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ABSTRACT Viral and non-viral hepatocellular carcinoma (HCC) is becoming predominant in developing
countries. A major issue linked to HCC-related mortality rate is the late diagnosis of cancer development.
Although traditional approaches to diagnosing HCC have become gold-standard, there remain several
limitations due to which the confirmation of cancer progression takes a longer period. The recent emergence
of artificial intelligence tools with the capacity to analyze biomedical datasets is assisting traditional
diagnostic approaches for early diagnosis with certainty. Here we present a review of traditional HCC
diagnostic approaches versus the use of artificial intelligence (Machine Learning and Deep Learning) for
HCC diagnosis. The overview of the cancer-related databases along with the use of AI in histopathology,
radiology, biomarker, and electronic health records (EHRs) based HCC diagnosis is given.

INDEX TERMS Hepatocellular carcinoma (HCC), viral cancers, artificial intelligence, cancer diagnosis,
traditional cancer diagnostic.

I. INTRODUCTION
Approximately, 80% of the hepatocellular carcinoma are
caused by chronic viral infections including Hepatitis C Virus
(HCV) and Hepatis B Virus (HBV) [1]. World Health Orga-
nization (WHO) aims to reduce the CHV incidence by 90%
and mortality by 65% before 2030 according to the strategy
on viral hepatitis prepared in 2016. Globally, two million
deaths are caused due to hepatocellular carcinoma (HCC)
[2]. Hepatitis C virus and hepatitis B virus are the major
cause of chronic liver disease leading to HCC development
especially in developing countries [3], [4], [5]. As early
diagnosis of liver inflammation causing fibrosis and cirrho-
sis is crucial for better treatment outcomes [6]. The current
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invasive method, biopsy, for liver fibrosis analysis is com-
plicated and present the challenges of bleeding, severe pain,
observer variability, sampling errors and increased chances of
infection [7]. Although, another method of ultrasound elas-
tography is emerging but it has limitations with measuring
stiffness of liver tissue owing to interference of factors such as
tissue inflammation, hepatic vein congestion, obesity, meal,
etc., which lead to misinterpretation of acquired data [8].
Comparatively, there is a dire need of developing a less
invasive method for analysis of fibrotic liver diagnosis.

Traditional statistical models based on conventional
regression have failed to capture non-linear and high order
interaction of predictor variables in large datasets [9]. Mul-
tiple logistic regression models have been used to analyze
fibrotic liver condition [10]. However, traditional approaches
lack the capacity to interlink non-linear interactions between
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multiple variables which play a significant role in defining
the severity of inflammation development. Recently, machine
learning-assisted methods to analyze big-data are emerging
to resolve issues regarding diagnosis, staging and prognosis
multiple diseases.

A new scoring system based on simple clinical parameters,
including blood tests and protein profiles may help in the
analysis of fibrotic liver. For better clinical analysis of data,
machine learning may play a pivotal role due to its adept
analytical approach. Machine learning based algorithms can
capture complex relationships in large datasets [11]. Continu-
ous evidence shows the implementation of machine learning
approaches with improved prediction system for diagnosis
of multiple disease including breast cancer and NAFLD, and
postprandial glycemic responses [12].
For better prognostic analysis of chronic viral hepatitis, the

diagnostic capacity of current approaches must be enhanced
using advanced tools. Machine learning has recently emerged
as to better understand the diagnostic data for diseases as
shown in Figure 1.

FIGURE 1. Left: Biological approaches used to obtain the data related to
cancer patients (hepatocellular carcinoma), Middle: Traditional vs
Machine learning and Deep learning-based approaches are shown for the
diagnosis, and finally in Right: Final diagnosis results which detect and
classify the data as malign, benign or can further differentiate in
sub-tumor types based on model training in case of ML and DL.

II. TRADITIONAL APPROACHES IN DIAGNOSIS
Traditional approaches to diagnose hepatocellular carcinoma
mainly include histopathology analysis of tissue biopsies,
radiological analysis, cancer-specific biomarker analysis and
electronic health records [13]. These approaches are usually
time consuming and always require analytical opinion of
histopathologist or physician which may include factors like
error in observation or individual biasness [14], [15]. Owing
to such discrepancies, the diagnosis and prognosis of a cancer
is highly misjudged. Eventually, the patients’ management
and survival are affected by traditional approaches.

