17,176 research outputs found

    QuickCast: Fast and Efficient Inter-Datacenter Transfers using Forwarding Tree Cohorts

    Full text link
    Large inter-datacenter transfers are crucial for cloud service efficiency and are increasingly used by organizations that have dedicated wide area networks between datacenters. A recent work uses multicast forwarding trees to reduce the bandwidth needs and improve completion times of point-to-multipoint transfers. Using a single forwarding tree per transfer, however, leads to poor performance because the slowest receiver dictates the completion time for all receivers. Using multiple forwarding trees per transfer alleviates this concern--the average receiver could finish early; however, if done naively, bandwidth usage would also increase and it is apriori unclear how best to partition receivers, how to construct the multiple trees and how to determine the rate and schedule of flows on these trees. This paper presents QuickCast, a first solution to these problems. Using simulations on real-world network topologies, we see that QuickCast can speed up the average receiver's completion time by as much as 10×10\times while only using 1.04×1.04\times more bandwidth; further, the completion time for all receivers also improves by as much as 1.6×1.6\times faster at high loads.Comment: [Extended Version] Accepted for presentation in IEEE INFOCOM 2018, Honolulu, H

    Endpoint-transparent Multipath Transport with Software-defined Networks

    Full text link
    Multipath forwarding consists of using multiple paths simultaneously to transport data over the network. While most such techniques require endpoint modifications, we investigate how multipath forwarding can be done inside the network, transparently to endpoint hosts. With such a network-centric approach, packet reordering becomes a critical issue as it may cause critical performance degradation. We present a Software Defined Network architecture which automatically sets up multipath forwarding, including solutions for reordering and performance improvement, both at the sending side through multipath scheduling algorithms, and the receiver side, by resequencing out-of-order packets in a dedicated in-network buffer. We implemented a prototype with commonly available technology and evaluated it in both emulated and real networks. Our results show consistent throughput improvements, thanks to the use of aggregated path capacity. We give comparisons to Multipath TCP, where we show our approach can achieve a similar performance while offering the advantage of endpoint transparency

    Time4: Time for SDN

    Full text link
    With the rise of Software Defined Networks (SDN), there is growing interest in dynamic and centralized traffic engineering, where decisions about forwarding paths are taken dynamically from a network-wide perspective. Frequent path reconfiguration can significantly improve the network performance, but should be handled with care, so as to minimize disruptions that may occur during network updates. In this paper we introduce Time4, an approach that uses accurate time to coordinate network updates. Time4 is a powerful tool in softwarized environments, that can be used for various network update scenarios. Specifically, we characterize a set of update scenarios called flow swaps, for which Time4 is the optimal update approach, yielding less packet loss than existing update approaches. We define the lossless flow allocation problem, and formally show that in environments with frequent path allocation, scenarios that require simultaneous changes at multiple network devices are inevitable. We present the design, implementation, and evaluation of a Time4-enabled OpenFlow prototype. The prototype is publicly available as open source. Our work includes an extension to the OpenFlow protocol that has been adopted by the Open Networking Foundation (ONF), and is now included in OpenFlow 1.5. Our experimental results show the significant advantages of Time4 compared to other network update approaches, and demonstrate an SDN use case that is infeasible without Time4.Comment: This report is an extended version of "Software Defined Networks: It's About Time", which was accepted to IEEE INFOCOM 2016. A preliminary version of this report was published in arXiv in May, 201
    corecore