
Research Article
Graphs with Bounded Maximum Average Degree and Their
Neighbor Sum Distinguishing Total-Choice Numbers

Patcharapan Jumnongnit and Kittikorn Nakprasit

Department of Mathematics, Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand

Correspondence should be addressed to Kittikorn Nakprasit; kitnak@hotmail.com

Received 31 May 2017; Accepted 4 October 2017; Published 7 November 2017

Academic Editor: Daniel Simson

Copyright © 2017 Patcharapan Jumnongnit and Kittikorn Nakprasit. This is an open access article distributed under the Creative
Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the
original work is properly cited.

Let 𝐺 be a graph and 𝜙 : 𝑉(𝐺) ∪ 𝐸(𝐺) → {1, 2, 3, . . . , 𝑘} be a 𝑘-total coloring. Let 𝑤(V) denote the sum of color on a vertex V
and colors assigned to edges incident to V. If 𝑤(𝑢) ̸= 𝑤(V) whenever 𝑢V ∈ 𝐸(𝐺), then 𝜙 is called a neighbor sum distinguishing
total coloring. The smallest integer 𝑘 such that 𝐺 has a neighbor sum distinguishing 𝑘-total coloring is denoted by tndi∑(𝐺). In
2014, Dong and Wang obtained the results about tndi∑(𝐺) depending on the value of maximum average degree. A 𝑘-assignment
𝐿 of 𝐺 is a list assignment 𝐿 of integers to vertices and edges with |𝐿(V)| = 𝑘 for each vertex V and |𝐿(𝑒)| = 𝑘 for each edge 𝑒. A
total-𝐿-coloring is a total coloring 𝜙 of 𝐺 such that 𝜙(V) ∈ 𝐿(V) whenever V ∈ 𝑉(𝐺) and 𝜙(𝑒) ∈ 𝐿(𝑒) whenever 𝑒 ∈ 𝐸(𝐺). We state
that 𝐺 has a neighbor sum distinguishing total-𝐿-coloring if 𝐺 has a total-𝐿-coloring such that 𝑤(𝑢) ̸= 𝑤(V) for all 𝑢V ∈ 𝐸(𝐺). The
smallest integer 𝑘 such that 𝐺 has a neighbor sum distinguishing total-𝐿-coloring for every 𝑘-assignment 𝐿 is denoted by Ch∑(𝐺).
In this paper, we strengthen results by Dong and Wang by giving analogous results for Ch∑(𝐺).

1. Introduction

Let 𝐺 be a simple, finite, and undirected graph. We use
𝑉(𝐺), 𝐸(𝐺), and Δ(𝐺) to denote the vertex set, edge set,
and maximum degree of a graph 𝐺, respectively. A vertex
V is called a 𝑘-vertex if 𝑑(V) = 𝑘. The length of a shortest
cycle in 𝐺 is called the girth of a graph 𝐺, denoted by 𝑔(𝐺).
The maximum average degree of 𝐺 is defined by mad(𝐺) =
max𝐻⊆𝐺(2|𝐸(𝐻)|/|𝑉(𝐻)|). The well-known observation for a
planar graph𝐺 is mad(𝐺) < 2𝑔(𝐺)/(𝑔(𝐺)−2). Let 𝜙 : 𝑉(𝐺)∪
𝐸(𝐺) → {1, 2, 3, . . . , 𝑘} be a 𝑘-total coloring. We denote the
sum (set, resp.) of colors assigned to edges incident to V and
the color on the vertex V by 𝑤(V) (𝐶(V), resp.); that is, 𝑤(V) =
∑𝑢V∈𝐸(𝐺) 𝜙(𝑢V)+𝜙(V) and𝐶(V) = {𝜙(V)}∪{𝜙(𝑢V) | 𝑢V ∈ 𝐸(𝐺)}.
The total coloring 𝜙 of 𝐺 is a neighbor sum distinguishing
(neighbor distinguishing, resp.) total coloring if 𝑤(𝑢) ̸= 𝑤(V)
(𝐶(𝑢) ̸= 𝐶(V), resp.) for each edge 𝑢V ∈ 𝐸(𝐺). The smallest
integer 𝑘 such that 𝐺 has a neighbor sum distinguishing
(neighbor distinguishing, resp.) total coloring is called the
neighbor sum distinguishing total chromatic number (neighbor
distinguishing total chromatic number, resp.), denoted by
tndi∑ (𝐺) (tndi(𝐺), resp.). In 2005, a neighbor distinguishing

total coloring of graphs was introduced by Zhang et al. [1].
They obtained tndi(𝐺) for many basic graphs and brought
forward the following conjecture.