For managing liver disorders like autoimmune hepatitis
and non-alcoholic steatohepatitis, Histopathology has played
a fundamental role [16]. However, noninvasive techniques for

HCC diagnosis are limited which makes it is obligatory to
do histological scrutiny of tumor samples for masses with
uncommon features on imaging or to eliminate diagnosis
of cholangiocarcinoma, metastasis, or benign primary liver
tumor [17]. Owing to certain limitations of noninvasive meth-
ods to diagnose cancer makes it difficult to detect cancer
at an early stage. The basic method to diagnose liver dis-
ease is the histopathological analysis for defining the cancer
and its stage or grade [18]. There are several limitations
for histopathology as well, a significant tissue mass is usu-
ally required for the tissue sections and sample preparation
for analysis [19]. Additionally, the sample analysis may be
affected by the personal bias among histopathologists leading
disagreements [20]. Therefore, precision in histological char-
acterization of liver tumor samples might frequently prove
to be challenging. To resolve this issue, researchers recently
has applied AI techniques to support diagnosis of liver tumor
samples [21]. Recent evidence suggests that by using a huge
dataset of H&E-stained images from The Cancer Genome
Atlas (TCGA), a convolutional neural network (CNN) was
designed to differentiate between neighboring healthy liver
tissue around the cancerous liver tissue to detect HCC with
approximately 90% accuracy [22]. In another study, Kiani
et al. developed a CNN based algorithm to distinguish stained
tissue images for their classification as HCC and cholan-
giocarcinoma with approximately 80% accuracy [23]. These
algorithms with accuracy of ∼ 90% on validation in combi-
nation with observations of histopathologists outperformed
their individual accuracy of human analysis. So, instead of
just relying on AI alone or pathologists alone we should
use AI to enhance accuracy instead of replacing it for tradi-
tional histological diagnosis. Research revealed that incorrect
prediction can negatively affect final diagnosis made by
pathologists, which infers that a cautious approach should be
taken when using AI models exclusively designed to auto-
mate the process of HCC diagnosis [24].

Another method to analyze liver cancer development is
the use of radiology, by application of ultrasound analysis
of liver [25]. Traditionally, a two-dimensional ultrasound
image (B-mode ultrasound) is developed from the abdom-
inal cavity which has become a clinical guideline for liver
tumor detection [26], [119]. Although it has become a com-
mon practice to analyze the potential tumor with ultrasound
radiation, there have been well defined limitations to this
process. Mainly, B-mode ultrasonography is 50% to 60%
accurate due to underlying factors such as, patient’s body
posture, equipment quality, operator experience, etc [27].
Owing to such limitations after initial analysis by ultra-
sound imaging, patients are referred to contrast-enhanced
computed tomography (CT) imaging or magnetic resonance
imaging (MRI) [28]. These radiological imaging techniques
assist in confirming the pathognomonic features for HCC
detection yet there remain some limitations. MRI and CT
imaging often lack the capacity to identify liver nodules at
early stages leading to subsequent follow-up imaging or liver
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biopsy recommendations [29]. Consequently, radiological
analysis causes unreasonable stress for patients by delaying
the process of HCC diagnosis. Fig. 3 shows a schematic
representation of commonly used diagnosis methods for HCC
diagnosis.

The recent rise of artificial intelligence in healthcare by
make use of machine learning and deep learning tools for
genomics, proteomics, statistical and image-based analysis
may play a pivotal role in HCC diagnosis in future [30],
[31], [32], [33]. Implementation of AI in addition to clinical
diagnosis may speed-up the process of diagnosis at earliest
stages of HCC development with correct identification of
liver lesions and cancerous tissue [34], [35].

FIGURE 2. A schematic overview of the traditional approaches to
diagnose HCC.

III. IMPLEMENTATION OF MACHINE LEARNING AND
DEEP LEARNING
Machine learning (ML) and deep learning (DL) are sub-
groups of artificial intelligence (AI). ML uses various
statistical, probabilistic, and optimization methods that help
algorithms learn and apply complex patterns from given
large, noisy, and complex datasets [36]. This feature of the
ML as well as DL is best suited for medical application where
an acceptable generalization is obtained by searching through
an n-dimensional space for a given set of biological data
using variety of ML and DL techniques and algorithms [37].
Every learning process inML can be divided in to two phases:
(i) approximation of non-classified dependencies from given
data (ii) and use of the approximated estimation dependen-
cies to predict novel results from the systems [38]. Further,
ML methods can be classified into two common main meth-
ods such as (i) supervised learning and (ii) unsupervised
learning [39]. In supervised ML the data fed to ML algorithm
for training is labeled whereas the training data for unsuper-
vised ML is unlabeled. It is up to the ML model used to find

and apply the underlying patterns in the data and in case of
supervised learning this leads to classification and regression.
Similarly, in unsupervised learning it refers to clustering and
association [40]. The unprecedented advances in cloud and
GPU computing have revolutionized the use of ML in medi-
cal applications such as cancer diagnosis and detection [41].
More focus is paid on the use of AI in Histopathology,
radiology, biomarker-based diagnostic, and use of statistical
models in diagnostic of cancers. All these approaches are
step by step discussed with benefits, challenges, and future
recommendations.

