task τi, where Ri ⊆ R



CHAPTER 5. SLA-BASED PLANNING 127

and Si ⊂ S

As a result of planning, the schedule of workflow w can be represented by

Schw = {θi : τi ∈ T } consisting of sub-plans θi for workflow tasks, which is

defined as

θi = (tstti , tend
i , si,p∗, ci) (5.1)

where tstti is the planned start time of the task, tend
i is the planned end time of

the task, si,p∗ is the service to which the task is mapped, and ci, as defined in

Eq.(5.2), is the estimated charge for executing the task.

Figure 5.1: (a) Workflow w, (b) Plan of w on 2 resources as a timetable, and (c)
Estimated reservation cost for w

Suppose workflow w is associated with a budget constraint Bgtw and a dead-

line constraint Ddlw, as shown in Figure 5.1, the BDC-planning problem is how

to efficiently generate such a plan Schw to satisfy the following conditions:

• The planned reservation duration rdi for each task τi is long enough to run

the task. Namely, ∀θi ∈ Schw, rdi = (tend
i − tstti ) ≥ erti,p, where erti,p is

the estimated run time of task τi given that τi is mapped to service si,p.

Concentrating on BDC-planning, an accurate estimation in this chapter is

assumed for simplicity, i.e., rdi = erti,p, while leaving the issue of prediction
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uncertainty to the next chapter.

• The precedence constraint within the workflow is respected. Namely, ∀(τi →

τj) ∈ D, tsttj ≥ tend
i + tli,j, where tli,j , as defined later in Eq.(5.3), is the data

transmission latency from task τi to τj;

• The total estimated charge of advance reservation ctot
w is not more than the

budget. Namely, ctot
w =

∑

τi∈T
ci ≤ Bgtw.

• The estimated end time of the workflow tend
w is not later than the deadline.

Namely, tend
w = max

τi∈T
{tend

i } ≤ Ddlw

• The resource must be available during the planned time slots for workflow

tasks.

Given the same condition of budget-deadline constraints and the existing load

of resources, different planning decisions may impact whether or not the planning

result is a BDC-plan. The objective of BDC-planning heuristics is to maximize

the likelihood that a BDC-plan can be successfully found for a submitted workflow

request. Also, the time overhead caused by the heuristics is expected to be

sufficiently low to cater to the real-time requirement of Grid environments.

5.3.2 Problem Modelling

Several concepts involved in the problem presentation of the previous section are

modelled as follows:

• Resource Modelling. Multiple heterogeneous resources are exclusively owned

by several Local Resource Managers (LRMs) and provide various types of

services. Similar to the resource model in Chapter 2, all resources are fully

connected, and the transmission rate (namely the time needed to transmit

per data unit from one resource to another) between each two resources

(say, γp and γq) is pre-known and denoted by trp,q; especially, trp,q = 0

when p = q.

• Workflow Modelling. One workflow is represented by a DAG as modelled

in Chapter 2. Two parameters must be specified for each node τi, one of

which is service type εi, which specifies the type of service the task wants

to consume. Task τi can be assigned to resource γp only if γp implements
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the service of type εi. The other parameter is task size zi, which is a value

quantifying the computational demand of the task. The execution time of

task τi is proportional to zi.

• Service Modelling. There is a set of all service types K. Suppose that task

τi specifies a service type εi = κ ∈ K, if κ is supported in resource γp, si,p

exists. For simplicity, it is assumed that every service type is supported

in every resource. Thus, a task can be mapped to any resource, i.e., Si =

{si,p : τi ∈ T , γp ∈ R}. Mapping τi to si,p means assigning τi to resource γp.

To calculate the economic cost for a workflow task τi, the pricing scheme

presented in Section 4.3.5 is adopted, and the price unit of resource γp is

assumed to be known. Thereby, ci can be computed by

ci = µp · erti,p (5.2)

In addition, for each edge i → j, where τi, τj are different nodes, a value

di→j, which denotes the data size transmitted from i to j, is associated.

Similar to the definition in Chapter 2, given that task τi and τj are mapped

to γp and γq respectively, the transmission latency tli,j can be computed by

tl(i,p)→(j,q) = di→j × trp,q (5.3)

• Time Issues. Generally, the time parameters involved in BDC-planning are

similar to those defined in the deterministic scheduling model as described

in Section 2.2.1. It is assumed that the estimated execution time of task

τi on resource γp, i.e., erti,p, is known. The data available time (dati,p),

which means the time at which all of the data required by node i arrives at

resource p, can be computed by

dati,p =







Sttw : i = entry

max
k∈Pred(i)

{tend
k,r(k) + tl(k,r(k))→(i,p)} : i 6= entry

(5.4)

where Pred(i) denotes the set of all immediate predecessors (i.e., parent

tasks) of task τi, r(k) means the resource to which task τk has been assigned,

and tend
k,r(k) means a finish time of τk. However, recalling the formula of the

computing task start time defined in Eq.(2.3), the planner needs to know the
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resource available time to determine the start and finish times of a specific

task on a specific resource. Therefore, the planner will have to communicate

with the relevant service provider every time the computation of task start

and finish times is needed. This computation is significantly involved in

the heuristics which focus on makespan optimization, since it is often used

to calculate task priority when making planning decisions, and is always

needed to evaluate the makespan of a given task-resource mapping.

It is necessary to model the existing load of resources before explaining how

the planner retrieves the start and finish times of a task. The load on the

execution of services in resources is virtually composed of the reservation

of tasks. Given a specific moment, the existing load of resource p is defined

as the union of time spans already reserved in the resource, i.e.,

Xp =

n−1
⋃

j=0

(X 〈j〉
p ) =

n−1
⋃

j=0

(tstt〈j〉, t
end
〈j〉 ) (5.5)

where (tstt〈j〉, t
end
〈j〉 ) denotes a reserved time span, j is the index of the reser-

vation in the resource, and n is the number of reserved time spans al-

ready present in resource p. It should be noted that it is assumed that

a resource can only execute one task at a time without considering pre-

emption [ZS06a].

It is assumed that the broker can communicate with any service provider

via message passing. In order to obtain the start and finish times of a task

on a particular resource, which is essentially a request for a available time

slot, the planner needs to send a QUERY message to the service provider

which owns the resource. From the message, the service provider should

know that the broker is interested in the earliest available time slot with

length d on resource γp and the time slot must be after time s, where d is

usually considered to be the estimated execution time of task τi on resource

γp and s is the data available time dati,p. Having received the message, the

service provider looks through the existing load of resource γp, i.e., Xp to

find the earliest available time slot and relays the result to the broker. To

formulate this process, a function fQ: T × R × R
+ × R

+ 7→ R
+ is defined
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as below:

fQ(τi, γp, s, d) = min {(a, b)|(a, b) ∩ Xp = ∅, a ≥ s, b = a + d} (5.6)

where task τi ∈ T , resource γp ∈ R, a, b, s, d ∈ R
+, Xp is defined in Eq.(5.5).

For concretization, the following example is provided: suppose that X0 =

{(0, 5), (8, 12), (17, 30)} and for task 1, dat1,0 = 3 and ert1,0 = 4, then the

earliest available time slot for allocating task 1 on resource 0 will be (12,

16). In this case, fQ(1, 0) = (12, 16). Finally, the whole procedure for the

broker to retrieve the earliest available time slot is defined as a Time Slot

Query (TSQ).

5.4 A Proposed Heuristic

As introduced in Section 2.3.1, the Heterogeneous Earliest Finish Time (HEFT)

algorithm is a well-known static list scheduling heuristic which has been developed

to allocate a DAG application to a set of heterogeneous resources to minimize

the overall execution time of the application [THW02]. While being powerful

at optimizing makespan, the HEFT algorithm does not take into account the

monetary cost and budget constraint when making mapping and scheduling de-

cisions. In this section, the HEFT algorithm is extended in order to resolve the

BDC-planning problem and the new algorithm is named the Budget-constrained

Heterogeneous Earliest Finish Time (BHEFT). The outline of the BHEFT is

presented in Figure 5.2.

Similar to the original HEFT algorithm, the BHEFT also has two major

phases: task prioritizing and service selection.

In the task prioritizing phase, the priorities of all tasks are computed on an

upward ranking. The rank of a task i is recursively defined by

ranki = erti + max
j∈Succ(i)

{tli,j + rankj} (5.7)

where Succ(i) is the set of the child tasks of task i, erti =
∑|R|

p=0(erti,p)/|T |

is the average execution time of task i, tli,j =
∑

(tl(i,p)→(j,q))/(|R| · |R|) is the

average transmission latency of edge i → j. Especially, the rank of exit node

rankexit = ertexit.
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Input: DAG G, Constraints C comprising Budget B and Deadline D;
Output: A BDC-plan

1. Compute rank (as defined in Eq.(5.7)) for all tasks.
2. Sort all tasks in a planning list in the non-ascending order of rank.
3. for k := 0 to |T | − 1 do (where |T | is the number of tasks)
4. Select the kth task from the planning list.
5. Compute the Spare Budget for Application for task k (as defined in Eq.(5.8)).
6. Compute the Current Budget for Task for task k (as defined in Eq.(5.9)).
7. Construct the set of Affordable Services (as defined in Eq.(5.10)) for task k.
8. for each service which can be used by task k do

9. Compute the earliest finish time of mapping task k to the service based on the existing
load of the resource providing the service (as described in Section 5.3.2).

10. endfor

11. Select service for task k in terms of one of the selection rules at the end of this section.
12. endfor

Figure 5.2: The BHEFT Heuristic

In the service selection phase, the tasks are selected in order of priority. Each

selected task is allocated to its “best possible” service, of which the metric may

change according to the circumstance of the spare budget which varies as the

planning proceeds. The circumstances of the budget are considered in terms of

two variables: the Spare Budget for Application (SBA) and the Current Budget

for Task (CBT ). Suppose that the kth task is being allocated, SBAk and CBTk

are respectively computed by

SBAk = B −
∑k−1

i=0
ci −

∑n−1

j=k
cj (5.8)

CBTk =

{

ck + SBAk × ck/
∑n−1

i=k ci : SBAk ≥ 0

ck : SBAk < 0
(5.9)

where B is the given budget, ci is the reservation cost of the allocated task i,

cj = (
∑|R|

i=p cj,p)/|R| is the average reservation cost of the unallocated task j over

different resource mappings, n is the number of tasks. Provided that εk = κ, a

set S ′
κ is constructed consisting of an affordable service for task k, i.e.,

S ′
κ = {sκ,p′|ck,p′ ≤ CBTk} (5.10)

Then the “best possible” service is selected by the selection rules as follows:

1. If S ′
κ 6= ∅, the affordable service with the earliest finish time is selected;



CHAPTER 5. SLA-BASED PLANNING 133

2. If S ′
κ = ∅ and SBA ≥ 0, the service with the earliest finish time selected;

3. If S ′
κ = ∅ and SBA < 0, the cheapest service is selected;

5.5 Performance Evaluation

5.5.1 Simulation Model

The performance of the proposed heuristic was compared with several sophisti-

cated bi-criteria scheduling heuristics by simulation. The simulated resources and

services were modelled with the following assumptions:

Standardisation of Resource Heterogeneity

In order to model the resource heterogeneity each resource γp is associated with

a positive value named power ratio αp to describe the resource power. It is also

assumed that (i) there is a benchmark resource γ∗ with power ratio α∗ = 1.0;

(ii) to complete a given task τi, the estimated execution time of is in inverse

proportion to its power ratio. Namely, we have:

erti,p =
α∗

αp

ert∗i =
ert∗i
αp

(5.11)

where erti,p and ert∗i are the estimated execution times of task τi on resource γp

and γ∗ respectively. Different service types may differ in complexity and require

different processing times. For standardisation, it is assumed that it can be mea-

sured that the benchmark resource γ∗ takes time t∗κ (named standard service time)

to complete a task specifying service type κ and task size equal to 1.0. Thereby,

according to Eq.(5.11) and the definition of task size, the estimated execution

time of task τi, which uses service type κ on resource γp can be computed:

erti,p =
t∗κ · zi

αp

(5.12)

Standardization of Price Setting

It is assumed that the more powerful resources cost more and earn more profit

than less powerful resources. In order to standardize diverse price units for het-

erogeneous resources, price unit µ∗ = 1.0 is specified for the benchmark resource.
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Then, the price unit µp for resource γp is correlated with the power ratio αp and

can be computed as follows:

µp =
αp(1 + αp)

2
µ∗ =

αp(1 + αp)

2
(5.13)

Random Generation of Existing Load of Resources

The existing load of resources was randomly generated for simulation. Given

a specific period between time t1 and t2, the existing load of each resource p

(i.e., Xp) is parameterized by two pre-specified values: Utilization Rate (UR) and

Average Task Load (ATL). The former is the ratio of the total reserved time to

the whole period, and the later is the average number of tasks appearing in per

time unit. Apparently, the average reserved duration is RD = UR/ATL and the

average idle duration is ID = (1− UR)/ATL. The following procedure describes

how the existing load of resource p (Xp) was constructed:

1. Set Xp = ∅ and current time CT = t1.

2. Randomly determine current state among RESERVED and IDLE.

3. If RESERVED:

(a) randomly generate reserved duration RD by normal distribution with

mean RD and standard deviation RD/6 whereas only RD > 0 is

adopted;

(b) set Xp = Xp ∪ (CT, CT + RD);

(c) set CT = CT + RD;

(d) switch current state to IDLE.

4. If IDLE:

(a) randomly generate idle duration ID by normal distribution with mean

ID and standard deviation ID/6 whereas only ID > 0 is adopted;

(b) set CT = CT + ID;

(c) switch current state to RESERVED.

5. Repeat Steps 3 and 4 till CT reaches t2.
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5.5.2 Experimental Setting

To run the experiments, a job planner (broker) and a set of resources were simu-

lated by java programs distributed on computing nodes with 3.0 Ghz cpu, 1 GB

memory and connection through Gigabit Ethernet. The communication between

the broker and the service providers was implemented by socket programming.

The software used in the experiment included Fedora release Core 5, MySQL

4.1.22 and JDK 1.5.0.

There were 2 service providers in the evaluation, each of which managed 3

resources, namely 6 resources in total. There were 4 service types having a

standard execution time of 10, 15, 25 and 30 respectively. For each resource

p, the capability ratio αp was randomly generated from [0.5, 2.0]. The period

considered for existing load modelling was [0, 5000].

As depicted in Figure 2.12, four types of DAGs were considered in the ex-

periments, including fMRI [ZWF+04] with 17 nodes, Montage [BGL+04] with 34

nodes, AIRSN [HDW+05] with 53 nodes and LIGO [DKM+02] with 77 nodes.

For each task i, εi was randomly selected from the provided service types, and zi

was randomly generated from [0.5, 2.0]. The communication computation ratio

(CCR) was randomly selected from [0.1, 1.0].

Given a DAG, the deadline and budget constraints were considered as follows.

For simplicity, a job was always assumed to start at time 0. The makespan

MHEFT was computed by applying the HEFT algorithm [THW02] to the DAG

without considering the existing load of resources. The deadline constraint DC

was considered to be located between the lower bound LBdc = MHEFT and the

upper bound UBdc = 5 ×MHEFT . A deadline ratio φd was used to depict the

position of DC by DC = LBdc + φd × (UBdc − LBdc), where 0 ≤ φd ≤ 1.0.

For budget constraint, LBbc was the lowest total cost obtained by mapping each

task to the cheapest service, and UBbc, the highest total cost obtained conversely.

Similarly, a budget ratio φb was used to specify the possible budget constraint

BC = LBbc + φb × (UBbc − LBbc), where 0 ≤ φb ≤ 1.0.