Conjecture 1 (see [1]). If 𝐺 is a graph with order at least two,
then tndi(𝐺) ≤ Δ(𝐺) + 3.

Conjecture 1 has been confirmed for subcubic graphs,𝐾4-
minor free graphs, and planar graphs with large maximum
degree [2–4].

In 2015, Pilśniak and Woźniak [5] obtained tndi∑ (𝐺) for
cycles, cubic graphs, bipartite graphs, and complete graphs.
Moreover, they posed the following conjecture.

Conjecture 2 (see [5]). If 𝐺 is a graph with at least two
vertices, then tndi∑ (𝐺) ≤ Δ(𝐺) + 3.

Li et al. verified this conjecture for 𝐾4-minor free graphs
[6] and planar graphs with the large maximum degree [7].
Wang et al. [8] confirmed this conjecture by using the famous
Combinatorial Nullstellensatz that holds for any triangle free
planar graph with maximum degree of at least 7. Several
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results about tndi∑ (𝐺) for planar graphs can be found in [9–
11].

In 2014, Dong andWang [12] proved the following results.

Theorem3. If𝐺 is a graphwithmad(𝐺) < 3, then tndi∑ (𝐺) ≤
max{Δ(𝐺) + 2, 7}.

Corollary 4. If 𝐺 is a graph withmad(𝐺) < 3 and Δ(𝐺) ≥ 5,
then tndi∑ (𝐺) ≤ maxΔ(𝐺) + 2.

Corollary 5. Let𝐺 be a planar graph. If 𝑔(𝐺) ≥ 6 and Δ(𝐺) ≥
5, then tndi∑ (𝐺) ≤ Δ(𝐺) + 2; and tndi∑ (𝐺) = Δ(𝐺) + 2 if and
only if 𝐺 has two adjacent vertices of maximum degree.

The concept of list coloring was introduced by Vizing
[13] and by Erdös et al. [14]. A 𝑘-assignment 𝐿 of 𝐺 is a list
assignment 𝐿 of integers to vertices and edges with |𝐿(V)| = 𝑘
for each vertex V and |𝐿(𝑒)| = 𝑘 for each edge 𝑒. A total-
𝐿-coloring is a total coloring 𝜙 of 𝐺 such that 𝜙(V) ∈ 𝐿(V)
whenever V ∈ 𝑉(𝐺) and 𝜙(𝑒) ∈ 𝐿(𝑒) whenever 𝑒 ∈ 𝐸(𝐺).
We state that 𝐺 has a neighbor sum distinguishing total-𝐿-
coloring if 𝐺 has a total-𝐿-coloring such that 𝑤(𝑢) ̸= 𝑤(V)
for all 𝑢V ∈ 𝐸(𝐺). The smallest integer 𝑘 such that 𝐺 has
a neighbor sum distinguishing total-𝐿-coloring for every 𝑘-
assignment 𝐿, denoted by Ch∑ (𝐺), is called the neighbor sum
distinguishing total-choice number.

Qu et al. [15] proved that Ch∑ (𝐺) ≤ Δ(𝐺) + 3 for any
planar graph𝐺withΔ(𝐺) ≥ 13. Yao et al. [16] studiedCh∑ (𝐺)

of 𝑑-degenerate graphs. Later, Wang et al. [17] confirmed
Conjecture 2 true for planar graphs without 4-cycles. For
𝐻 ⊆ 𝐺, we let 𝐿𝐻 denote a list 𝐿 restricted to any proper
subgraph 𝐻 of 𝐺. In this paper, we strengthen Theorem 3 by
giving analogous results for Ch∑ (𝐺).

2. Main Results

The following lemma is obvious, so we omit the proof.

Lemma 6. Let |𝑆1| = |𝑆2| = ⋅ ⋅ ⋅ = |𝑆𝑘| = 𝑘 + 1 and 𝑆∗ =
{𝑎1 + 𝑎2 + ⋅ ⋅ ⋅ + 𝑎𝑘 | 𝑎𝑖 ∈ 𝑆𝑖, 𝑎𝑖 ̸= 𝑎𝑗, 1 ≤ 𝑖 < 𝑗 ≤ 𝑘}. Then
|𝑆∗| ≥ 𝑘 + 1.