A. AI IN HISTOPATHOLOGY
Histopathology refers to the diagnosis and study of the
diseases of tissues where the examination of tissues or
cells is carried out using microscope (Figure 1). Biopsy
tissues obtained and processed overnight are visualized
using sophisticated imaging techniques using microscope.
In histopathology laboratory, a single diagnosis typically
requires a histopathologist with experience of more than
10 years to correctly identify diseased tissue through micro-
scope [42]. Thus, despite being widely used, traditional
histopathology techniques suffer from limitations such as
time consuming, requires high level of responsibility, and
sufficient expertise. To overcome these limitations, ML and
DL methods are recently used in cancer diagnosis. How-
ever, at first, technological advances and use of ML methods
were limited to quality assurance certain research applica-
tions [43]. Unprecedent development in AI and ML methods
with rise in computational power has led to realization of
AI tools that can be readily deployed to accurately diagnose
cancer disease; is remarkable advancement. Additionally, for
evaluation of AI models in Hepatocellular Carcinoma (HCC)
typically involves several key metrics, which are generally
used to assess the performance of machine learning and
artificial intelligence systems in medical imaging and diag-
nosis. Accuracy: This is the most straightforward metric,
representing the proportion of correct predictions (both true
positives and true negatives) made by the model out of all
predictions. Accuracy is a good initial indicator but can be
misleading in imbalanced datasets where one class is much
more prevalent. Sensitivity (True Positive Rate): Sensitivity
measures the proportion of actual positive cases (patients
with HCC) correctly identified by the AI model. This met-
ric is crucial in medical diagnostics to ensure that patients
with the disease are not missing. Specificity (True Negative
Rate): Specificity assesses the proportion of actual negative
cases (healthy individuals or those without HCC) correctly
identified. High specificity means the model is good at avoid-
ing false alarms. Precision (Positive Predictive Value): This
metric evaluates the proportion of positive identifications
that were actually correct. In the context of HCC, it reflects
how many of the patients identified by the model as having
HCC actually have the disease. Recall: This is another term
for sensitivity. It measures the model’s ability to detect all
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relevant instances (all patients with HCC). F1 Score: The F1
score is the harmonic mean of precision and recall. It is a use-
ful measure when you need to balance precision and recall,
particularly in cases of uneven class distribution. Area Under
the Receiver Operating Characteristic (ROC) Curve (AUC-
ROC): This is a performance measurement for classification
problems at various thresholds settings. The ROC is a proba-
bility curve, and the AUC represents the degree or measure of
separability. It tells how much the model is capable of distin-
guishing between classes. Area Under the Precision-Recall
Curve (AUC-PR): This metric is used particularly in cases
where there is a significant imbalance in the observations
between the two classes. Confusion Matrix: While not a sin-
gle metric, the confusion matrix is a table layout that allows
visualization of the performance of an algorithm. It shows
the counts of true positives, false positives, true negatives,
and false negatives. Thus, the applications can be extended
to detect and count cells and to identify the morphology of
cancerous cells for early diagnosis. ML methods can also be
used to classify the tissues images obtained from microscopy
as healthy or cancerous. Such methods as shown in Table 1
(AI inHistopathology) can be applied towhole images, where
the trained algorithms automatically extract the patterns and
based on the previous training.

In this connection, a DL based architecture called
NucleiSegNet [15] was developed for diagnostic of the hep-
atocellular carcinoma by locating the nuclei using the image
segmentation of the histopathological data (Figure 3(a) [44].
Nuclei segmentation is referred to as important requirement
to be fulfilled for the stained histopathological images prior
to thinking about the computer-supported diagnostic sys-
tems for cancer such as training DL Model as shown in
Figure 3(b). Automated segmentation of the nuclei of the
histopathological images enables the qualitative and quan-
titative analysis at scale. This problem is handled by a
study which presents a powerful DL-based network architec-
ture trained for the nuclei segmentation of images obtained
by H&E-stained liver cancer histopathology [45]. This is
carried out in three steps consisting of residual block, bot-
tle neck, and attention decoder block. The novel proposed
block here is residual block which enables the extractions
of high-level semantic maps followed by efficient object
localization enabled by attention decoder [46]. Here the false
positives are decreased, and the performance is improved.
Upon deployment for nuclei segmentation, NucleiSegNet
showed results better than the state of art methods for nuclei
segmentation. The deployment generally follows the proce-
dure as shown in Figure 3(c). This work also contributed
by introducing the liver dataset named KMC consisting of
the H&E staining images of liver cancer histopathology
with labeled nuclei. Like KMC, the other databases con-
taining the information about the cancers are summarized
in Table 2 [47]. Similarly, another study done in proposes
a new DL-based framework (LiverNet) for classification
of cancer. They handle it as multi-class classification of