BHEFT was compared with DCA [WPPF08], LOSS [SZTD05] and BDLS [DO05]

in the experiments. As mentioned in Section 5.2, some modification is needed to

adapt these heuristics, which do not consider the existing load of resources, to pro-

duce contention-free plan. According to the evaluation present in [WPPF08], in

their original version, DCA, which is based on extensive local search, has the best

optimization performance but the highest time overhead, as opposed to BDLS
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which is a static list scheduling heuristic using a dynamic priority. Therefore,

only a TS Query was introduced into LOSS and BDLS while DCA was modified

in the other way mentioned in Section 5.2. When showing the experimental re-

sults, the suffix ‘ TSQ’ was added to the names of the algorithms which used TS

Queries, to distinguish them from DCA which do not consider TS Query, while

the original names are used for short in the discussion. In terms of the configura-

tion of DCA and BDLS, the same setting as used in [WPPF08] is adopted, i.e.,

LOSS3 is adopted to represent LOSS, a memorization table consisting of 100 cells

with up to 10 intermediate solutions stored in each cell was used by DCA, and

the parameter δ for BDLS was determined by a binary search which a maximum

of 15 loops. Moreover, all heuristics terminate immediately when a BDC-plan is

found.

For each experiment, all of the parameters except for those which were given

and fixed, were re-initialized at random with the above specifications. After a

heuristic was run, if a BDC-plan was found, the planning succeeded, otherwise, a

failure was reported. To analyze the performance of each heuristic, the experiment

was repeated by multiple times and the metric Planning Success Rate (PSR) was

used, as defined below:

PSR = 100×
the times for which a BDC-plan was found

the total repeated times of experiment
(5.14)

Three sets of experiments were carried out. In the first one, φd and φb were

fixed to be 0.5, while UR was varied for each resource from 0.0 to 0.6 in the step

of 0.1 with the corresponding ATL = 0.05 × UR. The experiment was repeated

500 times to learn how the existing load of resources affected the PSR of each

heuristic. In the second set of experiments, UR was randomly generated in the

interval of [0.1, 0.4], and the ATL was computed correspondingly. φd and φb

were selected in the set of {0.25, 0.5, 0.75} to form 9 combinations of constraints

which covered a wide spectrum of diverse user requests, and the experiment was

repeated 500 times for each combination of constraints. The result of PSR was

investigated under various constraints (from tight to relaxed). At last, the average

number of TS Queries needed was measured, as well as the average running time

on planning for each heuristic. This experiment was repeated for 100 times for

per workflow with various combinations of constraints.
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5.5.3 Experimental Results

Figure 5.3 shows the results of the first set of experiments where the impact of

the existing load of resources is investigated. Here, φd and φb are both fixed to

be 0.5 to avoid unnecessary disturbance caused by setting the user constraints to

be too tight or too relaxed.
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(c) AIRSN, 53 nodes
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Figure 5.3: PSR results with the utilization rate of resource changes

It can be seen from Figure 5.3 that for all types of DAG, the comparison re-

sults of the compared heuristics of PSRs are similar. It is interesting to see that

BHEFT performs the best over various settings of UR. The comparison results

between LOSS and BDLS are a bit surprising. Both of these two algorithms con-

sider the TS Query when making a scheduling decision, whereas BDLS, which is

a list scheduling heuristic, evidently outperforms the LOSS algorithm based on

a guided local search. However, according to the evaluation result in [WPPF08]

where the existing load of resources is not considered, LOSS performs better than

BDLS on optimization. This may be explained by the fact that LOSS is more

sensitive to the impact of the existing load of resources, even though it uses TS

Queries when making a scheduling decision. DCA proves to be a powerful algo-

rithm at multi-criteria optimization. When UR is equals to 0 or 0.1, which means

little existing load on resources, without using a TS Query DCA can achieve a re-

sult which is comparable to that of BHEFT and even slightly better than BDLS.
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However, as UR increases, the performance of DCA unavoidably degrades due to

the lack of the information about the existing load when scheduling. It can be

observed how the performance of different algorithms evolves as UR changes. In

the case UR = 0.0, this means that there is no existing load on resources and

thus the consideration of existing load of resources in planning is not necessary,

Almost all algorithms can obtain a PSR close to 100% except for LOSS in the

case of fMRI DAG. As UR increases, the PSRs of all the compared heuristics de-

grade, while the PSR of BHEFT and BDLS evidently degrades less slowly than

that of DCA and LOSS. The PSR of BHEFT manages to retain a pretty high

PSR (above 80%) until UR reaches 0.3, and has a certain likelihood to obtain a

BDC-plan when UR = 0.4. BDLS is the second-best performer, and can obtain a

PSR which is at least 60% when UR is equal to 0.3. In contrast, in the majority of

cases, the PSRs of DCA and LOSS drop to under 50% when UR reaches 0.3 and

almost decline to below 5% when UR = 0.4. When UR = 0.5, every compared

heuristic can hardly find any BDC-plan.

In the second set of experiments, more details were explored of the perfor-

mance of each heuristic under various circumstances of user constraints. As il-

lustrated in Figure 5.4, the evaluation results of PSR were collected and grouped

into different types of DAG with different budget-deadline constraints.

The first focus is on the impact of the varying user constraints, and in ex-

treme cases, where both deadline constraint and budget constraint are tight, for

example, φd=0.25 and φb=0.25, all algorithms obtain low PSRs. Among them,

BHEFT achieves the best PSR which is between 20% to 40%. When a small DAG

(e.g., fMRI) is used, DCA and BDLS both obtain PSRs which are comparable to

those of BHEFT. However, their PSRs turn significantly lower when the bigger

DAG is used. Without considering the existing load of resources, DCA usually

performs poorly when the deadline constraint is tight, i.e., φd=0.25. In contrast,

the performance of LOSS is particularly poor when the budget constraint is tight.

This is because the initial plan of LOSS constructed by using HEFT usually has

a small makespan and an high monetary cost, which may make it difficult for

LOSS to adjust the plan to meet budget constraint within a limited number of

local searches. BDLS can be almost as effective as BHEFT in many cases, for

example, when both budget and deadline constraints are above 50%. In the case

where a small DAG (i.e., fMRI) is considered, BDLS can even obtain better PSR

than BHEFT. However, in most cases, BHEFT performs better than BDLS. The
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(a) fMRI, 17 nodes

0

20

40

60

80

100

P
la

nn
in

g 
S

uc
ce

ss
 R

at
e 

(%
)

Combination of b and d

 BHEFT_TSQ
 DCA
 LOSS_TSQ
 BDLS_TSQ

d=0.25

b=0.50
d=0.25

b=0.25
d=0.75

b=0.75
d=0.75

b=0.25
d=0.75

b=0.50
d=0.50

b=0.75
d=0.50

b=0.50
d=0.50

b=0.25
d=0.25

b=0.75

(b) Montage, 34 nodes
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(c) AIRSN, 53 nodes
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(d) LIGO, 77 nodes

Figure 5.4: PSR results with the constraints change

advantage of BHEFT is especially significant when at least one of the constraints

is tight and the used DAG is big.

In the third experiment, the number of TS Queries was measured, as well as

the time cost needed by each algorithm to obtain a planning result. It should

be noted that although DCA does not consider the existing load of resource to

produce a plan, it still needs a few TS Queries to adjust the produced plan to be

contention-free.

Figure 5.5 demonstrates the average number of TS Queries needed by each

algorithm in each planning process. The DCA which does not consider the exist-

ing load of resource in the planning decision making, uses the fewest TS Queries.

Out of all of algorithms which consider the existing load of resources, BHEFT

needs the fewest TS Queries and the number is consistent over different settings

of constraints. As another list scheduling heuristic, the BDLS uses more TS

Queries to compute the dynamic priority which varies during scheduling. As a

guided local search heuristic, LOSS normally requires search loops at a maximum

of the production of the number tasks and the number of resources, which may

be relatively fewer compared to DCA and some evolutionary algorithms with a

configuration for extensive search. However, LOSS still needs many more TS
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Queries than the list scheduling heuristics, and this, as will be shown in the time

cost measure result, cause an unacceptable scheduling overhead, especially for

large applications. It should also be noted that the number of TS Queries needed

by BDLS and LOSS are both closely related to the tightness of the constraints.

For relaxed constraints, these algorithms can normally terminate much earlier by

successfully finding a BDC-plan.
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Figure 5.5: Number of TS Queries needed by each heuristic over diverse types
and sizes of DAG and user constraints

Figure 5.6 shows how the running time of each heuristic varies over diverse

cases of DAG and constraint settings. It is not surprising that, in most of the

cases, LOSS has the highest time costs due to the communication overhead caused

by numerous TS Queries. It can be easily imagined that some other sophisti-

cated heuristics, such as DCA and genetic algorithm, if using the TS Query when

scheduling, may need more time costs compared to LOSS. Actually, even LOSS is

unscalable to large applications and too time consuming for on-line workflow plan-

ning. Although not using the TS Query, the DCA considered in the experiment

still has a time cost comparable to BDLS, and this is significantly higher than
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BHEFT. The latter two algorithms are both based on list scheduling, whereas

BHEFT needs evidently less time costs than BDLS due to simpler computation

and the fact that less communication is needed when making scheduling deci-

sions. Moreover, BHEFT is the most scalable in terms of the growth of DAG size

(and potentially the number of resources which is considered constant in this ex-

periment). As can be seen in the graph, when scheduling LIGO application with

77 nodes on 6 resources, BHEFT only needs around 0.2 seconds on average. This

validates the fact that BHEFT will be able to cater to the real-time requirements

of online workflow planning.
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Figure 5.6: Time cost for each heuristic over diverse types and sizes of DAG and
user constraints

Summary of observations. The following observations can be made from

the above-described experimental results:

• The existing load of resources may have a significant impact on the BDC-

planning. Directly applying those heuristics without considering the ex-

isting load of resources in job planning (for example, DCA) may result in
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the unacceptable degradation of PSR. In contrast, BHEFT, which takes

the existing load of resources into account in planning, is able to achieve a

significant improvement on the success rate of finding a BDC-plan which

simultaneously satisfies deadline and budget constraints.

• Some guided local search heuristics (for example, LOSS) may be too sensi-

tive for the existing load of resources and cannot perform reasonably well

for BDC-planning, even when the existing load of resources is considered

when making the planning decision.

• In the context of BDC-planning, the simple list scheduling bi-criteria heuris-

tics (for example, BHEFT and BDLS) may be as effective as the sophisti-

cated heuristics based on an extensive local search, such as DCA.

• With low running costs, BHEFT is indicated to be competent for the real-

time requirement of BDC-planning.

5.6 Closing Remarks

BDC-planning is required to establish an SLA in order to provide a certain level

of QoS for workflow execution in the market-based Grid. This chapter proposes

BHEFT, a novel low-cost bi-criteria heuristic based on HEFT, to fulfill the specific

requirements of BDC-planning. The experimental results suggest that BHEFT

can transcend the existing solutions on finding a BDC-plan. On the one hand,

BHEFT requires little communication when making planning decisions based

on the existing load of resources. In contrast, many of the complex algorithms

(e.g., DCA) may either produce an unacceptable extra overhead to consider the

existing load of resources for planning, or obtain a worse planning result than

BHEFT without considering that. On the other hand, BHEFT exhibits a com-

petitive performance on BDC-planning. Although some less complex planning

algorithms (e.g., LOSS and BDLS) may cost acceptable communication overhead

(but still significantly higher than BHEFT) to make use of the information about

the existing load of resources, they do not perform as well as BHEFT to max-

imize the chance to find a BDC-plan. In summary, BHEFT appears to be at

least as effective, or even more so than other sophisticated bi-criteria workflow

scheduling heuristics, and has the lowest time costs and the best scalability. It is

also indicated that BHEFT can effectively and efficiently find a BDC-plan under
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various circumstances of constraints. This enables a quick judgement of whether

or not the submitted user request is acceptable, and provides the feasibility of

automating the creation of an SLA over diverse specified user constraints. Based

on this chapter’s work, the next chapter considers the overestimation of task ex-

ecution time in BDC-planning to cope with prediction uncertainty, and makes

advance reservations (as a term in the SLA) for the planned workflow according

to the planning result.



Chapter 6

SLA-based Advance Reservation

The previous chapter provided an efficient BDC-constrained planning heuristic

to help the SLA-based scheduling system to determine whether or not it is fea-

sible to accept a workflow request with budget-deadline constraints. Using this

knowledge, this chapter considers the problem of how to appropriately make an

advance reservation for a dynamically submitted workflow if the workflow can be

accepted. Given a set of workflows which may be submitted by different users

over time, the advance reservation is aimed to not only enhance the guarantee of

users’ deadline requirement, but also maximize the profit service providers can

earn from these workflows. Here, the advance reservation is considered at task

level, i.e., one advance reservation is made for each individual task. This chap-

ter investigates the performance of various advance reservation strategies which

attempt to add some ‘extra time’ to each task reservation in order to improve

service reliability in a situation in which actual task execution time is unpre-

dictable. The key objective of this investigation is to evaluate the effectiveness

of these advance reservation strategies on the maximization of SLA acceptance,

resource utilization and service provider income, although these metrics may be

conflicting. The evaluation results suggest how the ‘extra time’ ought be ap-

pended to task reservations in order to both provide the QoS guarantee for users

and maximize the profit for service providers.

The main contribution of this chapter is the evaluation of several efficient ad-

vance reservation strategies which can automate the process including the plan-

ning and making of an appropriate advance reservation for a submitted workflow.

The evaluation indicates the impacts these strategies may have on various aspects

of the system performance and determine the strategy which should be adopted.

144
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This is of great importance as a substantial step toward realizing an efficient and

effective automatic generation of SLAs for an SLA-based scheduling system.

6.1 Background

As mentioned in Chapter 4, advance reservation is considered in the proposed

SLA-based scheduling system as a viable alternative to the queue-based sched-

uler [MSK+04] which may lead to unacceptable uncertainty in guaranteeing users’

QoS requirements. When a user submits a workflow request with hard budget

and deadline constraints, before making advance reservation for the workflow, the

SLA-based scheduling system needs to plan the workflow to see if it is possible

to meet the user’s constraints. If the planner manages to generate a plan which

satisfies the constraints (i.e., BDC-plan), the workflow request will be accepted

and the sequent advance reservation will be made. The BDC-planning problem

has been addressed in Chapter 5, where planning decisions are made based on

the estimated execution time of each task.

Given a plan for a workflow, it appears to be straightforward to make the

counterpart advance reservations, i.e., each task is allocated a specific resource

according to the mapping result in the plan and reserved with the time slot

specified in the plan. Also, the reserved duration for each workflow task is con-

sidered to be the same as the estimated task execution time. However, if a task

is reserved in such a manner, some issues may be raised in terms of meeting

the user’s deadline constraint due to the inevitable uncertainty of performance

prediction. It can be imagined that when the execution time of a task turns

out to be significantly longer than the static estimate (which is not unusual in

practice), according to the agreed advance reservation, the task will probably be

terminated if no re-negotiation or some pre-defined recovery mechanism is con-

sidered [ZS06a]. When this situation happens to a DAG application, terminating

a task may mean the cancellation of all of its child tasks, which may lead to the

failure of the whole application.

In order to minimize the risk of this kind of failure, extending some extra

time to the advance reservation of a task can be a common and intuitive idea

to improve the reliability of task execution. In an extreme case where only one

single application is considered and no constraint is imposed, it may be trivial to

investigate this extension since it can simply be enlarged as much as the user wants
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to maximize the reliability of task execution. However, in the context of market-

based grids, where there are multiple workflows being submitted dynamically

over time with budget and deadline constraints, and competing for resources,

extending the reserved duration of tasks may become a challenging issue. It

can be imagined that this extension may have a significant impact on multiple

functional objectives, such as the rate of accepting a workflow request, the rate of

successful execution of an accepted workflow, and resource utilization, which may

consequently result in unforeseen changes in the profits for the service providers.

There have been quite a few efforts to develop an advance reservation tech-

nique to achieve the QoS for grids [SVF06, NBB07, CRH07, CRH08]. However, to

the best of the author’s knowledge, none of these studies focus on how to appro-

priately increase the reliability of task execution for workflows which have hard

constraints of budget and deadline and are executed in an environment where the

performance prediction is inaccurate, so that not only the user’s QoS requirements

can be met, but also the profits for the service providers can be maximized. This

problem is the main focus of this chapter. Based on the BDC-planning heuristics

discussed in the previous chapter, several advance reservation strategies are de-

signed in an attempt to reserve a time slot longer than the estimated execution

time of each task. In simulation, these strategies are respectively applied to a set

of multiple workflows which are sequentially submitted to the system at random

times, and their impact on the system and user performance is investigated. The

results suggest how, and to what extent, the reserved duration for each workflow

task should be extended in various circumstances.