Proof. We proceed by induction on 𝑘.
If 𝑘 = 1, then |𝑆1| = 2; then Lemma 6 holds. Assume

that 𝑘 > 1. Suppose that Lemma 6 holds for 𝑘 − 1. Let 𝑎 =
min(𝑆1 ∪ 𝑆2 ∪ ⋅ ⋅ ⋅ ∪ 𝑆𝑘). Without loss of generality, let 𝑎 ∈ 𝑆1.
Let 𝑇𝑖 ⊆ 𝑆𝑖 be such that |𝑇𝑖| = 𝑘 and 𝑎 ∉ 𝑇𝑖 for 𝑖 = 1, 2, . . . , 𝑘.
By induction hypothesis, we have |𝑇∗| ≥ 𝑘. Thus {𝑎 + 𝑡2 +
𝑡3 + ⋅ ⋅ ⋅ + 𝑡𝑘} ⊆ 𝑆∗, where 𝑡𝑖 ∈ 𝑇𝑖, 𝑡𝑗 ∈ 𝑇𝑗 for 2 ≤ 𝑖, 𝑗 ≤ 𝑘

and 𝑡𝑖 ̸= 𝑡𝑗 for 𝑖 ̸= 𝑗. So |𝑆∗| ≥ 𝑘. Let 𝑡2 + ⋅ ⋅ ⋅ + 𝑡𝑘 = max𝑇∗

with 𝑡𝑖 ∈ 𝑇𝑖, 𝑡𝑗 ∈ 𝑇𝑗 for 2 ≤ 𝑖, 𝑗 ≤ 𝑘 and 𝑡𝑖 ̸= 𝑡𝑗 for 𝑖 ̸= 𝑗

and 𝑏 ∈ 𝑆1 \ {𝑎, 𝑡2, 𝑡

3, . . . , 𝑡


𝑘}. Thus 𝑏 + 𝑡2 + 𝑡3 + . . . + 𝑡𝑘 >

max{𝑎 + 𝑡2 + 𝑡3 + ⋅ ⋅ ⋅ + 𝑡𝑘} and 𝑏 + 𝑡2 + 𝑡3 + ⋅ ⋅ ⋅ + 𝑡𝑘 ∈ 𝑆∗.
Therefore, we obtain |𝑆∗| ≥ 𝑘 + 1.

Lemma 7 (see [12]). Let 𝑆1, 𝑆2 be two sets and let 𝑆3 = {𝑎+𝑏 |
𝑎 ∈ 𝑆1, 𝑏 ∈ 𝑆2, 𝑎 ̸= 𝑏}. If |𝑆1| ≥ 2 and 𝑆2 ≥ 3, then |𝑆3| ≥ 3.

Theorem 8. If 𝐺 is a graph withmad(𝐺) < 3, then Ch∑ (𝐺) ≤

𝑘, where 𝑘 = max{Δ(𝐺) + 2, 7}.

Proof. The proof is proceeded by contradiction. Assume that
𝐺 is a minimum counterexample. Let |𝐿(V)| ≥ 𝑘 for each
vertex V and |𝐿(𝑒)| ≥ 𝑘 for each edge 𝑒 in 𝐺. For any proper
subgraph 𝐺 of 𝐺, we always assume that there is a neighbor
sum distinguishing total-𝐿𝐺-coloring 𝜙 of 𝐺 by minimality
of 𝐺. For convenience, we use a total-𝐿𝐺-coloring 𝜙 of 𝐺 to
denote a neighbor sum distinguishing total-𝐿𝐺-coloring 𝜙 of
𝐺 and we use 𝐹(V) = {𝜙(𝑢), 𝜙(𝑢V) | 𝑢V ∈ 𝐸(𝐺)} for V ∈ 𝑉(𝐺)
and 𝐹(𝑢V) = {𝜙(𝑢), 𝜙(V), 𝜙(𝑢𝑟), 𝜙(V𝑠) | 𝑢𝑟 ∈ 𝐸(𝐺), V𝑠 ∈
𝐸(𝐺)} for 𝑢V ∈ 𝐸(𝐺).

Let 𝐻 be the graph obtained by removing all leaves of 𝐺.
Then 𝐻 is a connected graph with mad(𝐻) ≤ mad(𝐺) < 3.
The properties of the graph 𝐻 are collected in the following
claims.