liver hepatocellular carcinoma (HCC) tumor histopathology
images [48]. It enables the automatic diagnosis of four
subtypes of liver hepatocellular carcinoma using the liver
histopathology images as training samples. The multi-class
classification places the data in one of the four categories:
non-cancerous class, low sub-type liver HCC tumor, medium
sub-type liver HCC tumor, and high sub-type liver HCC
tumor. Moreover, in LiverNet, BreastNet architecture has
been extended by addition of atrous spatial pyramid pooling
(ASPP) which enables the multi-scale feature extraction in
histopathological image data [48]. Additionally, study results
demonstrate that the LiverNet outperforms the already exist-
ing, multi-class classification, state-of-art architectures for
histopathological images by 2%. The datasets used in this
study are TCGA-LIHC and KMC whereas the KMC was
labeled by NucleiSegNet [49]. The study claims to be the first
to provide the proof-of-concept demonstration of multi-class
handling for histopathological data. The accuracy obtained
is 90-93% on the KMC liver dataset with fewer parameters
and floating points. The motivation behind the KMC was
the shortage of properly labeled histopathological data [50].
Apart from them, a similar study presents a DL based
framework called HistoCAE [31] in which a multi-resolution
CAE based framework is used for image reconstruction [51].
It is further continued by patch-based classification of each
histopathology image as tumor and non-tumor.

Despite much progress reported in the form DL and
ML based developed frameworks for AI applications in
histopathology (Figure 3), there are still certain challenges
in automated analysis of histopathological images. These
challenges to a greater extent are solved by the advanced
CNN and RNN architectures such as shown in Figure 3(b).
However, the challenges are: first, representation of vivid
clinical features is still difficult to attain because the mor-
phological features of histopathological images differ from
patient to patient whichmakes it hard to find the generalizable
data patterns [52]. Second, the labeled data even available
today is scarce whereas the pixel size of the image (Standard:
100,000 × 100,000) is too large to handle. There are numer-
ous cancerous regions and it’s difficult to annotate all of them
(Third) and finally, the noisy nature of the histopathologi-
cal images caused by various reasons [53]. To handle these
long-standing problems patch-based methods were utilized
for large images [54]. One such study is done in where a
patch-based CNN classifier was trained for the classification
of tissue image (whole slide) [55]. Here special attention
was paid to the batch size and parameters because of their
effect on performance of networks. Many of the studies tried
to solve the problem of scarcity of labeled images and one
such study is presented in where global labels were used
histopathology images to perform classification of liver can-
cer [56]. Moreover, the patch-features along with transfer
learning were used to realize the features on patch-level and
were later combined with multiple instances learning to scale
these features to image-level for classification [57]. This
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method solves the problem of data scarcity for histological
images of liver cancer. Owing to the binary nature of the
classification, the images are classified either as abnormal
or normal and helps in early diagnosis of liver cancer. This
study, considering three articles, proposes the development
of non-invasive AI enabled biomedical image data processing
tool to handle the otherwise impractical and time-consuming
volume of the biomedical data (Figure 1). The ML meth-
ods upon fully developed thus can be used to characterize
the tissue at various scales such as tumor appearance in
histopathology, radiology, and the cell morphology analysis
for automatic diagnosis of malignancy. Summary of these
studies for application in diagnostic of viral cancers (Hep-
atocellular carcinoma) is given in Table 1, whereas Table 2
mentions about some important databses. Moreover, the
degree of malignancy in liver cancer can be categorized into
three types: poorly, moderately, and well differentiated. The
differentiation of different levels is important for diagnosis
and treatment of liver cancer. To fulfil this need, an atten-
tion (DL) mechanism-based classification study is presented
in [31] where five different classified models were used and
SENet model achieved the highest classification accuracy
of 95.27%. Thus, this study, like others, demonstrate the
potential of ML and DL based methods in sorting out the
time consuming and laborious problems faced in previously
existing manual techniques (Figure 3).

FIGURE 3. A process of cancer diagnosis using ML and DL techniques.
a) shows the process of collecting cancer related data from different
databases and once the data is collected then it is cleaned to make it
ready for training the models, b) shows the splitting of the data into
training and testing followed by the ML and DL model development,
training, and testing, and finally c) shows the deployment of trained
models to predict weather given new data (patient data) is classified as
cancer or not-cancer.

B. AI IN RADIOLOGY
Radiology like histopathology uses medical imaging (from
different parts of the body) to diagnose disease in humans

and animal. In diagnostic radiology [32] some of the most
widely used imaging exams include x-ray, MRI, ultrasound,
CT scan, and PET scan (Figure 3 (a)).
Despite being widely adopted, traditional radiology suffers

from some limitations such as lack of reproducibility, espe-
cially for textural features of hepatocellular carcinoma [33]
and these changes negatively affect the radiomic signatures.
There is no standard protocol on the count of texture features
as well as on the development of prediction models which
hampers the generalizability of the results. Amajor limitation
is lack of data and restricted data sharing between institutions
because of legal concerns, make it more challenging. Thanks
to the rise in computational power and amazing progress in
DL and ML frameworks (Algorithms and tools) many of the
mentioned concerns are now solved. Lot of work combining
the radiology or radiomics with ML and DL has been already
reported. However, scarcity of data or more accurately prop-
erly labeled data is still a big challenge.