The remainder of the chapter is organized as follows. The related works on

advance reservations for grid systems are first briefly described in section 6.2.

Next, an overview of the problem is presented in section 6.3. Section 6.4 intro-

duces the proposed advance reservation strategies. The simulation methods used

in the evaluation are presented in section 6.5 and the results and discussion are

provided in section 6.6. At last, section 6.7 concludes the chapter.

6.2 Related Work

Wide attention has been given to advance reservation studies in the grid commu-

nity. One of the pioneering works is presented in [FKL+99] where a basic architec-

ture with a set of APIs are defined for manipulating the advance reservations of
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distributed resources. Quite a few resource management systems and schedulers

have evolved to support advance reservation [Mac03], for instance LSF [LSF],

Maui [JSC01], EASY [SCZL96] and COSY [CZ04]. Although advance reserva-

tion, in the state-of-the-art, may have a negative impact on system and user per-

formance [SFT00], it can be seen that, during the recent years that advance reser-

vation has been widely employed and investigated with different concerns, such as

scheduling [SFT00, BV04, YS06], resource management [MKB02, ET05], provi-

sioning for performance predictability [MAD+05, SKD05, WSV+06], optimizing

or guaranteeing quality of service [SVF06, SKD07, NBB07, CRH07, CRH08] and

exploiting the flexibility of advance reservation [RSW04, FMP05, RSR06] etc.

Essentially, this chapter focuses on improving reliability of task execution for

workflows by extending the reserved duration for each task, in order to guarantee

the user’s deadline requirement, meet the budget constraint, and maximize the

service providers’ profits. In terms of optimizing multiple QoS metrics, the au-

thors of [SVF06] define a utility function which provides a numerical expression

of various QoS constraints, and propose an approach to generate advance reser-

vation offers based on a 3-layer negotiation. In this study, each application task is

considered to have its own constraints and the reservation offers of each task are

generated separately by negotiation with the resource provider. In contrast, the

individual workflow tasks considered in this chapter do not have separate con-

straints. Instead, the user just needs to simply specify the budget and deadline

constraints for the whole workflow. Another negotiation-based advance reserva-

tion strategy is proposed in [MAD+05], where the focus is to optimize the time

metric and the monetary cost is not considered. Another study of advance reser-

vation focusing on multi-objective optimization can be found in [SKD07], where a

workflow is considered to be reserved as whole. This differs from the work of this

chapter which makes advance reservations separately for each individual task.

The work presented in [CRH07] and [CRH08] employs computational geometry

techniques to plan advance reservation for homogeneous and heterogeneous sys-

tems respectively. The algorithms are aimed to schedule multiple tasks in order

to meet their start time and deadline constraints and maximise system utiliza-

tion. In these studies, the application is modelled as a single task other than a

DAG and, again, only time constraint is considered.

None of the aforementioned studies consider adding extra time to task reser-

vation to increase task execution reliability. The most relevant work is available
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in [ZS06a], where two policies are proposed to plan advance reservations for the

individual tasks of a DAG on a heterogeneous platform with considering dead-

line constraint. The described approach consists of two phases, in the first of

which, some makespan-optimized scheduling heuristic such as HEFT [THW02]

and HBMCT [SZ04a] was used to generate an initial schedule based on a static

task runtime estimate. In the second phase, the proposed policies were used to

determine how to distribute the Application Spare Time (AST), i.e., the time dif-

ference between the expected finish time of the initial schedule and the deadline,

into spare time for tasks, then extend the task spare time for each planned task

respectively. It was demonstrated that such an approach managed to effectively

reduce the risk of application failure with task runtime changes. In addition, it

made advance reservation in the grain of the task instead of the whole application

in order to avoid the waste of resource utilization in the latter case. However, the

advance reservation policies introduced in [ZS06a] are not directly applicable in

market-based Grids because these policies have three main limitations:

1. The existing load of the system is not considered. Suppose that some ad-

vance reservations have been made for other applications and a resource

can only run one task at a time at most. Any advance reservation planning

without considering the existing load will probably result in reservation

conflict (i.e., it will overlap with the existing reservation).

2. The budget constraint is not considered. An initial schedule which meets

the budget-deadline constraints may be obtained by using a multi-objective

planning heuristic. Following the policies proposed in [ZS06a], the reserved

time for every task may be extended without violating the deadline con-

straint. However, the time extension is unlikely to be free of charge in a

practical business scenario. Therefore, this approach will probably intro-

duce extra economic costs, and consequently exceed the budget constraint.

3. Only a single-workflow scenario is considered. Due to the competition of

resource between applications, an excessively extended reservation for the

current application will probably lead to a heavy existing load of resource for

newly planned applications and make them more difficult to be successfully

planned. The impact of introducing extended task reservation into planning

among multiple workflows is not investigated in [ZS06a].
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6.3 Problem Description

This section identifies the SLA-based advance reservation problem to be addressed

in this chapter. An overview of the problem is provided in Section 6.3.1 and more

details about the problem model are presented in Section 6.3.2. Table 6.1 as

shown below, lists the notations used in this chapter in conjunction with Table 5.1.

Symbol Meaning
pi final price for running task i
ρi the profit that can be earned from running task i
βp cost unit for resource p

∆i,p extended duration in task reservation
χ extension rate in task reservation
δ quality of task execution time estimation

ETw information about the task execution time estimation for workflow w
H() a budget-deadline-constrained-planning heuristic
λ extension price ratio
φ constraint ratio

Table 6.1: Notations

6.3.1 Problem Overview

It is assumed that there is a set of workflows W , each of which (denoted by

w) can be represented by a DAG. With a specified budget Bgtw and a deadline

Ddlw, each workflow w is submitted at a random time to a system which, the

same as depicted in Section 5.3.1, consists of multiple heterogeneous resources

and provides different services. The estimation of the execution times of all tasks

of w is known and denoted by ETw, while an actual execution time may differ

from its estimated value. As shown in Figure 6.1, the lifecycle of each workflow

is depicted as follows.

After being submitted, the workflow is planned based on the estimation of task

execution time and the existing load of resources to see if the specified budget

and deadline constraints can be met. If no, the workflow is rejected. Otherwise,

the workflow tasks are planned again by an advance reservation strategy which

normally considers a reserved duration longer than the execution time of each

task. If the strategy can obtain a reasonable advance reservation plan, by which
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Figure 6.1: Lifecycle of a workflow in the SLA-based scheduling system model

both budget and deadline constraints are still met and to some extent, the re-

served duration of each task is extended from the execution time estimation, the

workflow is reserved according to the plan. Otherwise, it is rejected. Each task

of the workflow begins to be executed at the start time specified in its advance

reservation. If any of the tasks cannot be completed before the end of the reserved

duration, the workflow is terminated and the advance reservations of the remain-

ing tasks are cancelled. Otherwise, the workflow is successfully completed, and

this usually means that the user’s QoS requirements are satisfied. If a workflow

is rejected or terminated, the user pays nothing. Otherwise, the user pays a price

based on the resource usage, and the service providers can earn profits from this

payment.

With the focus on such a scenario, the problem is how the advance reservation

strategy should generate a reasonable advance reservation plan as mentioned

before, so that the overall profits for the service providers can be maximized.

In order to ensure that the budget and deadline constraints can still be met

after the extension of the reserved duration for each task, the BDC-planning

heuristics can be a natural approach for the employment of the advance reser-

vation strategy. As shown in the previous chapter, a BDC-planning heuristics

attempts to plan a DAG based on a given estimation of task execution time to

see if the specified constraints can be satisfied. Using such a heuristic, the mission

of the advance reservation strategy is to determine an appropriate overestimation

of the task execution time. To illustrate this, a motivation example is provided in

Figure 6.2, where a simple workflow w with 4 tasks and QoS constraints are ini-

tially planned based on the estimated execution time of each task as demonstrated

in Figure 6.2(a). The problem is how to determine the extension to the time esti-

mation, which is denoted by ∆i,p for task i on resource p. Figure 6.2(b) provides

a possible extension without violating the budget and deadline constraints.



CHAPTER 6. SLA-BASED ADVANCE RESERVATION 151

Figure 6.2: A Motivation Example

In order to formulate the above, a functionH is defined to represent a Budget-

Deadline Constrained (BDC) workflow planning heuristic which can generate a

BDC-plan Schw for a workflow w based on a given estimation of task execution

times (i.e., ETw) and other needed information such an information about work-

flow w, resource set R and service set S, the existing loads of resources etc. With

the focus on the input of performance estimation, function H is denoted as below:

Schw = H(ETw) (6.1)

If H successfully find a schedule meeting user’s QoS requirements, Schw 6= ∅.

Otherwise, Schw = ∅. As a successful planning result, each task τi is reserved

with a reserved duration rdi = erti,p to the mapped resource γp. An extended

estimation for task execution time is denoted by ET∆
w = {esti,p + ∆i,p : τi ∈

T , si,p ∈ Si}, where ∆i,p > 0 is the extended time for each task execution time

prediction. Given that there are multiple workflows submitted by users with

budget and deadline constraints over time, the problem this chapter considers is

how to appropriately extend the task execution time estimation in BDC-planning

(namely, to find an appropriate ET∆
w to generate the advance reservation schedule
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Sch∆
w )

Sch∆
w = H(ET∆

w ) (6.2)

and then make advance reservations according to Sch∆
w (if Sch∆

w 6= ∅) for each

submitted workflow, so that the guarantee of users’ QoS requirements can be

enhanced and service providers’ benefits can be promoted.

6.3.2 Problem Modelling

As an extension of the BDC-planning problem, most of the concepts modelled in

Section 5.3.2 can be reused in this chapter. The only two distinctions in problem

modelling are presented as follows:

• Time Issues. Suppose task τi is being mapped to resource γp. In the pre-

vious work of BDC-planning, it was assumed that the reserved duration

for each task was the same as the estimation of task execution time, i.e.,

rdi = erti,p. In this chapter, account is taken of the uncertainty in perfor-

mance prediction, and thus, the actual task execution time is modelled as a

random variable. For each task, the actual execution time is assumed to be

randomly distributed within a certain bound around the estimated value.

The notion of Quality of Estimation (QoE, denoted by δ) is used to describe

the upper bounds of deviation which the actual task execution time may

have in respect of the estimated value. Namely, the actual execution time

acti,p falls within the range [(1− δ)erti,p, (1 + δ)erti,p], where 0 ≤ δ < 1.0.

As already mentioned, the reserved duration for a task is extended from the

execution time estimate, i.e., rdi = erti,p + ∆i,p. The successful running of

a workflow is defined as being that all of the reserved tasks of the workflow

begin at the planned start time and complete before the planned end time,

i.e., ∀τi ∈ w, acti,p ≤ rdi.

• Accounting Issues. In the previous chapter where the overestimation of

the task execution time is not considered in advance reservation planning,

Eq.(5.2) is used to compute the economic cost of a planned task. In this

chapter, due to the extension considered of the reserved duration for each

task, double rates are adopted in the price setting. In detail, given a task

τi with a reserved duration of rdi = erti,p + ∆i,p on resource γp, there is

ci = erti,p · µp + ∆i,p · λ · µp (6.3)
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where µp is the price unit accounting for the charge during the estimated

execution time, (λ · µp) is the price unit accounting for the charge during

the extended time in the reserved duration, and the extension price ratio

0 < λ < 1, which can be pre-specified, defines the ratio between these

two price units. To compute the final charge for a workflow, the cost-plus

pricing described in Section 4.3.5 is adopted. With overestimation, the final

price for a successful service provision is computed by

pi =

{

acti,p · µp : 0 < acti,m ≤ erti,m

erti,p · µp + λ · µp(acti,p − esti,p) : esti,p < acti,p ≤ rdi

(6.4)

while the profit earned (i.e., ρi) according to different execution results is

computed by

ρi =

{

pi − acti,m × βm : If the workflow is successfully completed

−acti,m × βm : Otherwise

(6.5)

where βm is the cost unit as defined in Section 4.3.5. It is assumed that for

each resource γp, the µp and βp are both pre-specified. The standardization

of µp can be found in Section 5.5.1, i.e., µp = αp(1+αp)
2

, and in this chapter,

it is assumed that βp = αp

2
.

6.4 Advance Reservation Strategies

This section discusses how to appropriately extend the task execution time esti-

mation in BDC-planning and advance reservation for a submitted workflow. In

terms of the problem defined in Section 6.3, this can be formulated as below:

Problem Formulation. Given the task execution time estimation ETw = {erti,p :

τi ∈ w, γp ∈ R} and a BDC-planning heuristic H, rather than computing Schw =

H(ETw), an appropriate ET∆
w = {erti,p + ∆i,p : τi ∈ w, γp ∈ R,∆i,p > 0} needs

to be determined to obtain Sch∆
w = H(ET∆

w ).

It is deemed to be unnecessary to prioritize different workflow tasks in the

extension, since every task has the same probability to cause workflow running

failure. This is suggested by two assumptions: (i) the Quality of Estimation

is the same for all unpredictable task execution times; and (ii) any task running

beyond the reserving duration will result in a workflow running failure. Therefore,
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extending each erti,p by the same percentage is considered, and the extension ratio

χ is defined as below:

χ =
∆0,0

ert0,0

=
∆0,1

ert0,1

= · · · =
∆j,p

ertj,p
= · · · =

∆|T |−1,|R|−1

ert|T |−1,|R|−1

(6.6)

whereby the problem can be simplified. In order to find an appropriate ET∆
w , the

corresponding extension ratio χw needs to be found.

Four advance reservation strategies are considered, i.e., Greedy Extension,

Rigid Extension, Conservative Extension, and Progressive Extension to determine

the extension ratio χ for a BDC-planning heuristic H to plan a single workflow

and make advance reservations accordingly.

6.4.1 Rigid Extension

Input:

A submitted workflow application w.
The estimation for task execution times for the workflow ETw.

Output:

Advance reservation result for w.

1: Obtain the evaluation of QoE, i.e., δest;
2: Let the extension ratio χw = δest;
3: Obtain ET ∆

w by extending ETw using χw;
4: Compute Sch∆

w = H(ET ∆
w ) as defined in Eq.(6.2);

5: If Sch∆
w 6= ∅ then

6: Make advance reservation for each task of w according to Sch∆
w ;

7: Return Sch∆
w .

8: Else

9: Return ∅.
10: Endif

Figure 6.3: The outline of Rigid Extension Strategy

As described in Figure 6.3, the Rigid Extension (RX) is simple and totally

relies on the estimation of QoE (as defined in Section6.3.2) to determine the

extension ratio χw. Suppose that the RX strategy evaluates the QoE to be δest,

which can be the same as, or different from, the actual QoE (i.e., δact). From RX’s

point of view, in order to ensure every task τi on resource γp can be successfully

executed, the reserving duration rdi should be at least (1 + δest) · erti,p. Thus,

the RX strategy simply lets χw = δest and obtains ET∆
w by extending the initial

estimation of task execution times ETw using χw. Namely, ET∆
w = {ert∆i,p =
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erti,p(1 + δest) : erti,p ∈ ETw}. Then ET∆
w can be used by a BDC-planning

heuristic to obtain the output schedule.

6.4.2 Greedy Extension

Input:

A submitted workflow application w.
The estimation for task execution times for the workflow ETw.

Output:

Advance reservation result for w.

