163 research outputs found

    Artificial intelligence for imaging in immunotherapy

    Get PDF

    Machine Learning Based Diagnostic Paradigm in Viral and Non-Viral Hepatocellular Carcinoma

    Get PDF
    © 2024 The Author(s). This is an open access article distributed under the terms of the Creative Commons Attribution License (CC BY), https://creativecommons.org/licenses/by/4.0/Viral and non-viral hepatocellular carcinoma (HCC) is becoming predominant in developing countries. A major issue linked to HCC-related mortality rate is the late diagnosis of cancer development. Although traditional approaches to diagnosing HCC have become gold-standard, there remain several limitations due to which the confirmation of cancer progression takes a longer period. The recent emergence of artificial intelligence tools with the capacity to analyze biomedical datasets is assisting traditional diagnostic approaches for early diagnosis with certainty. Here we present a review of traditional HCC diagnostic approaches versus the use of artificial intelligence (Machine Learning and Deep Learning) for HCC diagnosis. The overview of the cancer-related databases along with the use of AI in histopathology, radiology, biomarker, and electronic health records (EHRs) based HCC diagnosis is given.Peer reviewe

    Learning strategies for improving neural networks for image segmentation under class imbalance

    Get PDF
    This thesis aims to improve convolutional neural networks (CNNs) for image segmentation under class imbalance, which is referred to the problem of training dataset when the class distributions are unequal. We particularly focus on medical image segmentation because of its imbalanced nature and clinical importance. Based on our observations of model behaviour, we argue that CNNs cannot generalize well on imbalanced segmentation tasks, mainly because of two counterintuitive reasons. CNNs are prone to overfit the under-represented foreground classes as it would memorize the regions of interest (ROIs) in the training data because they are so rare. Besides, CNNs could underfit the heterogenous background classes as it is difficult to learn from the samples with diverse and complex characteristics. Those behaviours of CNNs are not limited to specific loss functions. To address those limitations, firstly we propose novel asymmetric variants of popular loss functions and regularization techniques, which are explicitly designed to increase the variance of foreground samples to counter overfitting under class imbalance. Secondly we propose context label learning (CoLab) to tackle background underfitting by automatically decomposing the background class into several subclasses. This is achieved by optimizing an auxiliary task generator to generate context labels such that the main network will produce good ROIs segmentation performance. Then we propose a meta-learning based automatic data augmentation framework which builds a balance of foreground and background samples to alleviate class imbalance. Specifically, we learn class-specific training-time data augmentation (TRA) and jointly optimize TRA and test-time data augmentation (TEA) effectively aligning training and test data distribution for better generalization. Finally, we explore how to estimate model performance under domain shifts when trained with imbalanced dataset. We propose class-specific variants of existing confidence-based model evaluation methods which adapts separate parameters per class, enabling class-wise calibration to reduce model bias towards the minority classes.Open Acces

    Image-guided adaptive photon and proton radiotherapy

    Get PDF

    The impact of pre- and post-image processing techniques on deep learning frameworks: A comprehensive review for digital pathology image analysis.

    Get PDF
    Recently, deep learning frameworks have rapidly become the main methodology for analyzing medical images. Due to their powerful learning ability and advantages in dealing with complex patterns, deep learning algorithms are ideal for image analysis challenges, particularly in the field of digital pathology. The variety of image analysis tasks in the context of deep learning includes classification (e.g., healthy vs. cancerous tissue), detection (e.g., lymphocytes and mitosis counting), and segmentation (e.g., nuclei and glands segmentation). The majority of recent machine learning methods in digital pathology have a pre- and/or post-processing stage which is integrated with a deep neural network. These stages, based on traditional image processing methods, are employed to make the subsequent classification, detection, or segmentation problem easier to solve. Several studies have shown how the integration of pre- and post-processing methods within a deep learning pipeline can further increase the model's performance when compared to the network by itself. The aim of this review is to provide an overview on the types of methods that are used within deep learning frameworks either to optimally prepare the input (pre-processing) or to improve the results of the network output (post-processing), focusing on digital pathology image analysis. Many of the techniques presented here, especially the post-processing methods, are not limited to digital pathology but can be extended to almost any image analysis field

    Systems Radiology and Personalized Medicine

    Get PDF
    Medicine has evolved into a high level of specialization using the very detailed imaging of organs. This has impressively solved a multitude of acute health-related problems linked to single-organ diseases. Many diseases and pathophysiological processes, however, involve more than one organ. An organ-based approach is challenging when considering disease prevention and caring for elderly patients, or those with systemic chronic diseases or multiple co-morbidities. In addition, medical imaging provides more than a pretty picture. Much of the data are now revealed by quantitating algorithms with or without artificial intelligence. This Special Issue on “Systems Radiology and Personalized Medicine” includes reviews and original studies that show the strengths and weaknesses of structural and functional whole-body imaging for personalized medicine
    corecore