Moreover, radiomics with DL integration have recently
been used in image-based diagnosis as well as prognosis
of various liver diseases [58] and hepatocellular carcinoma
is one among them. One such study presented a multi-
network-based DL model for risk prediction (Similar to
Symptoms) of liver transplantation in case of hepatocellular
carcinoma [59]. The database was constructed by extracting
magnetic resonance (MR) images from picture archiving and
communications system (PACS) followed by the extraction of
pathology images [60]. Additionally, a deep learning-based
framework utilizing ResNet-18 and support vector machine
models was developed to predict microvascular invasion
(MVI) in hepatocellular carcinoma using CT images of arte-
rial phase from 309 patients at China Medical University
Hospital and 164 patients referred from 54 different hospi-
tals. The models combined CT images (Figure 4-(1-6)) and
patients’ clinical factors (Figure 4-(7-8)), with the ResNet-18
model exhibiting the highest accuracy, achieving an AUC of
0.845. Its performance was consistent in external validation
with an AUC of 0.777. The model’s effectiveness was further
confirmed through Grad-CAM visualization, demonstrating
its ability to focus on relevant imaging features for MVI
prediction (Figure 4) [116].
Similarly, another study used MR images for automatic

diagnosis of hepatocellular carcinoma. The MRIs used in the
said study were multiphasic with improved-contrast using
the T1-weighted breadth hold sequences [61]. Additionally,
a systematic analysis of over 1500 genome-wideDNAmethy-
lation arrays [120] was conducted across multiple studies to
identify a distinctive methylation signature for HCC. This
study utilized a machine learning pipeline to pinpoint differ-
entially methylated regions in HCC, linked to the repression
of genes [122] associated with cancer progression. A unique
signature comprising 38DNAmethylation regions was devel-
oped, yielding a high-precision HCC detection score. This
score demonstrated remarkable efficacy, correctly identify-
ing 96% of HCC tissue samples with 98% precision in an
independent dataset. It also effectively distinguished cell-free

VOLUME 12, 2024 37561



A. Asif et al.: Machine Learning Based Diagnostic Paradigm in Viral and Non-Viral HCC

TABLE 1. Application of AI (ML and DL) for diagnosis of Hepatocellular carcinoma using AI in histopathology, radiology, biomarker based, and EHRs
based diagnosis.
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TABLE 1. (Continued.) Application of AI (ML and DL) for diagnosis of Hepatocellular carcinoma using AI in histopathology, radiology, biomarker based,
and EHRs based diagnosis.

FIGURE 4. This flow chart illustrates the development of a ResNet-18
based model for preoperative MVI prediction in HCC, detailing steps from
labeling and preprocessing CT images to integrating clinical factors and
model training. The process includes image augmentation techniques like
rotation, cropping, and flipping, with examples provided. The final model
predicts MVI status by combining image data with clinical factors [116].

FIGURE 5. (a) A diagram showing datasets assembled for discovering
HCC DNA methylation biomarkers using machine learning and
constructing an HCC risk score. (b) PCA of Train & Test DNA methylation
dataset highlighting HCC samples with explained variances. (c) Steps in
feature reduction, including probes, CpG sites, clusters, and DMRs, in the
processing and feature discovery pipeline [117].

DNA (cfDNA) of tumor samples from healthy controls and
identified cfDNA from patients with other tumors, including
colorectal cancer [117], [121] as shown in Figure 5.

DL model was consisted of deep convolutional neural
network (DCNN) (also shown in Figure 3(b)) with U-net
architecture and was trained using train-test split method
where training data was 70%, followed by 15% as valida-
tion data, and remaining 15% was used as testing data [62].
To realize the effectiveness of DCNN-Unet, comparison was
made between model prediction and manual work. 73∼75%
accuracy was obtained on test and validation sets respectively
with dice similarity coefficients (DSC) adjusted to >0.2.
Thus, it makes the process of diagnosis much faster, reliable,
and error free. However, there is no external validation per-
formed to validate the work against the bias and data leakage
issues. One of the reasons for this inherent limitation is data
scarcity (suitable). Another problem in dealing with medical
imaging is, high resolution and vast feature space which
makes it challenging for the image segmentation to identify
and use the valuable features [63]. To sort this problem,
an ensemble based extreme learning machine (ELM) study
is done in which works on liver tumor diagnosis using the
random feature space [64]. In this study, tumor detection is
handled as binary classification problem with two-classes.
Moreover, the ELM used here, is equipped with fast learning
(than SVM and other algorithms) and commendable general-
ization and have been used already as a single-hidden-layer
feed-forward neural network (SLFN) architectures.