1: Obtain an initial schedule by H, i.e., Schw = H(ETw) as defined in Eq.(6.1);
2: If Schw = ∅ then return ∅
3: Let χsuc = 0;

4: Compute χcur = Ddlw−M(Schw)
M(Schw) , whereM(Schw) means the planned end time

of w according to Schw;
5: Repeat

6: Obtain ET ∆
w by extending ETw using the extension ratio χcur,

7: Compute Sch∆
w = H(ET ∆

w ) as defined in Eq.(6.2);
8: If Sch∆

w 6= ∅ then

9: Let χsuc = χcur;

10: Compute χcur =
Ddlw−M(Sch∆

w
)

M(Sch∆
w

) + χsuc;

11: Else

12: Compute χcur = χcur+χsuc

2 .
13: Endif

14: Until the specified maximum iteration is reached;
15: Make advance reservation for each task of w according to the latest Sch∆

w 6= ∅.
16: Return the latest Sch∆

w 6= ∅.

Figure 6.4: The outline of Greedy Extension Strategy

Without considering the QoE, the Greedy Extension (GX) strategy attempts

to maximize the extension ratio for the currently planned workflow as long as the

specified QoS constraints and the spare capability of the resources allow. The

GX strategy proposed here (as shown in Figure 6.4) is inspired by the idea of a

bisection method [Cor77] which repeatedly bisects an interval before selecting a

subinterval for further processing. The GX strategy first tries to find a BDC-plan

by applying a BDC-planning heuristic H without any extension to ETw (Line 1).

If such a plan cannot be found, the strategy stops, having failed. Otherwise, the

strategy continues to initialize two extension rate variables χsuc (Line 3) and χcur

(Line 4) and starts iteration (Line 5-14). In each loop, the estimation of the task

execution time is extended by χcur and the extended result is used in the BDC-

planning heuristic to obtain a new schedule (Line 6-7). χsuc and χcur are updated
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accordingly depending on whether or not the new schedule is a BDC-plan (Lines

8-13). The iteration terminates when it reaches the specified maximum, and then

the last found BDC-plan is returned as the output (Lines 14-15).

6.4.3 Conservative Extension

The Conservative Extension (CX) strategy is a mixture of the RX and the GX

strategies. The CX strategy firstly employs the RX strategy to see if a BDC-plan

can be found. If it can, the workflow is reserved by the planning result as the

output. Otherwise, the GX strategy is invoked to obtain the output schedule. It

can be imagined that, in this way, CX will never produce an overestimation rate

higher than that of RX.

6.4.4 Progressive Extension

The Progressive Extension (PX) strategy is also a mixture of the RX and the GX

strategies. The PX strategy firstly employs the RX strategy to see if a BDC-plan

can be found. If not, the extension terminates with a workflow rejection. Oth-

erwise, the GX strategy is invoked. Then, the overestimation ratios obtained by

RX and GX are compared, and the planning result with the higher overestima-

tion ratio is returned as the output. It can be imagined that, in this way, PX will

never produce an overestimation rate lower than that of RX.

6.5 Experimental Methodology

In this section, the effectiveness of the four aforementioned advance reservation

strategies is evaluated in a multiple-workflow scenario. Suppose that a set of

workflows are sequentially submitted for processing during the period of [a, b],

four metrics are considered as follows:

• Acceptance Rate (AR): AR = Number of Accepted Workflows
Number of Arrived Workflows

× 100%

• Success Rate (SR): SR = Number of Successfully Executed Workflows
Number of Accepted Workflows

× 100%

• Utilization Rate (UR): UR = Sum of the Periods of Task Running
Number of Resource×(b − a)

× 100%

• Total Profit (ρtot
W ): ρtot

W = (
∑

w∈W

∑

τi∈w

ρi), where W denotes the set of multiple

workflows; ρi is the profit service providers can earn from executing τi ∈ w.
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6.5.1 Simulator

In order to make the evaluation, a simulator was implemented which could emu-

late the arrival, planning, advance reservation and execution of a bunch of mul-

tiple workflows which were submitted sequentially with QoS constraints. It is

worth mentioning that no rescheduling is considered in local resource, namely,

the time at which a workflow task actually begins execution is considered to be

the same as the reserved start time. The behaviour of the broker and several

LRMs, each of which manages a set of heterogeneous resources, was also simu-

lated in the simulator. The steps the simulator needs to follow to emulate the

processing of a set of workflows W sequentially arriving during the time of [a, b]

are briefly described below:

1. Step I: Constructing Environment. A computing environment consisting of

a certain number of LRMs, a set of heterogeneous resources managed by

the LRMs, a set of provided services located on the resources, and a bro-

ker is constructed. A configuration of resources and services (for example,

resource power ratio, transmission rate, service price, service type etc.) is

randomly generated. For each simulated resource, a reservation queue is

maintained to record the advance reservation made on this resource. Each

simulated LRM can manipulate the reservation queues of the resources man-

aged by this LRM. For example, the LRM can add a reservation, remove

a reservation, lookup a reservation, or move a reservation (i.e., change the

start time of the reservation) in the managed reservation queues. A broker

is created, being able to communicate with all LRMs. The broker can send

various requests (for example, querying free time slots, making advance

reservation etc.) to any LRM, and the LRM receiving the request can ma-

nipulate the managed resources and their reservation queues accordingly.

2. Step II: Generating Workflow Stream. For each workflow w ∈W , the work-

flow profile is randomly generated following a set of specified parameters

(for example, DAG type, number of tasks etc.), the budget and deadline

constraints associated with w are generated accordingly, and the arrival

time of w is randomly generated and time-stamped.

3. Step III: Processing Workflow Stream. From time a through b, for each time

unit t∗, the simulator firstly checks if the time-stamped event (I) occurs.

If it does, the corresponding actions are taken. Then the simulator goes
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through every resource and checks whether one of the time-stamped events

(II)-(IV) occurs. If it does, the corresponding actions are taken:

• Time Stamped Event (I): Workflow Arrival, which is indicated by t∗

equals the arrival time of one of the time-stamped workflows. If a new

workflow arrives, one of the proposed advance reservation strategies is

invoked by the broker to plan the workflow. If the planning succeeds,

the workflow is accepted and its tasks are reserved according to the

planning result. The existing reservations on relevant resources are

updated accordingly. The start and end of task reservation are time-

stamped. The actual end time of each task is randomly generated

according to the actual QoE, and is also time-stamped.

• Time Stamped Event (II): Execution Start, which is indicated by t∗

equals the start time of a task reservation in a resource. If this occurs,

the state of the reservation is set to RUNNING.

• Time Stamped Event (III): Early Completion, which is indicated by t∗

equals the actual end time of a task reservation in a resource. If this

occurs, it is implied that the task has been completed earlier than the

planned end time and thus it has been completed successfully. The

task reservation is removed and the relevant metrics are measured and

recorded.

• Time Stamped Event (IV): Execution Failure, which is indicated by t∗

equals the planned end time but is less than the actual end time of a

task reservation in a resource. If this occurs, it is implied that the task

has terminated having failed. For each remaining task reservation for

the workflow that this task belongs to, if the reservation is RUNNING,

the running task is terminated (i.e., the reservation is removed) and

the relevant statistic is recorded. Otherwise, the reservation is removed

without updating the statistic.

4. Step IV: Recording results. The simulator collects the statistics on the

above-mentioned four metrics.

In terms of the simulation, several assumptions are made, as follows:

• During one time unit, one workflow may arrive at most;
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• The workflow arrival can be modelled as a Bernoulli Process;

• The earliest start time for every workflow (i.e., Sttw) is at the next time

unit after its arrival;

• All actions reacting to the time-stamped events as stated above can be

completed within one time unit.

6.5.2 Experimental Setting

In this experiment, the simulator simulated 2 LRMs, each of which managed 3

resources, namely 6 heterogeneous in total. It should be noted that, although the

simulated system has a small number of resources compared to a realistic Grid,

it is indicated in [NWB08, NWB09] (where advance reservation is applied to a

set of distributed HPC resources with multiple processors) that the present work

could be extended to scheduling for a wider Grid. For the setting of resources,

the power ratio α for each resource was randomly generated from a range of [0.5,

2.0], and the transmission rate between each two different resources was randomly

generated from [0.5, 1.5]. The price unit of the benchmark resource was assumed

to be µ∗ = 1.0, and then the price unit of all resources could be computed

respectively with their power ratio as defined in Eq.(5.13). The existing load of

resources before the simulation started was assumed to be zero. There were 4

service types having a standard service time of 10, 15, 25 and 40 respectively. It

was assumed that the actual QoE δact = 0.5 and the actual execution times are

normally distributed within the range specified by δact.

The DAG parameters considered in this experiment are the same as those

described in Section 5.5.2. Given a specific DAG type, a bunch of DAGs of the

same type can be randomly generated. To generate the random arrival time

of each DAG the parameter Application Arrival Delay (AD) was used, which

describes the mean interval between application arrivals.

For each generated DAG, the deadline and budget constraints were considered

in the same way as presented in Section 5.5.2. Specifically, Constraint Ratio φ

(0 ≤ φ ≤ 1.0) was defined, and let φd = φb = φ. In addition, it was assumed that

the earliest possible start time for a submitted workflow was the next time unit

to its submission.

Among the numerous parameters involved in this experimental setting, how
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the four parameters (i) Application Arrival Delay (AD, Section 6.6.1), (ii) Con-

straint Ratio (φ, Section 6.6.2), (iii) DAG Type (DAG, Section 6.6.3), and (iv)

Extension Price Ratio (λ, Section 6.6.4) affect the performance of different ad-

vance reservation strategies was particularly investigated. According to the de-

scription in Section 6.5.1, these parameters configure the emulation of processing

a set of workflows W sequentially arriving during the time of [a, b] as follows:

• Application Arrival Delay parameterizes the random generation of arrival

time of the workflow in Step II.

• Constraint Ratio parameterizes the generation of the QoS constraints asso-

ciated with workflows in Step II.

• DAG type and the relevant parameters parameterize the random generation

of workflows in Step II.

• Extension Price Ratio configures the price setting in Step I.

More specifically, the simulator is used to emulate the processing of multiple

workflows during the virtual time from 0 through 10000. When investigating

the impact of a varying parameter, all other parameters were allowed to stay in

their default. By default, AD=100, φ = 0.8, DAG=‘Montage with 34 nodes’,

and λ = 0.2. Using this default setting, a heavy workload scenario was modelled,

where 34-node Montage workflows arrived at average interval of 100, from time

0 through 10000. Generally, the modelled workload exceeded the resource capa-

bility. However, for each workflow, it was not difficult to find a schedule meeting

budget and deadline constraints, since the default setting of constraint ratio and

extension price ratio was quite relaxed.

The four proposed strategies were examined in this experiment. All strategies

employed a heuristic H=BHEFT, which was proved to be an efficient BDC-

planning heuristic in the previous chapter. It is worth mentioning that, for RX,

PX and CX strategies which rely on the estimation of QoE, their estimated QoE

δest may differ from the actual QoE δact which is assumed to be 0.5. Taking this

into account, the situation was also examined of when QoE is under-estimated

(denoted by RX-, PX-, and CX-, and δest = 0.5δact) or over-estimated (denoted

by RX+, PX+, and CX+, and δest = 1.5δact). For strategies denoted by RX*,

PX* and CX*, it is assumed that δest = δact. In short, RXs is used to denote

the set of RX, RX+ and RX-, and a similar rule is applied to CXs and PXs.
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In addition, the performance of a Queue-based strategy (denoted by QB) is also

examined, in which no advance reservation is considered. When QB is used, the

queued task is allowed to sort by first-in-first-out. Moreover, when the simulator

detects that a workflow exceeds its deadline, the workflow execution is judged to

have failed and all of the remaining tasks are removed from the queue. There-

fore, eleven competitors were examined in the simulation. In each simulation,

the performance results for all examined competitors were recorded respectively.

Due to the randomness of the experimental setting, in one experiment, the sim-

ulation was repeated 100 times and the average result was obtained for every

aforementioned metric.

6.6 Evaluation Results

6.6.1 Impact of Application Arrival Delay

The application arrival delay was varied at 25, 50, 100 and 200 to model differ-

ent workloads from heavy to light, and the evaluation results are presented in

Figure 6.5.

Firstly, the impact of the varying AD on different metrics was observed. For

the application acceptance rate (AR), the larger the AD was, the higher the AR

of the majority of the advance reservation strategies would be. Actually, the total

number of the accepted workflows, which was often limited by the capacity of the

resources, did not change much. Therefore, the AR increased as the total number

of submitted workflows decreased, which was indicated by a higher AD. QB was

special. Without considering advance reservation, QB does not have to take into

account the existing loads of resources. Therefore, the application acceptance rate

for QB was always 100% since the constraint ratio was quite relaxed by default.

For the success rate (SR), some strategies, including RXs, PX*, PX+ and CX-,

were not as sensitive as others in respect of the variation of AD. As AD increased,

there were fewer workflows for resource competition. Consequently, the extension

ratio for PX-, CX+, and GXs may have become significantly larger and thus, the

success rate rose. In the case of QB, the success rate increased because there were

fewer tasks in the queue and therefore the delay in the queue was reduced. For the

utilization rate, the value achieved by each advance reservation strategy varied

slightly from AD=25 through AD=100, but decreased a bit when AD reached
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Figure 6.5: Impact of Application Arrival Delay (AD)

200. With advance reservation, the highest utilization rate could reach around

65%. In contrast, the utilization rate for QB was always higher than 80% when

AD was equal to 25, 50 and 100, but dropped dramatically to 55% at AD=200.

However, higher utilization rate did not necessarily mean higher revenue because

the user’s constraint was imposed in the calculation of payment. For the profit,

the performance of RXs, PX* and PX+ remained almost the same from AD=25

through AD=100, and slightly degraded when AD=200. In contrast, PX-, CXs

and GXs performed gradually better as AD became larger. QB suffered a big

loss at AD=25, but the profit grew significantly as AD increased.

Secondly, the different profits earned by different strategies were compared.

When AD was not greater than 100, all advance reservation strategies earned

more profit than QB, and especially, with a small AD like 25 and 50, the perfor-

mance of QB turned out to be a disaster. However, when AD reached 200, which

meant fewer incoming workflows and fewer queued tasks, QB outperformed all
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advance reservation strategies. This implies that when the workload is light to a

certain extent, applying advance reservation may be unnecessary and may even

be a disadvantage. The comparison results of all advance reservation strategies

suggest that, when the estimated QoE was the same as the actual one, RX*

performed better than other advance reservation strategies. When the QoE was

underestimated, PX- performed slightly better than GX and evidently better

than CX- in all settings of AD, and outperforms RX- when AD is equals to 50 or

higher. When QoE was overestimated, the performance of RX+ and PX+ were

comparable and better than CX+’s and GX’s in all settings of AD, while the

advantage weakened as AD decreased.

6.6.2 Impact of Budget and Deadline Constraint

The performance of different strategies under different QoS constraint conditions

was investigated, which, from strict to relaxed, are respectively set by a constraint

ratio (φ) equal to 0.4, 0.6, 0.8 and 1.0. The evaluation result is depicted in

Figure 6.6. It should be noted in Figure 6.6(b) that, in an extreme case, the

results of RX+ and PX+ may be invalid.

Firstly, the impact of the varying constraint ratio on different metrics was

observed. For the application acceptance rate (AR), the RXs and PXs obtained

higher AR as φ increased, while the CXs and GX hit the highest AR at φ = 0.6.

Every strategy obtained a significantly lower AR in the case of φ = 0.4 (i.e., when

the QoS constraint was quite strict) than in other cases, especially in this case

RX+ and PX+ encountered an extreme situation in that almost no workflow

could be accepted. The AR of QB remained 100%. For the success rate, the

RXs was not affected by the varying φ, while the PXs, CXs and GX obtained

higher SR as φ grew since they could achieve a higher extension ratio with more

relaxed constraints. For the utilization rate and the profit, almost every strategy

obtained an increased value as φ increased except for CX- which exhibited the

contrary.

Secondly, the different profits earned by different strategies were compared.

