117 research outputs found

    Improving data identification and tagging for more effective decision making in agriculture

    Get PDF
    International audienc

    Human-Intelligence and Machine-Intelligence Decision Governance Formal Ontology

    Get PDF
    Since the beginning of the human race, decision making and rational thinking played a pivotal role for mankind to either exist and succeed or fail and become extinct. Self-awareness, cognitive thinking, creativity, and emotional magnitude allowed us to advance civilization and to take further steps toward achieving previously unreachable goals. From the invention of wheels to rockets and telegraph to satellite, all technological ventures went through many upgrades and updates. Recently, increasing computer CPU power and memory capacity contributed to smarter and faster computing appliances that, in turn, have accelerated the integration into and use of artificial intelligence (AI) in organizational processes and everyday life. Artificial intelligence can now be found in a wide range of organizational systems including healthcare and medical diagnosis, automated stock trading, robotic production, telecommunications, space explorations, and homeland security. Self-driving cars and drones are just the latest extensions of AI. This thrust of AI into organizations and daily life rests on the AI community’s unstated assumption of its ability to completely replicate human learning and intelligence in AI. Unfortunately, even today the AI community is not close to completely coding and emulating human intelligence into machines. Despite the revolution of digital and technology in the applications level, there has been little to no research in addressing the question of decision making governance in human-intelligent and machine-intelligent (HI-MI) systems. There also exists no foundational, core reference, or domain ontologies for HI-MI decision governance systems. Further, in absence of an expert reference base or body of knowledge (BoK) integrated with an ontological framework, decision makers must rely on best practices or standards that differ from organization to organization and government to government, contributing to systems failure in complex mission critical situations. It is still debatable whether and when human or machine decision capacity should govern or when a joint human-intelligence and machine-intelligence (HI-MI) decision capacity is required in any given decision situation. To address this deficiency, this research establishes a formal, top level foundational ontology of HI-MI decision governance in parallel with a grounded theory based body of knowledge which forms the theoretical foundation of a systemic HI-MI decision governance framework

    Design of a Controlled Language for Critical Infrastructures Protection

    Get PDF
    We describe a project for the construction of controlled language for critical infrastructures protection (CIP). This project originates from the need to coordinate and categorize the communications on CIP at the European level. These communications can be physically represented by official documents, reports on incidents, informal communications and plain e-mail. We explore the application of traditional library science tools for the construction of controlled languages in order to achieve our goal. Our starting point is an analogous work done during the sixties in the field of nuclear science known as the Euratom Thesaurus.JRC.G.6-Security technology assessmen

    Sustainable Spatial Planning based on Ecosystem Services, Green Infrastructure and Nature-Based Solutions

    Get PDF
    Theoretical and methodological contributions as well as critical discussions on policy implementation characterize this Special Issue, with special reference to the following themes and research questions: 1) Integration of ecosystem services within spatial plans and strategic environmental assessment: “What function do ecosystem services play, or could play, within plan-making processes and strategic environmental assessments?”; “What are the most important challenges in putting integration into practice, and/or the most significant obstacles to achieving integration?”; and “What roles do scientific and technical expertise vs. community values and local knowledge play in integrating ecosystem services within spatial plans and environmental assessments?”; 2) Consideration and use of green infrastructure within spatial plans: “What function do green infrastructure play within plan-making processes?”; “What kinds of spatial plans are most suited for, or most effective in, designing and implementing green infrastructure?”; and “Does scale (local, regional, etc.) make a difference in the way green infrastructure are implemented within spatial plans?”; 3) Relationship between nature-based solutions and spatial plans: “Since nature-based solutions are increasingly promoted at the very strategic level, i.e., that of broad policies, and implemented at the very detailed level, i.e., that of projects, what is the role of nature-based solutions within spatial plans?” and “What tools are at planners’ disposal to effectively integrate nature-based solutions in planning processes and promote their use, especially in urban contexts?”