Claim 1. Each vertex in 𝐻 has degree of at least 2.

Proof. Suppose to the contrary that𝐻 contains a vertex Vwith
𝑑𝐻(V) ≤ 1. If 𝑑𝐻(V) = 0, then 𝐺 is the star 𝐾1,Δ(𝐺)−1 and
Ch∑ (𝐺) = Δ(𝐺); then we obtain a total-𝐿𝐺-coloring 𝜙 of𝐺, a
contradiction to the choice of 𝐺. Assume that 𝑑𝐻(V) = 1. Let
𝑢 and V𝑖 be the neighbors of V where 𝑖 = 1, 2, . . . , 𝑙 = Δ(𝐺) − 1
and 𝑑𝐺(V𝑖) = 1. Let 𝐺 = 𝐺 − VV1. First, we uncolor V𝑖 where
𝑖 = 1, 2, . . . , Δ(𝐺) − 1. Then we color VV1 with a color in
𝐿(VV1)\(𝐹(VV1)∪{𝑤(𝑢)−𝑤(V)}). Next, we color V𝑖 with a color
in 𝐿(V𝑖) \ (𝐹(V𝑖) ∪ {(𝑤(V) − 𝑤(V𝑖)}) for 𝑖 = 1, 2, . . . , Δ(𝐺) − 1;
then we obtain a total-𝐿𝐺-coloring 𝜙 of 𝐺, a contradiction to
the choice of 𝐺.

Claim 2. If 𝑑𝐻(𝑢) = 2, then 𝑑𝐺(𝑢) = 2.

Proof. Suppose to the contrary that 𝑑𝐺(𝑢) = 𝑘 ≥ 3. Let 𝑢1, 𝑢2
be the neighbors of 𝑢 and V𝑖 be all neighbors of 𝑢 which are
leaves in 𝐺 for 𝑖 = 1, 2, . . . , 𝑙 = 𝑑𝐺(𝑢) − 2.

Case 1 (𝑑𝐺(𝑢) = 3). Let 𝐺 = 𝐺 − V1 and 𝐿(𝑢V1) = 𝐿(𝑢V1) \
(𝐹(𝑢V1) ∪ {𝑤(𝑢1) − 𝑤(𝑢), 𝑤(𝑢2) − 𝑤(𝑢)}). We color 𝑢V1 with a
color in 𝐿(𝑢V1) and color V1 with a color in 𝐿(V1) \ (𝐹(V1) ∪
{𝑤(𝑢) − 𝑤(V1)}). Thus we obtain a total-𝐿𝐺-coloring 𝜙 of 𝐺,
which is a contradiction to the choice of 𝐺.

Case 2 (𝑑𝐺(𝑢) ≥ 4). Let 𝐺 = 𝐺 − {V1, . . . , V𝑙}, where 𝑙 =
𝑑𝐺(𝑢) − 2. Let 𝐴 𝑖 = 𝐿(𝑢V𝑖) − {𝜙(𝑢), 𝜙(𝑢𝑢1), 𝜙(𝑢𝑢2)}, where
𝑖 = 1, 2, . . . , 𝑙. Then |𝐴 𝑖| ≥ Δ(𝐺) − 1 ≥ 𝑙 + 1 ≥ 3, where
𝑖 = 1, 2, . . . , 𝑙. By Lemma 6, we have at least 𝑙+1 ≥ 3 color sets
available for the edge set {𝑢V𝑖 | 𝑖 = 1, 2, . . . , 𝑙} to guarantee
𝑤(𝑢) = 𝑤(𝑢𝑖) for 𝑖 = 1, 2. Since at most two color sets may
cause 𝑤(𝑢) = 𝑤(𝑢1) or 𝑤(𝑢) = 𝑤(𝑢2), we have at least one
color set available for the edge set {𝑢V𝑖 | 𝑖 = 1, 2, . . . , 𝑙}. Finally,
we color V𝑖 with the color in 𝐿(V𝑖) \ (𝐹(V𝑖)∪{𝑤(𝑢)−𝑤(V𝑖)}) for
𝑖 = 1, 2, . . . , 𝑙 = 𝑑𝐺(𝑢) − 2; then we obtain a total-𝐿𝐺-coloring
𝜙 of 𝐺, which is a contradiction to the choice of 𝐺.

Claim 3. A 2-vertex 𝑢 is not adjacent to a 3-vertex.