For all of the settings of φ, all of the advance reservation strategies could earn more

profit than QB, especially when the constraints were tight (e.g., φ = 0.4), the

performance of QB turned out to be a big loss of profit. The focus then turned to

comparing all of the advance reservation strategies. When the estimated QoE was

the same as the actual one, RX* and PX* performed comparably and even better
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Figure 6.6: Impact of Constraint Ratio (φ)

than other advance reservation strategies. When the QoE was overestimated,

RX+ and PX+ still performed the best, although when φ = 0.4 and using RX+

and PX+, the utilization rate and profit fell to zero, since there was almost no

workflow being accepted. When the QoE was underestimated, the best strategy

could be the RX- when the constraints were too tight, or the GX when the

constraints were highly relaxed, or the PX- in the majority of the medium cases.

6.6.3 Impact of DAG Type

The performance of the examined strategies with different types of DAG work-

flows having various number of nodes was observed. The involved DAGs included

fMRI with 17 nodes, Montage with 34 nodes, AIRSN with 55 nodes and LIGO

with 77 nodes, which are depicted in Figure 2.12. The evaluation results are

provided in Figure 6.7.
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Figure 6.7: Impact of DAG Type

Firstly, how the measured results of different metrics varied with different

DAG types was observed. In terms of application acceptance rate (AR), for

all of the advance reservation strategies, the bigger the DAG was, the less the

AR achieved by each strategy. This was because bigger DAGs led to a heavier

workload and made it more difficult for the planning of later arrived workflows to

meet QoS constraints. For success rate (SR), RX*, RX+, PX* and PX+ were not

sensitive to the variation of DAG type since the QoS can always be guaranteed

by these four strategies. In contrast, for other strategies, in which successful task

running was not guaranteed, the SR decreased as the DAG size grew. This was

because the more nodes one DAG had, the more likely the occurrence of task

running failure. For utilization rate, the impact caused by various DAG type

settings on different advance reservation strategies was not apparent, while QB

had significantly lower utilization for fMRI than other DAG types, because of

the lighter workload resulting from the small application. For profit, the change
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caused by various DAG type settings is similar to that for success rate.

Secondly, the different profits earned by different strategies were compared.

In most cases of DAG setting, the majority of the advance reservation strategies

obtained a higher profit than QB except for CX-. With all DAG type settings,

if the QoE could be perfectly estimated, RX* and PX* performed better than

CX*, which in turn performed better than GX. However, when the QoE was

underestimated, RX-, PX- and CX- usually performed worse than GX, except

that when small DAG (for example, fMRI) was used, PX- may have performed

better than GX. It is worth mentioning that when a big DAG was used (for

example, AIRSN and LIGO), RX- may have led to a loss of profit.

6.6.4 Impact of Extension Price Ratio

How the examined strategies performed with different settings of extension price

ratio at 0, 0.2, 0.4 and 0.6 was studied, and Figure 6.8 depicts the evaluation

results.

Firstly, the impact of the varying extension price ratio (i.e., λ) on different

metrics was observed. Since the advance reservation is not considered for QB,

for all metrics, the performance of QB is insensitive to the variation of λ, and

therefore QB is excluded from this discussion. For application acceptance rate

(AR), RXs and PXs obtained lower AR with higher λ which made it more difficult

to meet budget constraint in BDC-planning. In contrast, the AR values of CXs

and GX grew as λ increased since the increased λ limited the extension ratio

of the planning result and consequently lessened the resource competition. For

success rate, RXs and PXs were not sensitive to the variation of λ, but other

strategies obtained lower SR as λ grew since the extension ratio was restricted.

For utilization rate, RX+ and PX+ were more sensitive to the variation of λ than

other strategies and achieved lower resource utilization as λ increased. For profit,

as λ evolved from 0 to 0.6, most of the advance reservation strategies earned less

except for RX*, PX, PX- and GX which hit the highest profit at λ = 0.2.

Secondly, the different profits earned by different strategies were compared. In

most cases of the DAG setting, the majority of the advance reservation strategies

obtained higher profit than QB except for CX-. For all of the settings of λ,

if the QoE could be perfectly estimated, RX* and PX* performed better than

CX*, which in turn performed better than GX. However, when the QoE was

underestimated, PX- usually performed the best. If the QoE was overestimated,
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Figure 6.8: Impact of Extension Price Ratio (λ)

RX+ and PX+ may have encountered an extreme situation in that no workflow

was accepted, and therefore no profit was gained.

6.6.5 Summary

In summary, the evaluation examined the effectiveness of different advance reser-

vation strategies with various simulation settings which could cover a wide spec-

trum of online workflow processing scenarios in the context of market-based grids.

The results suggest the following:

• In most scenarios, the advance reservation strategies significantly outper-

form the queue-based strategy, which indicates the necessity of applying

advance reservation to guarantee users’ QoS requirements, when running

workflows with hard constraints in the context of market-based grids;
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• Advance reservation is not always necessary, and in some extreme case

where the workload is highly light, a queue-based strategy may even perform

better than the strategies using advance reservation;

• Accurately perceiving the range of task execution time changes in run-time

(i.e., QoE) may play a crucial role in designing an efficient strategy to

cope with the prediction uncertainty for running workflows in grids. As

demonstrated in the evaluation, with a perfect estimate of QoE, the RX

and PX strategies could significantly outperform the GX strategy, which

does not consider QoE.

• There is no a single advance reservation strategy which can always obtain

the highest profit in all circumstances, because extending the reserved dura-

tion for tasks may have various impacts on the system performance, which

may result in an unforeseen influence of the revenue. Generally, the RX

and PX strategies seem to perform best among the compared strategies,

while the PX strategy is considered to be a better choice. Indeed, when

the estimated QoE is not less than the actual one, the RX strategy can

sometimes obtain a higher profit than the PX strategy. However, when the

QoE is underestimated, the PX strategy can usually earn more than the

RX strategy and avoid a loss of profit which may be encountered by the

RX strategy.

6.7 Closing Remarks

This chapter presented four various advance reservation strategies which attempt

to appropriately extend the reserved duration of workflow tasks by overestimating

the estimation of task execution time and using a BDC-planning heuristic to

obtain the advance reservation plan. Thus, not only can the reliability of the

execution of a single workflow be increased, but also the profits that can be earned

from a set of multiple workflow requests can be maximized. An evaluation of the

designed advance reservation strategies was performed to investigate the impacts

these strategies can have in the scenario of processing multiple workflows which

have hard budget and deadline constraints and are submitted to an SLA-based

scheduling system dynamically over time. The evaluation verifies the usefulness

of advance reservation on both guaranteeing users’ deadline requirements under
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runtime changes and maximizing the overall income of the system, and suggests

the proper strategies which can be used to automate the process of planning and

making advance reservations for workflows in the SLA-based scheduling system.

It has been shown that the advance reservations generated by the strategies

proposed in this chapter can enhance the guarantee of users’ deadline require-

ments in an environment where the performance prediction is inaccurate. How-

ever, these reservations may probably lead to lower resource utilization and less

system income due to runtime changes. This motivates the work in the next

chapter to explore the investigation of applying local scheduling techniques (such

as backfilling) to improve resource utilization and resource providers’ benefit.



Chapter 7

SLA-based Local Scheduling

The previous chapter develops several “generous” strategies which overestimate

task execution times in planning and making advance reservations for workflows

to guarantee users’ QoS requirements under the uncertainty of performance pre-

diction. However, such a solution may lead to the problem of low resource usage

when the actual task execution time is considerably shorter than the reserved du-

ration. This chapter focuses on the problem of rescheduling the reserved workflow

tasks on local resources according to runtime changes during workflow execution

to improve the resource utilization and increase service providers’ profits.

This chapter investigates the flexibility of an SLA-based workflow advance

reservation, proposes a novel local scheduling policy which makes use of this flex-

ibility, and applies a backfilling technique to reduce the fragments of resource uti-

lization caused by advance reservation. The proposed policy, which complements

the development of the proposed SLA-based scheduling system, is the main con-

tribution of this chapter. A simulator is implemented to simulate the processing

of a set of workflows, each of which goes through the planning, advance reserva-

tion and local scheduling in the SLA-based scheduling system. In simulation, the

performance of the system is evaluated with applying different local scheduling

policies. The experimental results not only demonstrate the increase of resource

utilization and overall profits that the proposed local scheduling policy can gain,

but also verify the effectiveness of the whole SLA-based scheduling system.

170
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7.1 Background

In order to achieve a QoS guarantee for a user who requires to run a workflow

in a market-based grid with hard deadline constraint, the SLA-based workflow

scheduling system plans the workflow and makes advance reservations for indi-

vidual workflow tasks to the planned allocated resources, where a certain amount

of ‘extra time’ is considered in the reserved duration for each task to cope with

uncertainty in estimating task execution time. These advance reservations are

agreed between the user and the service providers in the form of an SLA, and

every workflow task will be allowed to exclusively use the reserved resource within

the reserved duration. In this way, the QoS requirements for grid users can be

satisfied as promised. Chapters 5 and 6 addressed the problem of how the SLA

for a submitted workflow can be appropriately generated via advance reservation.

Suppose that an SLA has been reached for a workflow application submitted

to a grid system. At this stage, the user’s and the involved service providers’

obligations, such as completing the workflow before a hard deadline and the price

to pay for successful execution, have been recorded and will be enforced in the

forthcoming workflow running. Moreover, each workflow task has been allocated

to the planned resource and is waiting to start the execution at the planned start

time. Nevertheless, the planned start time for each individual workflow task is

not a term of the SLA. Thus, the workflow task can actually start at any moment

as long as the constraints on task dependencies and the specified deadline are not

violated, since the user does not necessarily care about the detail of execution.

All he/she needs to be concerned about is whether his/her QoS requirements will

be satisfied. This implies the flexibility of an SLA-based advance reservation,

which allows the local scheduler to flexibly arrange the actual start time of the

allocated tasks. The procedure to do this is called ‘local scheduling’.

One of the easiest ways of determining when the task should actually start

running is to schedule the start time of task execution as planned. However, due

to prediction uncertainty, the actual execution time of a task can often be shorter

than the reserved duration, especially when the task execution time is overes-

timated. If workflow tasks are executed as planned, (namely, during a specific

duration, a resource can only be exclusively used by the task associated with the

reservation), this will normally lead to redundant reservation, i.e., a reservation

which leaves the resources idle and consequently degrades the resource usage.

This is obviously unacceptable for the resource owner, (i.e., service provider), to
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whom keeping the resource utilization reasonably high and consequently max-

imizing profit is always important. Therefore, there must be some alternative

technique for local scheduling to improve the resource utilization. To achieve

this, it is believed that it is worth exploring the aforementioned flexibility in

SLA-based advance reservation to fully exploit a backfilling technique’s talents

in local scheduling.

This chapter focuses on applying a backfilling technique based on flexible

advance reservations of workflows, which are considered to be DAGs, to mini-

mize utilization fragments caused by advance reservation. Although backfilling

techniques have been widely used to improve resource utilization, the majority of

them consider only independent tasks, each of which has a specific ready time and

deadline, and therefore the runtime changes in one local resource have no impact

on the scheduling in any other local resource. It is believed in this study that, in

the case of workflow tasks which often have dependencies between them, a new

local scheduling scheme which enables the interaction between local schedulers is

necessary, in order to maximize the benefit of using a backfilling technique. This

motivates the proposal of a novel local scheduling policy with backfilling. Simu-

lation evaluations are carried out to investigate the performance of the proposed

policy and its variants under various circumstances of grid computing scenarios.

It should be noted that the task advance reservations of local resources are viewed

as being dynamic, since new workflow requests are continuously submitted as the

existing advance reservations are scheduled. As multiple workflow requests come

in over time, the aim of this approach is to maximize resource utilization and

service providers’ profits, as well as meeting the user’s QoS requirements.

The rest of this chapter is organized as follows. Section 7.2 briefly reviews

the related work. Section 7.3 describes the problem to be resolved. Section 7.4

analyzes the flexibility of SLA-based advance reservation. Section 7.5 explains

how the proposed model is used in the scenario of processing multiple workflow

requests. Section 7.6 describes the steps of the simulated evaluation and discusses

the evaluation results. Finally, Section 7.7 concludes the chapter.

7.2 Related Work

The backfilling technique was initially adopted in queue-based schedulers to in-

crease the efficiency of resource usage. In order to increase resource utilization,
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backfilling approaches allow jobs from the back of the execution queue to be

executed before the jobs proceed in the queue, thus utilizing the idle resources

while the latter are waiting for some precondition to be satisfied to begin ex-

ecution. Typically, the jumping jobs are not allowed to disturb the execution

of some reserved jobs. Therefore, this scheduling scheme requires that the ex-

ecution time estimated for any involved job must be known in advance. Since

backfilling was first implemented on a production system in the “EASY” sched-

uler [SCZL96], many variants have been developed including aggressive [SCZL96],

conservative [MF01], selective [SKSS02], slack-based [TF99], relaxed [JMW02],

multiple-queue [LS02] and LOS [SF05] backfilling.

Advance reservations with flexible parameters have been introduced into Grid

computing environments to provide QoS for users. Kaushik et al [KFC06] inves-

tigate the impact of a flexible time interval, which they call time-window size,

on the request waiting time, request blocking probability and resource utiliza-

tion. Castillo et al [CRH07] use concepts from computational geometry to cope

with the resource fragmentation caused by advance reservation, and design online

scheduling algorithms to provide a QoS guarantee. Farooq et al [FMP06] evaluate

a set of application-to-resource mapping algorithms with flexible advance reser-

vation and propose an algorithm called Minimum Laxity Impact, which performs

rescheduling when a new job arrives but minimizes the extent to which existing

jobs are pushed toward their deadlines. In [RSR06, RSW04], authors explore the

fuzziness in reservation requests to address the drawback of advance reservation.

However, backfilling is not considered in these aforementioned works on advance

reservation.

The impact of advance reservation on different backfilling algorithms is inves-

tigated in [LZ07, MDM08]. Netto and Buyya [NBB07] consider backfilling when

rescheduling the existing advance reservations with flexible and adaptive time

QoS parameters. These works apply backfilling when rescheduling queued jobs

when new a job arrives. In the work of the present study, local scheduling with

backfilling is triggered when a reserved task completes earlier than the expected

end time.

The task execution time estimation inaccuracy is taken into account in [NB08],

where backfilling is used in rescheduling co-allocation requests based on flexible

advance reservation and processor remapping. However, in [NB08], the job is

viewed as being a bunch of parallel tasks requiring multiple resources, namely
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workflow applications are not considered. In the case of the present study, the

focus is on local scheduling based on the flexibility arising from SLA-based work-

flow advance reservation, and task-resource remapping is not considered during

local scheduling.

Unlike the above-mentioned studies, the focus of this study is applying back-

filling in local scheduling for workflow tasks, each of which has the ready time

and deadline constraints on its execution. Most existing backfilling studies focus

on independent tasks and consider that the local scheduler performs backfilling in

isolation. Therefore, the ready time and deadline associated with each task have

to be fixed. However, in the case of executing workflows, these two parameters,

which essentially bind the maximum range within which a task can be backfilled,

are likely to vary due to runtime changes and consequently enlarge the range of

the backfilling of the task. Without considering this variation, the performance

of backfilling may be limited. Motivated by this observation, this chapter pro-

poses a new local scheduling policy, which take into account the variation of the

ready times and deadlines for tasks during runtime, in order to fully exploit the

potential of backfilling so that the resource utilization can be maximized and the

service providers’ profits can be promoted.

7.3 Problem Description

To execute an accepted workflow request, the broker makes advance reservations

for individual workflow tasks across multiple administrative domains managed

by Local Resource Managers (LRM). Each local resource has its own advance

reservation queue (reservation queue for short, hereafter) consisting of reserved

tasks, which are initially generated according to the planning result of some SLA-

based advance reservation strategy (such as those proposed in Chapter 6). Since

the planning results are normally produced based on inaccurate task runtime

estimation, the schedulers of local resources may update their reservation queues

to reduce fragments in resource utilization.