Additionally, past years have witnessed the fruitful appli-
cation of image processing techniques applied on medical
imaging for diagnostics. Advances in imaging algorithms
extend support to radiologists for timely diagnosis of hepa-
tocellular carcinoma and other related disorders [65]. Apart
from conventional DL and ML algorithms, fuzzy models
are also used for diagnosis in hepatocellular carcinoma.
One such example study is given in where a new fuzzy
linguistic constant (FLC) is introduced for computer-aided
automated diagnosis of the liver cancer from CT images
(Low contrast) [66]. Fuzzy membership functional is devel-
oped to classify the contrast-enhanced images as cancerous
and non-cancerous [123]. To assess the extracted features,
structural similarity index is utilized which in turn tells
whether the tumor is malign or benign. This work overcomes
the limitation and performs the external validation of the
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TABLE 2. Summary of cancer related databases.

developed models on the dataset containing the information
from 179 clinical cases whereas the information for other
such databases is summarized in Table 2 [67]. The class dis-
tribution is 98 and 81 for benign and malignant respectively
for liver tumors. SVM applied to extracted features yield
the accuracy of 98.7% whereas the presented segmentation
method yields the enhanced detection value of 78% [68].
Such algorithms are valuable tools for radiologists in diagnos-
tic of tumors. In addition to CT, some studies have focused on
combination of liver ultrasound and DL to perform classifica-
tion and diagnosis of hepatocellular carcinoma. Classification

of LI-RADS based ultrasound monitored reports for hepato-
cellular carcinoma diagnosis was performed Morgan et al.
[69]. Not only in hepatocellular carcinoma, but liver ultra-
sound images have also been used to perform the cirrhosis
diagnosis. Other numerous studies can be found demonstrat-
ing the use of computational (ML, DL etc.) methods for the
diagnosis of hepatocellular carcinoma using the radiology
(radiomics) data [70], [71], [72].

No doubt, a lot of progress and success have been observed
in DL and ML applications to radiology, however, there are
some inherent limitations impeding the true potential of the
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subject. Major limitation is lack of generalization in radiomic
classifiers, owing to the variance in radiomic features from
person to person, dependent on protocols followed, and fea-
ture extraction approaches [73]. The limitation is partially
solved by image preprocessing such as gray-level normal-
ization and standardization of resolution. In this connection,
an algorithmwas introduced recently which enable the reduc-
tion of variations in radiomic features and enabled the feature
analysis using multicenter image data [74]. Future research
is directed to design and implement optimal, fast, and repro-
ducible image processing algorithms to avoid the variations in
future and improve the generalizations of radiomic models to
enhance the diagnosis abilities in hepatocellular carcinoma.

C. BIOMARKER BASED DISEASE PREDICTION
Techniques like integration of multi-omics analysis, use of
ML, and DL have become important tools for biomarker
screening and disease (Figure 3) HCC diagnosis as shown
in Table 1. ML and DL algorithms once trained properly
can easily be deployed to diagnose the disease [118] form
patient samples [98]. Variety of algorithms are trained on
various biomarker related data types, and all are aligned
with a common goal for early diagnosis of disease (HCC)
which is necessary to treat HCC. Detection of early and
potential tumors in HCC, is normally done by monitoring of
vulnerable groups utilizing the abdominal ultrasonography in
the presence and absence of serum analysis of α-fetoprotein
(AFP) [99]. It comes with the challenge of limited sensitivity
for which two current approaches are being used, first one
is to use the already known empirical biomarkers (derived)
and another one uses circulating nucleic acid biomarkers con-
sisting of cell free DNA and RNA [100]. Modern molecular
biology aligned with ML techniques closely allied to under-
lying biology of cancer [124]. The approaches are considered
as promising opportunities for obtaining the timely diagnosis
with additional functionalities on the plate.

To address these challenges, a study using the integration
of gene expressions (database information Table 2) of cfDNA
to predict the clinic-pathological response of HCC patients
is done in [62]. Since HCC can be diagnosed by circulating
cell-free DNA (cfDNA) and it is also referred to as predic-
tive biomarker for HCC. The blood biomarkers are absent
for early diagnosis in HCC because of which the mortality
rate is very high. In this study a new ML based scoring
system is proposed called cfDNA HCC. As already stated,
it integrates the expression profiles of cfDNA which paved
the way for the prediction of clinic-pathological response of
the patients suffering from HCC. This study proves the use
of known biomarkers could be useful for diagnosis of HCC.
In this connection, studies have been conducted which are
focusing on the discovery of robust biomarkers for HCC. One
such study is done in [63] where six different methods for
recursive feature elimination were used to select the gene
signatures from TCGA liver cancer data (Table 2). It was
hypothesized that, the genes shared among the adopted six