Proof. Suppose to the contrary that 𝑢 is adjacent to a 3-vertex
V in 𝐻. Let V1, V2 be the neighbors of V and 𝑠 be the other
neighbor of 𝑢.
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Case 1 (𝑑𝐺(V) = 3). Let 𝐺 = 𝐺 − 𝑢V. First, we uncolor 𝑢.
Next, we color 𝑢V with a color in 𝐿(𝑢V) \ (𝐹(𝑢V) ∪ {𝑤(V1) −
𝑤(V), 𝑤(V2) − 𝑤(V)}). Later, we color 𝑢 with a color in 𝐿(𝑢) \
(𝐹(𝑢)∪{𝑤(V)−𝑤(𝑢), 𝑤(𝑠)−𝑤(𝑢)}); then we obtain a total-𝐿𝐺-
coloring 𝜙 of 𝐺, which is a contradiction to the choice of 𝐺.

Case 2 (𝑑𝐺(V) ≥ 4). Let 𝑥1, 𝑥2, . . . , 𝑥𝑡 be the other neighbors
of V such that 𝑑𝐺(𝑥𝑖) = 1 for all 𝑖 = 1, 2, . . . , 𝑡 = 𝑑𝐺(𝑢) − 3. Let
𝐺 = 𝐺 − {𝑢V, V𝑥1}. First, we uncolor all vertices 𝑢 and 𝑥𝑖, 𝑖 =
1, 2, . . . , 𝑡. Consider 𝐿(V𝑥1) = 𝐿(V𝑥1) \ 𝐹(V𝑥1) and 𝐿(𝑢V) =
𝐿(𝑢V) \ 𝐹(𝑢V). We can see that |𝐿(V𝑥1)| ≥ 3 and |𝐿(𝑢V)| ≥ 2.
By Lemma 7, we can choose 𝜙(V𝑥1) ∈ 𝐿(V𝑥1) and 𝜙(𝑢V) ∈
𝐿(𝑢V) such that 𝑤(V) ̸= 𝑤(V1) and 𝑤(V) ̸= 𝑤(V2). Next, we
color 𝑢with a color in 𝐿(𝑢)\(𝐹(𝑢)∪{𝑤(V)−𝑤(𝑢), 𝑤(𝑠)−𝑤(𝑢)})
and color 𝑥𝑖 with a color in 𝐿(𝑥𝑖) \ (𝐹(𝑥𝑖) ∪ {𝑤(V) − 𝑤(𝑥𝑖)})
for 𝑖 = 1, 2, . . . , 𝑡; then we obtain a total-𝐿𝐺-coloring 𝜙 of 𝐺,
which is a contradiction to the choice of 𝐺.

Claim 4. A 4-vertex 𝑢 is adjacent to at most two 2-vertices.

Proof. Suppose to the contrary that 𝑢 is adjacent to three 2-
vertices V1, V2, V3 and the other vertex V. Let V


𝑖 be the neighbor

of V𝑖 for 𝑖 = 1, 2, 3.

Case 1 (𝑑𝐺(𝑢) = 4). Let 𝐺 = 𝐺 − 𝑢V1 and 𝐿(𝑢V1) =
𝐿(𝑢V1)\(𝐹(𝑢V1) ∪ {𝑤(V)−𝑤(𝑢)}). First, we uncolor all vertices
V1, V2, V3. Next, we color 𝑢V1 with a color in 𝐿(𝑢V1) and color
V𝑖with a color in𝐿(V𝑖)\(𝐹(V𝑖)∪{𝑤(𝑢)−𝑤(V𝑖), 𝑤(V𝑖 )−𝑤(V𝑖)}) for
𝑖 = 1, 2, 3. Thus we obtain a total-𝐿𝐺-coloring 𝜙 of 𝐺, which
is a contradiction to the choice of 𝐺.