In this chapter, the notations defined in Chapters 5 and 6 are reused. Similar

to the existing load of resources defined in Eq.(5.5), at any time t∗, the reservation

queue of resource γp can be represented by

Qp(t
∗) = {(tstt〈0〉, t

end
〈0〉 ), (tstt〈1〉, t

end
〈1〉 ), · · · , (tstt〈j〉, t

end
〈j〉 ) · · · } (7.1)
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where tstt is the planned start time of a task, tend is the planned end time of a task,

〈j〉 means the index of the advance reservation in resource γp, (tstt〈j〉, t
end
〈j〉 ) denotes

the jth advance reservation, especially, (tstt〈0〉, t
end
〈0〉 ) is the earliest reservation after

t∗ in resource γp. In addition, it is held that tstt〈0〉 > t∗ and ∀j > 0, tend
〈j−1〉 ≤ tstt〈j〉.

As time t∗ goes on, multiple workflow requests arrive dynamically. The local

scheduling problem considered in this chapter is to update the head reservation

in the reservation queue for each resource and determine the actual start time

of the head reservation in order to minimize resource utilization fragments and

consequentially maximize resource utilization and the overall profits the service

providers can earn from these workflows, while still meeting the constraints of

task dependencies and workflow completion deadline. It should be noted that

the head reservation may not necessarily be (tstt〈0〉, t
end
〈0〉 ) due to the use of the

backfilling technique in local scheduling.

7.4 Flexibility of SLA-based Advance Reserva-

tion

This section attempts to illustrate and formulate the flexibility of an SLA-based

advance reservation.

First of all, a motivation example to explore flexibility in SLA-based advance

reservation is provided in Figure 7.1, where a simple workflow w consisting of

four nodes has been planned and reserved for two resources. As illustrated in

Figure 7.1, where Sttw is the earliest possible time to start executing the workflow

and Ddlw is the specified deadline, the advance reservation for task 3 can be placed

at any position between ta and tb without violating the task dependencies and

deadline constraints. In fact, such flexibility exists for every task of the workflow.

Based on the notation defined in Chapter 6, the following parameters for-

mulate the flexible advance reservation for task τi which is mapped to resource

γp:

- erti,p: the estimated running time of task τi on resource γp;

- tstti : the planned start time of task τi;

- rdi: the reserved duration for task τi, rdi ≥ erti,p;

- tend
i : the planned end time of task τi, defined as tstti + rdi;
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Figure 7.1: A motivation example of flexibility in SLA-based advance reservation
for workflow

- drti,p: the data ready time of task τi on resource γp;

- leti,p: the latest end time of task τi on resource γp;

- t̂stti : the actual start time (i.e., the last updated tstti ) of task τi;

- arti: the actual runtime of task τi on resource γp;

- acti: the actual completion time of task τi;

- t̂end
i : the last updated planned end time of task τi, defined as t̂stti + rdi;

The computations of drti,p and leti,p are respectively defined as below.

drti,p =



















Sttw : i = entry

max{ max
j∈Predc(i)

{tend
j + tl(j,r(j))→(i,p)},

max
k∈Predu(i)

{actk + tl(k,r(k))→(i,p)}}
: i 6= entry

(7.2)

leti,p =







Ddlw : i = exit

max
j∈Succ(i)

{tsttj − tl(i,p)→(j,r(j))} : i 6= exit
(7.3)

where entry and exit represent the entry node and exit node of workflow w,

Predc(i) denotes the set of all completed parent tasks of τi and Predu(i) rep-

resents the set of all uncompleted parent tasks, tl quantifies the transmission

latency between two allocated tasks, and r(j) means the resource where task τj

is mapped.
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Figure 7.2: Parameters related to a task reservation

As illustrated in Figure 7.2, drti,p and leti,p actually depicts the range in

which the advance reservation for task τi on resource γp can be placed without

violating task dependencies and deadline constraints. In terms of Eq.(7.2), drti,p

specifies the earliest possible time for task τi to obtain all the necessary data

from its parent tasks. That is to say, the task dependency will not be violated

as long as task τi starts execution later than drti,p (i.e., tstti ≥ drti,p). According

to Eq.(7.3), leti,p specifies the latest possible time that task τi has to complete

to avoid delaying the planned start time of its child tasks, especially for the exit

node, letexit,r(exit) is the hard deadline for the whole workflow. Assuming that

tasks can always complete within the reserved duration, it can easily be imagined

that the deadline constraint can always be met as long as the planned end time

of τi is not later than leti,p (i.e., tend
i ≤ leti,p). It should be noted that because of

local scheduling during runtime, for each task τi, drti,p, leti,p, tstti and tend
i may

vary until τi starts running. Also, acti cannot be known until τi completes its run.

Figure 7.2 highlights the variation of these parameters from their initial state (as

a result of planning) to the state after task execution, such as drti,p 7→ drt∗i,p,

leti,p 7→ let∗i,p, tstti 7→ t̂stti and tend
i 7→ t̂end

i . This indicates the flexibility of an

SLA-based advance reservation. Nevertheless, no matter how these parameters

vary, it must be satisfied that drti,p ≤ tstti < tend
i ≤ leti,p for each τi during local

scheduling.



CHAPTER 7. SLA-BASED LOCAL SCHEDULING 178

7.5 Process Workflows with Local Scheduling

The focus is on such a scenario in which multiple workflow requests, each of which

consists of a workflow and the associated budget and deadline constraints, are

dynamically submitted over time, and meanwhile, other submitted workflows are

being executed with possible local scheduling. The scheduling process is con-

sidered to be on-line, where workflow requests are submitted over time and the

planner (broker) make planning decisions for each submitted workflow based on

only the current existing load of resources (i.e., the existing task reservations in

resources). If the planning result suggests the user’s budget and deadline con-

straints can be met, a SLA is reached between the user and service providers is

reached and advance reservations are made for individual workflow tasks to guar-

antee the user’s QoS constraints, albeit with prediction uncertainty. These task

reservations are flexible and may be rescheduled to start at some time different

from the initially planned start time by local scheduling.

7.5.1 Overview from the Perspective of a Single Workflow

As mentioned in Chapter 4, the SLA-based scheduling of a submitted workflow

consists of planning, making advance reservation and local scheduling, and there

are three key roles: service provider, user and broker in the SLA-based schedul-

ing model. The service provider administers multiple, heterogeneous resources

which provide services of different capabilities and at a different costs. The users

send job requests with the objective of making use of the provided services to run

a workflow application within a certain deadline and budget. The broker is re-

sponsible for carrying out BDC-planning and advance reservation before workflow

execution (as presented in the previous chapters) and coordinate local scheduling

for the flexible reserved tasks during the runtime.

For each newly arriving workflow request, the whole processing can be divided

into two phases: ‘before-execution’ and ‘run-time’, as illustrated in Figure 7.3.

In the before-execution phase, the submitted workflow is firstly planned to

examine whether or not the user’s budget and deadline constraints can be met.

If yes, the workflow request is accepted, the advance reservations for individual

workflow tasks are made with the planned resources, the task-resource mapping

results are recorded by the broker and the SLA is reached. Otherwise, the work-

flow request is rejected.
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Figure 7.3: Sequence diagram for processing a workflow request in the SLA-based
scheduling system
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The run-time phase starts as the workflow execution begins. Each workflow

task actually begins running at the last updated planned start time which may

vary during runtime, as explained in Section 7.4. Pre-emption is not considered

during task execution. When the task completes running earlier than the end of

the reserved duration on the allocated resource, the local scheduling consisting

of two operations, namely updating and backfilling, is launched on this resource.

The details of these two operations are presented in Section 7.5.3.

7.5.2 Initial Planning and Advance Reservation

For each accepted workflow, the initial advance reservations are generated by

following the four steps:

1. The broker plans the submitted workflow using one of the advance reserva-

tion strategies proposed in Chapter 6, where overestimation of task execu-

tion time and the current existing load of resources are taken into account;

2. According to the planning result, the broker makes advance reservations for

individual tasks to the service providers, and the initial values of drt and

let for each task reservation are computed;

3. Local schedulers update their advance reservation queues, which is per-

ceived by the broker as existing load of resources, respectively;

4. The broker records the task-resource mappings and the SLA agreed upon

between the user and the service providers.

7.5.3 Local Scheduling Operations

There are two operations in the proposed SLA-based local scheduling: (i) Updat-

ing : recompute drt and let of the reserved tasks according to runtime changes;

and (ii) Backfilling : move a particular reserved task forward to the head of reser-

vation queue of a local resource. It should be noted that the local schedulers

perform these operations only for the reserved task waiting for execution, not

during execution. The idea here is to find some flexible task reservation waiting

for execution to fill the extra utilization gap caused by the early completion of

an executed task, in order to reduce resource utilization fragments.
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Updating

Figure 7.4: Example of Updating Operation

As previously mentioned, the dynamic variables drti,p and leti,p bind the range

within which the advance reservation for task τi should be placed. Therefore, it

is necessary to update of these variables to ensure that the reserved task can

be moved to the right place without violating task dependencies and deadline

constraints. An updating operation is the procedure that changes the drt and/or

let of the child and/or parent tasks, which have not begun to execute yet, of

a task whose reserved start time or actual completion time varies due to local

scheduling. As illustrated in Figure 7.3, an updating operation can be invoked

by early completion and/or the moving of reserved tasks. And the interaction

between local schedulers is enabled by the coordination of the broker. In the case

of early completion of a task, for each child task of the task, the drt needs to

be updated, while in the case of a task moving, both the let of each non-started

parent task and the drt of each child task need to be updated. Suppose that the

communication between the broker and local schedulers relies on message passing,

and one message is needed to update the drt or let of a task at most, then the

maximum number of messages needed to complete an updating operation is the

sum of in-degree and out-degree of the involved task node plus one (the message

passed from a local scheduler the broker to report an early completion of a task

or a change of a local task reservation). Here, the in-degree and out-degree means

the number of the parent and child tasks respectively. As can be seen from the

DAG examples depicted in Figure 2.12, for typical DAGs, on average, the sum
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of in-degree and out-degree of a task is not big. Therefore, the communication

overhead introduced in the updating operation should not be high. Figure 7.4

provides an example of updating drt due to earlier completion, where the drt3,0

of Task 3 becomes earlier due to the early completion of Task 2.

Backfilling

Figure 7.5: Example of Backfilling Operation

When a task completes before the reserving duration runs out, this leaves an

extra gap in resource utilization. The idea of backfilling is to move a selected

task from the reservation queue to fill the gap to utilize resource, but the moving

of the task must be within the range bounded by its drt and let. Therefore,

backfilling can only occur when a task is completed earlier than the end time of the

reserved duration. Since most of the parameters relating to workflow task advance

reservation such as ci, tstti , rdi, tend
i , drti,p and leti,p, are resource dependent, the

migration of reserved tasks across different resources is not considered to avoid

extra computational overhead, which may be significant due to the complexity of
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rescheduling dependent tasks. Moreover, only a maximum of two reserved tasks

are moved, one of which is the current head of the reservation queue, and the other

is the selected task for backfilling (if the head is not selected). This is because (i)

at any given moment, the only thing to consider is the execution of the current

head reservation in the reservation queue. The remainder will be considered again

upon the completion of the current head; and (ii) the more reserved tasks are

moved, the more computational overheads will be introduced due to the updating

operation, which may conflict with the real-time requirement of grid computing.

Based on the above discussion, given that one task on resource γp just completes

at time t∗ which is before the reserved duration, and thus backfilling is invoked,

there are two different possible cases of backfilling (as shown in Figure 7.5) which

need to be taken into account:

• Case I: The task in the head position of the reservation queue (denoted by

τ〈0〉) is considered for backfilling. In this special case, the following steps

will be carried out:

1. Compute ntstt〈0〉 = max{t∗, drt〈0〉,p};

2. If (ntstt〈0〉 < tstt〈0〉)

(a) Let tstt〈0〉 = ntstt〈0〉 and tend
〈0〉 = ntstt〈0〉 + rd〈0〉, which means τ〈0〉 is moved

ahead;

(b) Update let of each non-started parent task of τ〈0〉 and drt of each

child task.

• Case II: One task other than the head in the reservation queue (denoted

by τ〈i〉) is considered for backfilling. In this case, τ〈i〉 is first removed from

the reservation queue. Then τ〈0〉 is tentatively moved backward as much

as possible without delaying any other tasks. The idea of doing this is

to enlarge the utilization gap so that there may be more tasks eligible for

backfilling. Finally τ〈i〉 is checked to see if it is eligible for backfilling. If

yes, τ〈i〉 is inserted into the gap between t∗ and τ〈0〉. In detail, the following

steps will be carried out:

1. Compute ntend
〈i〉 = min{let〈0〉,p, tstt〈1〉,p} − rd〈0〉;

2. Compute ntstt〈i〉 = max{t∗, drt〈i〉,p};

3. If τ〈i〉 is eligible for backfilling
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(a) Let tstt〈i〉 = ntstt〈i〉 and tend
〈i〉 = ntstt〈i〉 + rd〈i〉, thereby τ〈i〉 becomes the

new τ〈0〉;

(b) Update let of each non-started parent task of τ〈i〉 and drt of each

child task.

(c) If the old τ〈0〉 overlap with the new τ〈0〉

i. move the old τ〈0〉 backward till the overlap is eliminated;

ii. update let of each non-started parent task of the old τ〈0〉 and

drt of each child task.

It should be noted that in Case II, τ〈i〉 is eligible for backfilling if, and only

if, the following two conditions are both satisfied:

– τ〈i〉 is not a successor of τ〈0〉;

– ntstt〈i〉 + rd〈i〉 < ntend
〈i〉 .

7.5.4 Local Scheduling Policy

Based on existing task reservations on local resources, which are initially derived

from workflow planning and advance reservation, the aim of a local scheduling

policy is to find a reserved task to fill the fragment generated by the early comple-

tion of a running task. Whenever a task is completed before its reserved duration

runs out, the local scheduler uses the algorithm described in Figure 7.6 to select

a task from the reservation queue as the next task for execution.

To complete the description of the local scheduling algorithm, it is still neces-

sary to explain how the priority of task reservations is computed to determine the

particular task for backfilling. Here, various kinds of prioritization are considered,

as follows:

• Shortest Task First (STF): The task with the shortest reserved duration

and which is eligible for backfilling is selected as the task with the highest

priority, i.e., h∗ = min
v〈k〉∈Qp

{rd〈k〉|τ〈k〉 is eligible for backfilling}.

• Longest Task First (LTF): The task with the longest reserved duration

and which is eligible for backfilling is selected as the task with the highest

priority, i.e., h∗ = max
v〈k〉∈Qp

{rd〈k〉|τ〈k〉 is eligible for backfilling}.
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Input: The task τi on resource γp which is just completed at time t∗ and before the end of
reserving duration; and the current reservation queue Qp(t

∗) of γp.
Output: The next task to be executed in resource γp.

1. For each child task τj of task τi

2. Update drtj,r(j).
3. Endfor

4. For each task reservation v〈k〉 = (tstt
〈k〉, t

end
〈k〉 ) ∈ Qp(t

∗)
5. Compute priority h〈k〉 of v〈k〉 using one of the prioritization methods described at

the end of the section.
6. Endfor

7. Select v∗ with the highest priority h∗.
8. If v∗ is the head of Qp(t

∗) then

9. Schedule v∗ with backfilling of Case I and possible updating as described in Section 7.5.3.
10. Else

11. Schedule v∗ with backfilling of Case II and possible updating as described in Section 7.5.3.
12. Endif

Figure 7.6: Procedure for local scheduling, which is executed on the local sched-
ulers when a task is completed before the reserved duration ends

• Earliest Task First (ETF): The task with the earliest possible start time

and which is eligible for backfilling is selected as the task with the highest

priority, i.e., h∗ = max
v〈k〉∈Qp

{ntstt〈k〉 = max{t∗, drt〈k〉,p}|τ〈k〉 is eligible for backfilling}.

