119 research outputs found

    Progress on the adjacent vertex distinguishing edge colouring conjecture

    Full text link
    A proper edge colouring of a graph is adjacent vertex distinguishing if no two adjacent vertices see the same set of colours. Using a clever application of the Local Lemma, Hatami (2005) proved that every graph with maximum degree Δ\Delta and no isolated edge has an adjacent vertex distinguishing edge colouring with Δ+300\Delta + 300 colours, provided Δ\Delta is large enough. We show that this bound can be reduced to Δ+19\Delta + 19. This is motivated by the conjecture of Zhang, Liu, and Wang (2002) that Δ+2\Delta + 2 colours are enough for Δ≥3\Delta \geq 3.Comment: v2: Revised following referees' comment

    Locally identifying colourings for graphs with given maximum degree

    Full text link
    A proper vertex-colouring of a graph G is said to be locally identifying if for any pair u,v of adjacent vertices with distinct closed neighbourhoods, the sets of colours in the closed neighbourhoods of u and v are different. We show that any graph G has a locally identifying colouring with 2Δ2−3Δ+32\Delta^2-3\Delta+3 colours, where Δ\Delta is the maximum degree of G, answering in a positive way a question asked by Esperet et al. We also provide similar results for locally identifying colourings which have the property that the colours in the neighbourhood of each vertex are all different and apply our method to the class of chordal graphs

    Graph Coloring Problems and Group Connectivity

    Get PDF
    1. Group connectivity. Let A be an abelian group and let iA(G) be the smallest positive integer m such that Lm(G) is A-connected. A path P of G is a normal divalent path if all internal vertices of P are of degree 2 in G and if |E(P)|= 2, then P is not in a 3-cycle of G. Let l(G) = max{lcub}m : G has a normal divalent path of length m{rcub}. We obtain the following result. (i) If |A| ≥ 4, then iA( G) ≤ l(G). (ii) If | A| ≥ 4, then iA(G) ≤ |V(G)| -- Delta(G). (iii) Suppose that |A| ≥ 4 and d = diam( G). If d ≤ |A| -- 1, then iA(G) ≤ d; and if d ≥ |A|, then iA(G) ≤ 2d -- |A| + 1. (iv) iZ 3 (G) ≤ l(G) + 2. All those bounds are best possible.;2. Modulo orientation. A mod (2p + 1)-orientation D is an orientation of G such that d +D(v) = d--D(v) (mod 2p + 1) for any vertex v ∈ V ( G). We prove that for any integer t ≥ 2, there exists a finite family F = F(p, t) of graphs that do not have a mod (2p + 1)-orientation, such that every graph G with independence number at most t either admits a mod (2p+1)-orientation or is contractible to a member in F. In particular, the graph family F(p, 2) is determined, and our results imply that every 8-edge-connected graph G with independence number at most two admits a mod 5-orientation.;3. Neighbor sum distinguishing total coloring. A proper total k-coloring &phis; of a graph G is a mapping from V(G) ∪ E(G) to {lcub}1,2, . . .,k{rcub} such that no adjacent or incident elements in V(G) ∪ E( G) receive the same color. Let m&phis;( v) denote the sum of the colors on the edges incident with the vertex v and the color on v. A proper total k-coloring of G is called neighbor sum distinguishing if m &phis;(u) ≠ m&phis;( v) for each edge uv ∈ E( G ). Let chitSigma(G) be the neighbor sum distinguishing total chromatic number of a graph G. Pilsniak and Wozniak conjectured that for any graph G, chitSigma( G) ≤ Delta(G) + 3. We show that if G is a graph with treewidth ℓ ≥ 3 and Delta(G) ≥ 2ℓ + 3, then chitSigma( G) + ℓ -- 1. This upper bound confirms the conjecture for graphs with treewidth 3 and 4. Furthermore, when ℓ = 3 and Delta ≥ 9, we show that Delta(G)+1 ≤ chit Sigma(G) ≤ Delta(G)+2 and characterize graphs with equalities.;4. Star edge coloring. A star edge coloring of a graph is a proper edge coloring such that every connected 2-colored subgraph is a path with at most 3 edges. Let ch\u27st(G) be the list star chromatic index of G: the minimum s such that for every s-list assignment L for the edges, G has a star edge coloring from L. By introducing a stronger coloring, we show with a very concise proof that the upper bound of the star chromatic index of trees also holds for list star chromatic index of trees, i.e. ch\u27st( T) ≤ [3Delta/2] for any tree T with maximum degree Delta. And then by applying some orientation technique we present two upper bounds for list star chromatic index of k-degenerate graphs
    • …
    corecore