subsets would be regarded as robust biomarkers in HCC.
Statistical interpretation for feature selection in ML was
performed using the Akaike information criterion (AIC) to
explain the optimization process of feature selection. The
biomarkers shortlisted in this study by the process of back-
ward logistic stepwise regression were found to contain in
the already known biomarkers. Another similar study using
supervised ML identifies the biomarkers levels that can be
used as diagnostic tool to classify the HCC [64]. Moreover,
large-scale transcriptomic data has also been used for iden-
tification of diagnostic biomarkers [65]. Previously, efforts
were put to make the genetic biomarkers but due to lack of
data both in quantity and diversity it was not possible. Now
with the emergence of large-scale transcriptomic data this
study [65] presents identification of diagnostic biomarkers in
HCC. The profiled dataset contained in total 2316 positive
and 1665 negative (non-tumorous) samples. These data sam-
ples were obtained from four different studies using various
types of profiling techniques. Based on overlapping genes in
all datasets 26 genes were found highly expressed. Different
feature selection techniques were used to finally select three
genes (FCN3, CLEC1B, and PRC1) as diagnostic biomarkers
in HCC. In order to overcome the existing limitation this
study used a systematic approach to identify genetic biomark-
ers for HCC diagnosis which makes it applicable to wide
range of platforms.

No doubt, the rise in computational power, generation of
multi-omics data at scale, advances in approaches to mine the
massive datasets, and publicly available databases providing
useful data has been beneficial for the discovery of diagnostic
biomarkers for timely diagnosis of cancers such as liver
cancer. Despite these steps, there are still some limitations
that need to be addressed to uncover the full potential of
biomarker-based disease prediction strategy. A major lim-
itation is the variations found in transcriptomic signatures
because of use of different platforms, protocols, and person
to person variation. Future work should focus on resolving
these issues and the strategies based on ML and DL which
could encompass these variations and generalize well.

D. EHRS BASED DIAGNOSIS
Electronic health records (EHR) provide accurate, up to date,
and comprehensive information about the patient enabling
coordinated and effective patient care [101]. Sharing EHRs
makes the diagnosis of disease more easily, reduces errors,
and provides faster and safer care when reliable and pre-
cise patient health information is available [102]. A well-
structured, end-to-end EHR system supports the critical
clinical decision of disease diagnosis.

Recently, DL and ML approaches have been applied to
EHRs to diagnose viral cancers such as hepatocellular car-
cinoma in patients. Hepatocellular carcinoma was predicted
in patients with hepatitis C cirrhosis by Ioannou et al [93].
DL recurrent neural network (RNN) models were applied to
raw EHRs, and the resulting model outperformed the state
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of art traditional regression models in diagnosing the risk
of occurring of HCC [103]. In case of data, over the years
52983 samples were collected, out of which 98% samples
were collected from male patients [104]. The analysis of the
EHRs revealed that the patients who developed HCC were
older than the ones who did not experience it [105]. The
results form RNN models showed the 80% of all HCCs that
took place. RNN models are also powerful DL models for
medical imaging applications as shown in Figure 3(b). Thus,
the presented framework trained on EHRs outperformed con-
ventional linear regression models. ML was used to signify
EHRs and identify liver cancers which is caused by HCCs
virus in more than 90% of the cases [96]. The key features
demonstrated by the proposed framework was fast prediction
with risk modelling [106]. In this a set of 112 abdominal
CT images which contained 59 HCCs and 53 Non-HCCs
were arranged from four Hong Kong based hospitals [94].
Ontological features here were extracted which formed the
basis of primary predictor panel [107]. Pearson’s correlation
coefficient was used to quantify the relationship between
every pair of HCCs andNon-HCCs samples [108]. Themodel
trained on these features when deployed obtained 84.7%
sensitivity and 88.4% overall accuracy [109]. The feature
extraction using the Pearson’s correlation coefficient resulted
in better accuracy than without the it. Thus, the ML and DL
architecture show a great potential in identifying viral cancers
when properly trained on EHRs and deployed.

Moreover, one after the other methods and approaches
are introduced making use of EHRs in combination with
computational methods (ML and DL) (Table 2) in diagnostic
of viral and non-viral hepatocellular carcinoma (Figure 3).
One such state of art study is done in where a novel ML
model is performing better than then already implemented
risk scores in predicting the hepatocellular carcinoma in
patients with chronic viral hepatitis [110]. Comprehensive
clinical data is fed to ML model and based on the HCC ridge
score presence or absence of viral cancer is diagnosed [111].
At the same time, this study has developed the statistical
model to indirectly benchmark novel ML model. It shows
that the novel ML model introduce here generate correct risk
scores for HCC in patients with chronic viral hepatitis. The
HCC ridge score developed by this study was more accurate
than the risk scores already developed [112]. Additionally,
a validation study was done in where EHRs (inpatient) were
used to find out the existence of cirrhosis in patients with
hepatocellular carcinoma [113]. This study did not include
any AI assisted module. However, this study was able to
perform the diagnosis using the inpatient EHRs. Review of
these studies as mentioned in Table 1 prove that the use of
EHRs coupled with computational (AI) techniques can open
the door to success in diagnostic of viral cancers. However,
there are certain limitations associated with the EHRs, ML,
and DL models [114]. First, EHRs are raw, heterogenous,
and noisy data which negatively affect the performance of
the models. Second, it takes a lot of effort to make the EHRs