7.6 Evaluation

In this section, the effectiveness of the proposed local scheduling policy is eval-

uated in a multiple-workflow scenario which is similar to the one described in

Section 6.5. However, compared to the experiments of Section 6.5 where no

rescheduling is considered in local resources, this experiment considers different

local scheduling policies to reschedule the reserved workflow tasks during run-

time. As the proposed local scheduling polices complement the design of the

SLA-based workflow execution system, this experiment can also be regarded as

an evaluation of the whole system. To highlight the impact of local scheduling

which is only invoked when a task is completed before the end of the reserved

duration, an ideal situation in which all reserved workflow tasks can always be

completed within the reserved duration is assumed. In order to construct such

a situation, the Rigid Extension (RX) advance reservation strategy presented in

the previous chapter is used for the local scheduling model, and it is assumed

that the actual QoE is less than, or equal to, the estimated QoE of RX.
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The aim of the evaluation is to examine the performance of different variations

of the proposed local scheduling policy in the light of the workflow acceptance

rate, resource utilization and the total profit earned from all successfully executed

workflows. Here, a workflow is considered to have been successfully executed if

the budget and deadline constraints specified by its SLA are both met. Suppose

that a set of workflows are sequentially submitted for processing during the period

of [a, b], the three metrics focused on are listed as follows:

• Acceptance Rate (AR): AR = Number of Accepted Workflows
Number of Arrived Workflows

× 100%

• Utilization Rate (UR): UR = Sum of the Periods of Task Running
Number of Resource×(b − a)

× 100%

• Total Profit (ρtot
W ): ρtot

W = (
∑

w∈W

∑

τi∈w

ρi), where W denotes the set of multiple

workflows; ρi is the profit service providers can earn from executing τi ∈ w.

7.6.1 Simulator

The simulator described in Section 6.5.1 was extended to support the local

scheduling model and an evaluation was carried out to see the effects of the

proposed SLA-based local scheduling policy. The main changes made to the sim-

ulator presented in the previous chapter are (i) local scheduling is added as the

action which reacts to the event of early completion and (ii) the event of exe-

cution failure is omitted. The new design of the simulator is briefly described

below. With local scheduling, the simulator emulates the processing of a set of

workflows W which sequentially arrive during the time of [a, b]:

1. Step I: Constructing Environment. The same as the description in Sec-

tion 6.5.1.

2. Step II: Generating Workflow Stream. The same as the description in Sec-

tion 6.5.1.

3. Step III: Processing Workflow Stream. From time a through b, for each

time unit t∗, the simulator first checks if the time-stamped event (I) occurs.

If it does, the corresponding actions are taken. Then the simulator goes

through every resource and checks to see if one of the time-stamped events

(II)-(III) occurs. If it does, the corresponding actions are taken.
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• Time Stamped Event (I): Workflow Arrival, which is indicated by t∗

equals to the arrival time of one of the time-stamped workflows. If a

new workflow arrives, one of the proposed advance reservation strate-

gies is invoked by the broker to plan the workflow. If the planning

succeeds, the workflow is accepted and its tasks are reserved according

to the planning result. The existing reservations on relevant resources

are updated accordingly. The start and end of task reservation are

time-stamped. The actual end time of each task is randomly gener-

ated according to the actual QoE and time-stamped as well.

• Time Stamped Event (II): Execution Start, which is indicated by t∗

equals to the start time of a task reservation in a resource. If this

occurs, it is implied that the task starts running.

• Time Stamped Event (III): Early Completion, which is indicated by

t∗ equals the actual end time of a task reservation in a resource. If

this occurs, it is implied that the task has completed earlier than the

planned end time and thus the task has been successfully completed.

The task reservation is removed and the relevant metrics are measured

and recorded. In addition, the local scheduling operations are invoked.

One of the priorities defined in Section 7.5.4 is used in the proposed

local scheduling algorithm to decide the head of the reservation queue

of this resource, and the drt and let of the relevant tasks are updated.

4. Step IV: Recording results. The simulator collects the statistics on the

above-mentioned three metrics.

In terms of the simulation, the same assumptions are made as listed in Sec-

tion 6.5.1.

7.6.2 Experimental Setting

Different performance results were examined for the situation without applying

local scheduling (i.e., the reserved tasks are launched at the same time as planned)

and the situation where local scheduling is used. The former case was denoted as

‘AsPlan’. In the latter case, three variants of the local scheduling policy, which re-

spectively use one of the prioritization methods defined in Section 7.5.4, were con-

sidered. These variants were respectively denoted by ‘STF UXBF’, ‘LTF UXBF’
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and ‘ETF UXBF’. In order to demonstrate the significance of using the proposed

local scheduling operations (as described in Section 7.5.3), two variants of the

widely used Earliest Deadline First (EDF) algorithm with backfilling is also con-

sidered in the comparison. One variant is denoted by ‘EDF XBF’, which does

not consider the updating operation in the backfilling, and the other is denoted

by ‘EDF BF’, in which the updating and the moving of the head of the reserva-

tion queue in the backfilling of Case II (as described in Section 7.5.3) are both

ignored. Therefore, there were six competitors in total in the evaluation.

All of the competitors were evaluated under various simulation scenarios. For

the configuration of the simulation, a parameter setting almost the same as that

specified in Section 6.5.2 was adopted. The main difference is that in this ex-

periment, it was assumed that the RX advance reservation strategy employed

in local scheduling policies had a fixed estimated QoS, δest = 0.5. Moreover, a

varying actual QoE (δact) was assumed instead of a fixed one, whereas δact ≤ δest.

In addition to Application Arrival Delay (AD), Constraint Ratio (φ), DAG Type

(DAG), and Extension Price Ratio (λ), the impact of actual QoE on the perfor-

mance of different competitors was also investigated. In terms of the description

of the simulation in Section 7.6.1, the actual QoE configures the simulation by

affecting the generation of the actual task execution time in the actions to Time

Stamped Event (I).

When investigating the impact of a varying parameter, all other parame-

ters were allowed to stay in their default. By default, AD=100, φ = 0.8,

DAG=‘Montage with 34 nodes’, λ = 0.2, and δact = 0.5. In each simulation,

the performance results for all competitors are recorded respectively. Due to the

randomness of experimental settings, in one experiment, the simulation was car-

ried out 100 times and the average result was obtained for every aforementioned

metric.

7.6.3 Experimental Results

Firstly, the result of the impact of Application Arrival Delay (AD), which was

varied at 25, 50, 100 and 200 to model different workloads from heavy to light,

is investigated. As can be seen in Figure 7.7, for all the settings of Application

Arrival Delay, both the acceptance rate and the utilization rate can be improved

to a certain extent by applying the present study’s local scheduling policies. The
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profit is also improved as a result. Among the policy variants, ETF UXBF per-

forms the best in all settings of AD. When AD equals 25, 50 and 100, ETF UXBF

manages to improve the profit by around 50% with respect to AsPlan. This im-

provement receives the main contribution from the improvement of the utilization

rate, while the increase of the acceptance rate is less significant. As AD increases,

which implies that there are fewer reserved tasks in the reservation queues of dif-

ferent resources, the improvement achieved by local scheduling decreases, and

the policy variants exhibit a similar performance. However, when AD equals 200,

around 20% of profit improvement can still be achieved. It is worth mentioning

that, in all of the settings of AR, EDF BF performs worse than EDF XBF, which

in turn performs worse than the proposed local scheduling policies.
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Figure 7.7: Impact of Application Arrival Delay (AD)

Secondly, with four different DAGs including fMRI with 17 nodes, Montage

with 34 nodes, AIRSN with 53 nodes and LIGO with 77 nodes (as depicted in

Figure 2.12) used in the evaluation, the observation of how various DAG types

affect the evaluated metrics is presented in Figure 7.8. The results show that

the proposed local scheduling policy can improve all measured metrics with re-

spect to AsPlan for all settings of DAG. Again, ETF UXBF outperforms other

competitors. Among the various DAG types considered here, the proposed local

scheduling policies provide the highest advantage to AsPlan in the case of LIGO

with 77 nodes. This is because LIGO has the more nodes than other DAGs used

here, which results in the most crowded reservations in the reservation queue and

consequently, there is more likelihood of the occurrence of backfilling. The com-

parison results between EDF BF, EDF XBF and the proposed policies are the

same as that mentioned in the analysis of the results of the varying Application

Arrival Delay.



CHAPTER 7. SLA-BASED LOCAL SCHEDULING 190

fMRI,17 Montage,34 AIRSN,53 LIGO,77
0

10

20

30

40

50

60

70

80

90

100

A
cc

ep
ta

nc
e 

R
at

e

DAG Type

(a) Acceptance Rate

fMRI,17 Montage,34 AIRSN,53 LIGO,77
0

10

20

30

40

50

60

70

80

90

100

U
til

iz
at

io
n 

R
at

e

DAG Type

(b) Utilization Rate

fMRI,17 Montage,34 AIRSN,53 LIGO,77
0

2000
4000
6000
8000
10000
12000
14000
16000
18000
20000
22000
24000
26000

P
ro

fit

DAG Type

 AsPlan
 EDF_BF
 EDF_XBF
 STF_UXBF
 LTF_UXBF
 ETF_UXBF

(c) Profit

Figure 7.8: Impact of DAG type

Thirdly, attention is turned to the impact of actual QoS as shown in Figure 7.9.

By the ideal assumption in this experiment, the actual QoE (δact) varies from

0.2 to 0.5 with a step of 0.1, which is never greater than the estimated QoE

(δest = 0.5) of the employed RX strategy. It is quite amazing to see that, given

by using the RX strategy with a fixed δest, the performance of the RX strategy,

which is suggested by the result of AsPlan, remains stable no matter how the

actual QoE varies below δest. The local scheduling policy variants employing the

RX strategy also exhibit a stable performance. In all cases of δact, ETF UXBF

performs the best and improves the resource utilization and profit by about 45%

compared to AsPlan, while the performance comparison among other competitors

retains the same results as above mentioned.
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Figure 7.9: Impact of actual QoE

Fourthly, evolution through different settings of the Extension Price Ratio,

which was varied from 0 to 0.6 with the step of 0.2, is investigated, and it is ap-

parent that an appropriate setting of reservation price is important for the profit
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earned by resource owners. If the price is set too low, the resource owner may

earn less. On the other hand, if the price is set too high, it makes it more difficult

to satisfy the budget constraint to successfully plan a new-coming workflow. This

is clearly demonstrated in the results presented in Figure 7.10. As the reservation

price ratio increases from 0 to 0.6, the job acceptance rate, the resource utilization

and the profit decrease for all competitors, and the improvement achieved by the

local scheduling policy also drops. However, no matter how much the reserva-

tion price ratio changes, the proposed local scheduling policy variants can always

obtain an improvement compared to AsPlan. Again, ETF UXBF performs the

best.
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Figure 7.10: Impact of Extension Price Ratio

Finally, the varying results in terms of different settings of budget and dead-

line constraints are observed. Intuitively, the more strict these constraints are set,

the more difficult it becomes for the planner to successfully plan the new-coming

workflows. As can be seen in Figure 7.11, with the default setting of other pa-

rameters, if relaxed constraints are given, ETF UXBF, which performs the best,

can achieve a resource utilization as high as around 92% and improve the profit

by about 50% with respect to AsPlan. This is because the relaxed constraints

enable more flexibility to schedule the reserved tasks in terms of their SLAs. In

most cases, the local scheduling policies can make an improvement no matter how

the constraint setting changes. It can also be seen that, when the constraints are

set too strictly (e.g., CR=0.4), the job acceptance rate, the resource utilization

and the profit for all competitors are quite low, and the improvement made by

local scheduling policies becomes slight or even negligible.

In summary, the experimental results indicates the following:
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Figure 7.11: Impact of Constraint Ratio

• The proposed local scheduling policy variants can significantly increase re-

source utilization and service providers’ profit in most of the scenarios sim-

ulated in the experiment, although the improvement may sometimes be

limited due to strict constraint setting and sparse reservations in the reser-

vation queue.

• The proposed local scheduling operations can make a significant improve-

ment of the performance of the backfilling for the workflow tasks with ready

time and deadline constraints. This is suggested by the comparison results

of the performance of EDF BF, EDF XBF and the proposed local schedul-

ing policies.

• The Earliest Task First (ETF) is the most appropriate prioritization method

to be used in the proposed local scheduling policy variants to obtain best

possible performance.

• In most settings of the various parameters, which represent different sce-

narios of running workflows with budget and deadline constraints in grids,

the proposed SLA-based workflow execution system can both effectively

guarantee users’ QoS requirements and maximize service providers’ profits,

even though the task execution time may be unpredictable.

7.7 Closing Remarks

This chapter has considered the SLA-based local scheduling problem, which fo-

cuses on how to adjust the reservations of workflow tasks on local resources during
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workflow execution to minimize the utilization fragments caused by advance reser-

vation. The flexibility in SLA-based advance reservation was investigated, and

two important notions relating to task advance reservation were defined to specify

the boundary of the space where backfilling can be applied in local scheduling

to maximize resource utilization. Some flexible advance reservation mechanisms

have been proposed for grid computing, whereas none of these considers workflow

applications with task dependencies.

The main contribution of this chapter was the proposed local scheduling ap-

proach which allows the interaction between local schedulers when they perform

local scheduling with backfilling, i.e., to select one appropriate reserved task from

the reservation queue to fill the extra utilization gap caused by early completion

of the running task. Simulation experiments were carried out to emulate the pro-

cessing of multiple workflow requests with or without using local scheduling, and

in the case that local scheduling is used, various backfilling patterns were applied.

The experimental results show that, by using the proposed local scheduling pol-

icy, resource utilization and service provider’s profit could both be significantly

improved. It is also indicated by the evaluation that, when running workflows

with budget and deadline constraints in grids, the proposed SLA-based workflow

execution system, as a combination of the BDC-planning, SLA-based Advance

Reservation and SLA-based local scheduling techniques, can be a promising solu-

tion to both effectively guarantee users’ QoS requirements and maximize service

providers’ profits, even though the task execution time may be unpredictable.



Chapter 8

Conclusions and Future Work

This chapter summarizes the thesis in Section 8.1, points out its limitations in

Section 8.2 and finally lays out the directions for future work in Section 8.3.

8.1 Summary of the thesis

The ultimate aim of this thesis is to advance the state-of-the-art of grid workflow

scheduling techniques assuming an idealized grid scenario. Although these ob-

servations do not relate to a real grid testbed, they can still provide insight that

could be used to improve the efficiency of grid systems under various grid un-

certainties. This aim has been achieved by developing new algorithms and novel

scheduling mechanisms with relevant techniques in two different grid scheduling

models as follows:

• Performance-driven model, which is a traditional scheduling model where

the optimization of performance metrics is of the main concern, whereas

users’ QoS and the economic cost for application running are not considered.

• QoS-driven model, which has been widely used in recently emerged market-

based grids where both the guarantee of users’ QoS and the maximization

service providers’ profit are required.

The work presented in this thesis was thus constituted by the efforts of address-

ing issues caused by grids’ dynamic features for the scheduling in a performance-

driven model, and attempts to tackle various uncertainties for the scheduling in

a QoS-driven model. In the performance-driven model, two uncertainties, i.e.,

the inaccuracy in task execution time prediction and the varying availability of

194
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grid resources, were addressed, since these may affect the optimization of the

scheduling performance. These uncertainties, as well as the uncertainty resulting

from the queue-based scheduling, were also taken into account in the QoS-driven

model, since they may all affect the guarantee of users’ QoS and the maximiza-

tion of the service provider’s profit. The performance metric considered in the

performance-driven model was makespan, while the QoS constraints considered in

QoS-driven model were budget and deadline. Both scheduling models specifically

concentrated on those workflows which can be represented by DAG.

The development of new algorithms started from the performance-driven model

where two commonly used scheduling schemes—full-ahead and just-in-time—

coexist. The former scheduling scheme is preferred if a performance prediction

can be obtained, otherwise the latter. These two schemes were both covered in

the work of this thesis. Then, the attention was turned to the scheduling in a

QoS-based model, which is the latter part of the thesis. In this part, a number

of approaches were proposed, which, when combined, addressed the uncertain-

ties affecting the workflow scheduling in a QoS-based model. The major results

obtained in this thesis include:

• A novel Monte Carlo-based scheduling approach was developed. By em-

ploying one of the existing static full-ahead DAG scheduling heuristics, the

approach can improve the average makespan in various cases in which the

task execution time changes stochastically (Chapter 2).