    Networking Architecture and Key Technologies for Human Digital Twin in Personalized Healthcare: A Comprehensive Survey

    Full text link
    Digital twin (DT), refers to a promising technique to digitally and accurately represent actual physical entities. One typical advantage of DT is that it can be used to not only virtually replicate a system's detailed operations but also analyze the current condition, predict future behaviour, and refine the control optimization. Although DT has been widely implemented in various fields, such as smart manufacturing and transportation, its conventional paradigm is limited to embody non-living entities, e.g., robots and vehicles. When adopted in human-centric systems, a novel concept, called human digital twin (HDT) has thus been proposed. Particularly, HDT allows in silico representation of individual human body with the ability to dynamically reflect molecular status, physiological status, emotional and psychological status, as well as lifestyle evolutions. These prompt the expected application of HDT in personalized healthcare (PH), which can facilitate remote monitoring, diagnosis, prescription, surgery and rehabilitation. However, despite the large potential, HDT faces substantial research challenges in different aspects, and becomes an increasingly popular topic recently. In this survey, with a specific focus on the networking architecture and key technologies for HDT in PH applications, we first discuss the differences between HDT and conventional DTs, followed by the universal framework and essential functions of HDT. We then analyze its design requirements and challenges in PH applications. After that, we provide an overview of the networking architecture of HDT, including data acquisition layer, data communication layer, computation layer, data management layer and data analysis and decision making layer. Besides reviewing the key technologies for implementing such networking architecture in detail, we conclude this survey by presenting future research directions of HDT

    Study on quality in 3D digitisation of tangible cultural heritage: mapping parameters, formats, standards, benchmarks, methodologies and guidelines: final study report.

    Get PDF
    This study was commissioned by the Commission to help advance 3D digitisation across Europe and thereby to support the objectives of the Recommendation on a common European data space for cultural heritage (C(2021) 7953 final), adopted on 10 November 2021. The Recommendation encourages Member States to set up digital strategies for cultural heritage, which sets clear digitisation and digital preservation goals aiming at higher quality through the use of advanced technologies, notably 3D. The aim of the study is to map the parameters, formats, standards, benchmarks, methodologies and guidelines relating to 3D digitisation of tangible cultural heritage. The overall objective is to further the quality of 3D digitisation projects by enabling cultural heritage professionals, institutions, content-developers, stakeholders and academics to define and produce high-quality digitisation standards for tangible cultural heritage. This unique study identifies key parameters of the digitisation process, estimates the relative complexity and how it is linked to technology, its impact on quality and its various factors. It also identifies standards and formats used for 3D digitisation, including data types, data formats and metadata schemas for 3D structures. Finally, the study forecasts the potential impacts of future technological advances on 3D digitisation

    Application of data and information fusion

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH

    Optimization of survey procedures and application of integrated digital tools for seismic risk mitigation of cultural heritage: The Emilia-Romagna damaged theatres.

    Get PDF
    Starting from current procedures, standards and tools for seismic damage survey, the research presents an integrated workflow for seismic damage documentation and survey applied to historic theatres in the Emilia-Romagna region damaged by the 2012 earthquake. The 2012 earthquake highlighted the fragility of the cultural heritage and underscored the lack of proactive conservation and management of historic assets. The research starts by analysing Agenzia Regionale per la Ricostruzione della Regione Emilia-Romagna- ARRER’s requests, which had found criticalities in applying the current Mic (Ministero della Cultura) procedures for the damage survey of complex types: the A-DC form for churches and the B-DP form for buildings. Using the two types of forms highlighted the lack of ad hoc tools for complex architectural styles such as castles, cemeteries and theatres, resulting in the loss of quantitative and qualitative information necessary for knowledge, conservation and thus management of the reconstruction process. As a result of these considerations, national and international standards of integrated documentation, existing digital databases for cataloguing and classification of cultural property, and seismic risk management were studied to develop a workflow of integrated procedures for seismic damage survey on the specific assigned case study: Regional Historic Theaters affected by the 2012 earthquake. The research used the holistic and interdisciplinary approach of integrated documentation to develop the integrated procedural workflow to enhance and optimise seismic damage detection operations in the case study. In providing a workflow of integrated procedures for the prevention and mitigation of hazards related to potential states of emergency, both natural and anthropic, the research follows an “extensive” methodological approach to test the survey outside the Emilia crater. The methodological framework led to the critical-comparative analysis, divided into two levels: the first involved studying critical issues in the B-DP form, mainly used in the 2012 theatre survey. The second level covered the techniques - laser scanning, digital photogrammetry - and integrated survey methodologies applied during the in-depth investigations for repair and restoration work. The critical-comparative analysis and morpho-typological study led to the development of an integrated procedural flow to survey damage in historic theatres. It is aimed at systematising and optimising the stages of damage documentation. The workflow consists of three information levels: L1. Screening level for the visual survey; L2 survey level defines the 3D acquisition steps for the geometric-dimensional study by theatres. The BIM L3 Plus level guides implementing the level of knowledge of parametric HBIM models for documentation, management and monitoring of historic theatres
    corecore