ML ready [115]. When it comes to ML, owing to the high
dimensional and diverse nature of the data, it is hard for
the linear ML models to learn and generalize the data well.
In addition, the feature engineering for conventional ML is
troublesome. Whereas the DL models are hard to interpret.
This emphasize the need for sufficient time to be invested
for the processing of EHRs to suitable format followed by
the interpretability of DL models. Once these limitations are
overcome and newer more diverse data adopting algorithms
are developed, only then the true diagnostic potential from
EHRs can be harvested.

IV. DISCUSSION AND CHALLENGES
EHRs are inherently raw, noisy, and heterogeneous, com-
prising unstructured text, images, lab results, and more.
This diversity and inconsistency in data quality can signif-
icantly impede the performance of ML models, making it
challenging to extract meaningful insights without extensive
preprocessing and standardization efforts. Moreover, Data
Preparation and Accessibility is also an important factor.
Transforming EHRs into a format that is amenable to ML
algorithms requires significant effort. The process involves
data cleaning, normalization, feature extraction, and han-
dling of missing values, which is both time-consuming and
resource intensive. Furthermore, issues related to data pri-
vacy, security, and sharing can limit the accessibility of
comprehensive datasets necessary for training robust ML
models. While ML and DL models hold great potential
in identifying complex patterns and associations within
large datasets, their application in healthcare, particularly
in diagnostics, is hampered by the high dimensionality and
variability of medical data. Linear ML models may struggle
to capture the intricate relationships present in the data, neces-
sitating more sophisticated, yet computationally intensive,
DL models. One of the significant hurdles in the adoption
of DL models in clinical settings is their ‘‘black box’’ nature,
whichmakes it difficult for clinicians to understand how these
models arrive at a particular diagnosis or prediction. This
lack of interpretability can hinder trust in AI-based diagnostic
systems and poses challenges in clinical decision-making.
Additionally, ensuring that MLmodels can generalize well to
new, unseen data is a critical challenge. Models may perform
well on the data they were trained on but fail to maintain
accuracy when applied to data from different sources or
populations. Rigorous validation studies, including external
validation on diverse datasets, are essential to establish the
reliability and applicability of ML models in clinical prac-
tice. Finally, the successful implementation of ML-based
diagnostics in clinical settings requires seamless integration
into existing workflows, with minimal disruption to clini-
cal practices. This integration must also address clinicians’
needs, providing intuitive interfaces and decision support that
enhance, rather than complicate, the diagnostic process.

To overcome these challenges and fully realize the poten-
tial of ML in the diagnosis of HCC, several future directions
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can be pursued such as advancements in data processing
aimed to developing more sophisticated algorithms for data
preprocessing and feature engineering can help mitigate
the issues of data quality and heterogeneity, making EHRs
more amenable to ML analysis. Similarly, adopting fed-
erated learning approaches can address data privacy and
accessibility issues by enabling ML models to be trained
across multiple decentralized data sources without need-
ing to share the data directly and investing in research
and development of explainable AI models can enhance
the interpretability and transparency of ML-based diagnos-
tic tools, fostering trust and acceptance among healthcare
professionals. Finally, close collaboration between computer
scientists, data scientists, clinicians, and other healthcare pro-
fessionals is crucial to ensure that ML models are developed
with a deep understanding of clinical needs and constraints,
leading to more effective and user-friendly diagnostic
tools.

V. CONCLUSION
Incorporating Artificial Intelligence (AI) into oncologi-
cal diagnostics, particularly for hepatocellular carcinoma
(HCC), enhances traditional methods by leveraging advanced
Machine Learning (ML) and Deep Learning (DL) tech-
niques alongside increased computational power to analyze
extensive datasets. This synergy facilitates the nuanced exam-
ination of image-based data in conjunction with biomarker
datasets, crucial for early detection of both viral and non-
viral HCC, with AI algorithms designed to supplement
rather than replace existing clinical methodologies. The
integration of AI not only promises to refine diagnostic
accuracy but also to contribute to the prognostic assessment,
guiding more personalized treatment approaches. The path
forward should focus on developing interpretable AI models
that engender clinician and patient trust, ensuring seamless
integration into clinical workflows, conducting rigorous vali-
dation studies to ensure efficacy and reliability across diverse
populations, and addressing ethical and regulatory consider-
ations to safeguard patient privacy and data security. Such
efforts necessitate a multidisciplinary approach, underscor-
ing the importance of collaboration between data scientists,
clinicians, ethicists, and policymakers to fully realize the
potential of AI in transforming HCC diagnostics and patient
care.
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