• A novel priority-based just-in-time workflow scheduling heuristic was pro-

posed. The proposed heuristic manages to maximize the parallelism of

ready tasks of DAG during execution and consequently improves the aver-

age makespan at low cost (Chapter 3).

• A novel workflow planning heuristic was presented in the context of a QoS-

driven model. This heuristic can efficiently plan a DAG application with

hard budget and deadline constraints specified by a user and can thus de-

termine whether the pre-specified constraints can be met in terms of the

existing load in resources (Chapter 5).

• A number of novel advance reservation strategies have been developed and

evaluated in a QoS-driven scheduling model to automate the advance reser-

vation of workflow applications in the context of market-based grids in order
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to guarantee users’ QoS requirements under task execution time changes

(Chapter 6).

• A novel local scheduling policy has been designed to reduce the utilization

fragments caused by advance reservation to maximize resource utilization

and service provider’s profit (Chapter 7).

These results were achieved by different portions of this work, which are respec-

tively described in the next three subsections.

8.1.1 Full-ahead Scheduling

Based on a performance-driven model, there is an abundance of deterministic

full-ahead DAG scheduling heuristics in literature, which focus on minimizing the

makespan in heterogeneous systems based on a static prediction of task execu-

tion time. To tackle the unavoidable prediction uncertainty which may probably

degrade the performance of deterministic heuristics, a new full-ahead schedul-

ing approach based on Monte-Carlo method was developed in Chapter 2. This

approach employs one of the existing heuristics to generate a specific full-ahead

schedule in the fashion of the Monte-Carlo method. It is expected that the gen-

erated schedule can minimize the average makespan over runtime changes. The

experimental results show that by applying the proposed approach, the schedul-

ing performance of a static full-ahead heuristic, which is reflected by the average

makespan, can be significantly improved. In some cases, this improved average

makespan can even be better than the scheduling result obtained by the static

heuristic with rescheduling, or by running the static heuristic in a post-mortem

manner. Moreover, the schedule obtained by the proposed approach is full-ahead,

and therefore its performance in runtime may be further improved by reschedul-

ing. It was also indicated in the experiments that applying rescheduling to this

schedule usually results in a better average makespan than applying rescheduling

to the schedule which has been directly obtained by the static heuristic.

Apart from the two selective full-ahead scheduling heuristics employed in the

implementation and evaluation of this approach, the proposed approach can be

applied to any other existing static full-ahead heuristics. It is also worth men-

tioning that, although computational cost is normally not a fundamental obstacle

for a full-ahead scheduling scheme, the parameters of the proposed Monte-Carlo
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scheduling approach can be carefully configured to achieve competitive scheduling

performance with an acceptable overhead.

8.1.2 Just-in-time Scheduling

Other than the full-ahead scheme which greatly relies on performance prediction,

just-in-time scheduling is commonly adopted to cope with grid uncertainty in a

situation in which there is no means to obtain information about the underlying

computing platform. A novel just-in-time scheduling heuristic, the Priority-Based

heuristic, was proposed in Chapter 3. This heuristic aims at maximizing the

number of ready tasks at each execution step of a DAG application. When such

a scheduling goal is achieved, the application is expected to perform efficiently

on the remote resources even though their behavior changes unpredictably over

time. The empirical results show that, in the comparison with other existing

just-in-time scheduling heuristics, PB can either make a significant improvement

by optimizing the application performance, or obtain a comparable or better per-

formance with much lower complexity and wider applicability. This suggests that

PB can be a promising solution to deal with grid uncertainties in a performance-

driven model in the situation where performance prediction cannot be obtained.

8.1.3 SLA-based Scheduling

The thesis turned the scheduling objective from performance-driven to QoS-

driven at Chapter 4, and focused on SLA-based scheduling in the context of

market-based grids thereafter. The state-of-the-art of the existing market-based

grid scheduling systems was reviewed. It is indicated in the review that the

workflow scheduling problem with hard budget and deadline constraints has not

been sufficiently explored, especially when performance prediction uncertainty is

considered. With the aim of addressing this problem, a novel SLA-based schedul-

ing model was designed and briefly presented. The SLA-based scheduling model

presented in Chapter 4 is intended to make use of a Service Level Agreement in

the scheduling of market-based grids, in which users require their applications to

be completed before a specific deadline and within a certain budget, in order to

tackle various uncertainties to guarantee users’ requirements and maximize the

benefits of the system. The development of the SLA-based scheduling model,

as a complex challenge, was divided into three sub-problems: BDC-planning,
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SLA-based advance reservation, and SLA-based local scheduling.

BDC-planning is needed to facilitate the establishment of an SLA. When

a workflow request is submitted with the associated budget and deadline con-

straints, the planner must plan the workflow to examine whether or not these

constraints can be met. If such a plan (i.e., BDC-plan) can be found, this is

indicates that an SLA can be reached; otherwise, the request should be rejected.

BDC-planning requires that the planned tasks must not overlap with the existing

reserved tasks. Moreover, the planning must cost negligible time overhead due

to the real-time requirement of grid computing. Chapter 5 contributed a novel

BDC-planning heuristic, named Budget-constrained Heterogeneous Earliest Fin-

ish Time (BHEFT), which meet the aforementioned requirements. The aim of

BHEFT is to maximize the likelihood of finding BDC-plans which subsequently

results in the maximum chance to create SLAs for various DAGs with different

constraints. Although there have been several low-cost multi-objective schedul-

ing heuristics which can be cast for BDC-planning, BHEFT outperformed these

heuristics in the study’s simulated evaluation in which various scenarios with

different settings of existing loads of resources and constraints were examined.

Based on the planning result of BHEFT, advance reservation can be made

to avoid the uncertainty caused by queue-based scheduling which may ruin the

QoS guarantee. However, the uncertainty in performance prediction can still

raise problems if the reserving duration of tasks is not sufficiently considered.

An investigation was carried out in Chapter 6 to examine how to plan and make

an advance reservation with an appropriate amount of ‘extra time’ for workflow

tasks to strike a balance between guaranteeing multiple users’ QoS and maximize

the service provider’s profit. Based on the study of BDC-planning, three novel

advance reservation strategies have been proposed. The proposed strategies are

as follows:

• Rigid Extension (RX), which totally relies on an estimation of the inaccu-

racy of performance prediction;

• Greedy Extension (GX), which tries to expand the extra time as much as

the QoS constraints permit;

• Conservative extension (CX), which attempts to expand the extra time to

an extent not higher than a specified level;
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• Progressive extension (PX), which attempts to expand the extra time to an

extent not lower than a specified level;

All of these strategies can automate the process of planning and making advance

reservation for workflow in market-based grids. As illustrated in the chapter, in

order to run a workflow in the modelled market-based grid, all the user needs to

specify is the budget and deadline constraints. The remainder of the workflow

processing can be automated using one of the proposed strategies without user

intervention. To evaluate the performance of the proposed strategies, a simula-

tor, which can emulate the processing of multiple sequentially arriving workflows

requests, was implemented. The processing includes planning, making advance

reservation and task execution. A number of simulations were set to examine the

effectiveness of different strategies. Generally, different strategies may exhibit

advantages in different cases. However, if a close estimation of the inaccuracy

of performance prediction can be obtained, the RX strategy will be the most

profitable.

Although users’ QoS can be guaranteed by the above strategies with sufficient

‘extra time’ for task reservation, such an approach usually results in low resource

utilization, which may become even more serious due to prediction uncertainty,

e.g., the early completion of tasks. This situation motivates the work in Chapter

7, which complements the development of SLA-based scheduling by providing a

novel local scheduling policy to increase resource utilization. In Chapter 7, the

flexibility of SLA-based advance reservation was explored, and two important

notations, which depict the range in which a flexible task reservation can be

placed, were defined. Using backfilling, the proposed local scheduling policy tries

to adjust the flexible reservations on local resources during workflow execution to

minimize the utilization fragments caused by advance reservation. The simulator

implemented for the evaluation of advance reservation strategies was extended to

support the emulation of local scheduling. The simulation results showed that,

in major cases, the proposed local scheduling policy could achieve significant

improvement of resource utilization and profit.
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8.2 Limitations

Although the effectiveness and efficiency of this work on tackling various uncer-

tainties for grid workflow scheduling have been shown via extensive simulation-

based evaluation, it is believed that it can be further improved if some limitations

in the following aspects can be addressed.

• Assumption. Although several unrealistic assumptions of static schedul-

ing have been released in this dissertation, the proposed approaches still

make some assumptions which may not always be valid. For instance, it is

assumed that the data transmission latency between dependent tasks is con-

stant, which may actually vary drastically due to Internet uncertainty. In

addition, it is assumed in the QoS-driven model that, at most, one workflow

request may come in a time unit.

• Resource mapping. Only the workflow tasks which require one resource to

be used are considered. Nevertheless, some practical applications, one of

which may be a single task of a workflow, may require multiple resources

to be used, such as parallel MPI and PVM programs.

• Economic setting. Some simplistic setting in the economic model may limit

the performance of the SLA-based scheduling system. For example, only

fixed price is considered in price setting and the negotiation between users

and the broker may be too rigid.

• Failure rescue. In the SLA-based scheduling model, there is lack of effective

rescue operations when a task cannot be completed within its reserved

duration. Terminating the whole workflow immediately may exclude some

more efficient means to cope with this uncertainty issue.

• Scalability. Acting as a centralized planner and coordinator, the broker will

be a bottleneck hindering the SLA-based scheduling model from addressing

grid uncertainties for large systems.

• Idealized System. In this thesis, there is no study of real system case.

The realistic system may be quite different with the assumed system. For

instance, the simulated system has a small number of resources compared

to a realistic Grid.
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8.3 Future Work

Based on the limitations recognized in Section 8.2, the work in this thesis can

be extended in the directions below. It should be noted that there have been

extensive studies on workflow scheduling for performance-driven models, while

the research into QoS-driven is still in its infancy. Thus, the main focus of the

future work is on the latter model.

• The impact of uncertain network connections on performance of workflow

may be worth investigating in both the full-ahead scheduling model and the

SLA-based scheduling model in order to provide a more realistic scheduling

solution for workflows in girds. It may also be necessary to support more

practical workflow models which are not covered in this thesis. Some work-

flows consist of moldable tasks, the use of each of which requires multiple

resources. Moreover, the task execution time is viewed as a function of the

number of resources to be used. This may be interesting to be considered

in both performance-driven and QoS-driven scheduling models.

• In order to strike a better balance on between the conflicting objectives of

users and service providers, the development of renegotiation mechanism

may be important. In a renegotiation model, users may specify flexible

budget or deadline constraints, the price setting may be adaptive and a so-

phisticated compensation policy may be considered. All of these elements

may result in greater flexibility during run-time to cope with grid uncer-

tainties, and may consequently enhance the QoS guarantee and maximize

service providers’ profit.

• A more sophisticated local scheduling policy may be needed to analyze the

risk that a whole workflow may miss its deadline when one of its tasks fails

to complete before the reserved duration ends. Rather than canceling all

of the remaining tasks, some evaluation and rescheduling technique may be

applied to rescue the QoS so that the user’s deadline constraint can still be

satisfied. The aim of such an approach is to add more robustness to advance

reservation under run-time changes. Moreover, the service providers may

also benefit from a more successful service provision.

• A hierarchical scheduling scheme may be necessary to prevent the central-

ized broker from being overloaded. Multiple brokers can be coordinated
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by a metaplanner, and each broker can keep connected with a set of re-

sources of reasonable size and processes only a portion of a workflow, which

is appropriately decomposed.

• It may be possible to extend BHEFT and apply it in a situation in which

multiple DAGs require to be planned at the same time. This may oc-

cur when the randomly arriving workflow requests come in the same time

unit. In such a situation, it is unlikely that all of these workflows can

be successfully planned. Thus an appropriate priority may be needed for

prioritizing the competing workflows to maximize job acceptance rate and

service providers’ profit.

• It will be of great interest to extend the theoretical work present in this

thesis to the realistic grid systems.
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Appendix A

The Limitations of ICO

Figure A.1 illustrates a DAG example where ICO fails in decomposition according

to the “The Divide Phase” of ICO described in [MFR07]. To remain consistent

with the description, a building block, which is built from source node s, is named

as B(s). Based on the DAG depicted in Figure A.1, the construction steps of

B(0) and B(3) are presented separately in Tables A.1 and A.2, and their results

are depicted in Figure A.2 and A.3.

Figure A.1: A DAG example for which ICO decomposition fails

Figure A.2: A DAG example for
which ICO decomposition fails

Figure A.3: Building Block
B(3)
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It is evident that B(0) is not a strict sub-graph of B(3), neither are they

identical. In this scenario, the decomposition does not know how to handle the

edge from node 4 to node 7, and therefore falls into failure. Nodes like node 4

are called odd nodes. They are not source nodes of G but share children with

some source nodes. This bug appears when the following three conditions are met

simultaneously: (I) G contains at least one odd node; (II) There is no building

block which can be detached from G for the odd node to turn into a source node;

(III) There is at least one building block which contains an odd node, but not all

of its children.

Iteration S T

0 {0} {}
1.1 {0} {5,6}

1 1.2 {0} {5,6,0,1,4}
1.3 {0,1} {5,6,0,1,4}
2.1 {0,1} {5,6,0,1,4}

2 2.2 {0,1} {5,6,0,1,4,2}
2.3 {0,1,2} {5,6,0,1,4,2}
3.1 {0,1,2} {5,6,0,1,4,2}

3 3.2 {0,1,2} {5,6,0,1,4,2}
3.3 {0,1,2} {5,6,0,1,4,2}

Terminated

Table A.1: The change of S and T when constructing building block B(0)

Iteration S T

0 {3} {}
1.1 {3} {7}

1 1.2 {3} {7,3,4}
1.3 {3} {7,3,4}
2.1 {3} {7,3,4}

2 2.2 {3} {7,3,4,1,2}
2.3 {3,1,2} {7,3,4,1,2}
3.1 {3,1,2} {7,3,4,1,2,5}

3 3.2 {3,1,2} {7,3,4,1,2,5,0}
3.3 {3,1,2,0} {7,3,4,1,2,5,0}
4.1 {3,1,2,0} {7,3,4,1,2,5,0,6}

4 4.2 {3,1,2,0} {7,3,4,1,2,5,0,6}
4.3 {3,1,2,0} {7,3,4,1,2,5,0,6}
5.1 {3,1,2,0} {7,3,4,1,2,5,0,6}

5 5.2 {3,1,2,0} {7,3,4,1,2,5,0,6}
5.3 {3,1,2,0} {7,3,4,1,2,5,0,6}

Terminated

Table A.2: The change of S and T when constructing building block B(3)



Appendix B

Generation of Random DAGs

The randomly generated DAGs were constructed by means of the following steps:

1. Specify the number of nodes;

2. Specify the number of levels;

3. Randomly allocate the number of nodes at each level;

4. For each node except the exit, randomly appoint nodes as child nodes (at

least one) in its lower neighbour level;

5. For each isolated node (non-entry node without parent), randomly appoint

nodes as parent nodes in its upper neighbour level.

Figure B.1 demonstrates the procedure used to construct a DAG with 10

nodes and 5 levels, in which the light dark nodes in step 4 are isolated nodes.

Obviously, no edge spanning non-neighbour levels in the DAGs will be generated

by this method. Therefore, the odd nodes leading to the failure of ICO cannot

appear in the generated DAGs. This guarantees the successful execution of ICO.

In the actual generation of random DAGs, the followed two parameters are

considered:

1. Number of nodes

2. HWR (Height-Weight Ratio)

When the number of nodes is fixed, a DAG with relatively more levels usu-

ally looks longer and narrower while one with fewer levels shorter and wider.
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Figure B.1: Five steps to generate random DAG

The HWR (Height-Width Ratio) is used to identify the relationship between the

number of nodes and the number of levels: HWR= L√
N−2

, where N is the number

of nodes except for entry node and exit node, and L is the number of levels.