Case 2 (𝑑𝐺(𝑢) ≥ 5). Let 𝑥1, 𝑥2, . . . , 𝑥𝑡 be the neighbors of 𝑢
such that 𝑑𝐺(𝑥𝑖) = 1 for all 𝑖 = 1, 2, . . . , 𝑡 = 𝑑𝐺(𝑢)−4. Let𝐺 =
𝐺 − 𝑢𝑥1. First, we uncolor vertices V𝑖 and 𝑥𝑗 where 1 ≤ 𝑖 ≤ 3,
1 ≤ 𝑗 ≤ 𝑡. Next, we choose𝜙(𝑢𝑥1) ∈ 𝐿(𝑢𝑥1)\(𝐹(𝑢𝑥1)∪{𝑤(V)−
𝑤(𝑢)}). After that, we color V𝑖 with a color in 𝐿(V𝑖) \ (𝐹(V𝑖) ∪
{𝑤(𝑢)−𝑤(V𝑖), 𝑤(V𝑖 )−𝑤(V𝑖)}) for 𝑖 = 1, 2, 3 and color 𝑥𝑗 with a
color in 𝐿(𝑥𝑗)\(𝐹(𝑥𝑗)∪{𝑤(𝑢)−𝑤(𝑥𝑗)}) for 𝑗 = 1, 2, . . . , 𝑡.Thus
we obtain a total-𝐿𝐺-coloring 𝜙 of𝐺, which is a contradiction
to the choice of 𝐺.

Claim 5. A 5-vertex 𝑢 is adjacent to at most four 2-vertices.

Proof. Suppose to the contrary that 𝑢 is adjacent to five 2-
vertices V1, V2, V3, V4, V5. Let 𝑥1, 𝑥2, . . . , 𝑥𝑡 be the other neigh-
bors of 𝑢 (if they exist) such that 𝑑𝐺(𝑥𝑖) = 1 for all 𝑖 =
1, 2, . . . , 𝑡 = 𝑑𝐺(𝑢) − 5 and V𝑖 be the neighbor of V𝑖 for 𝑖 =
1, 2, 3, 4, 5. Let 𝑖 = 1, 2, 3, 4, 5 and 𝑗 = 1, 2, . . . , 𝑡 = 𝑑𝐺(𝑢) − 5
and 𝐺 = 𝐺 − 𝑢V1. First, we uncolor vertices V𝑖 and 𝑥𝑗.
Next, we color 𝑢V1 with a color in 𝐿(𝑢V1) \ 𝐹(𝑢V1). After
that, we color V𝑖 with a color in 𝐿(V𝑖) \ (𝐹(V𝑖) ∪ {𝑤(𝑢) −
𝑤(V𝑖), 𝑤(V𝑖 ) − 𝑤(V𝑖)}). Finally, we color 𝑥𝑗 with a color in
𝐿(𝑥𝑗) \ (𝐹(𝑥𝑗) ∪ {𝑤(𝑢) − 𝑤(𝑥𝑗)}). Thus we obtain a total-
𝐿𝐺-coloring 𝜙 of 𝐺, which is a contradiction to the choice of
𝐺.

By Claim 1, we have Δ(𝐻) ≥ 2.
Suppose that Δ(𝐻) = 2. By Claims 1 and 2, 𝐺 is a cycle.

One can obtain that Ch∑ (𝐺) ≤ 7, a contradiction to the
choice of 𝐺.

Suppose that Δ(𝐻) = 3. By Claim 3, 𝐻 is a 3-regular
graph. Thus we have mad(𝐻) = 3, which is a contradiction.

Suppose that Δ(𝐻) ≥ 4. We complete the proof by using
the discharging method. Define an initial charge function
ch(V) = 𝑑𝐻(V) for every V ∈ 𝑉(𝐻). Next, rearrange the
weights according to the designed rule.When the discharging
is finished, we have a new charge ch(V). However, the sum
of all charges is kept fixed. Finally, we want to show that
ch(V) ≥ 3 for all V ∈ 𝑉(𝐻). This leads to the following
contradiction:

3 =
3 |𝑉 (𝐻)|

|𝑉 (𝐻)|
≤

∑V∈𝑉(𝐻) 𝑤
 (V)

|𝑉 (𝐻)|
=

∑V∈𝑉(𝐻) 𝑤 (V)
|𝑉 (𝐻)|

=
2 |𝐸 (𝐻)|

|𝑉 (𝐻)|
≤ mad (𝐻) < 3.

(1)

Let V ∈ 𝑉(𝐻). Assume that 𝑑𝐻(V) = 2 and 𝑢V ∈ 𝐸(𝐻).
Then vertex 𝑢 gives charge 1/2 to V.

Consider a vertex V ∈ 𝑉(𝐻). By Claim 1, we have 𝑑𝐻(V) ≥
2.

If 𝑑𝐻(V) = 2, then V is adjacent to at least two 4-vertices
by Claim 3. Hence ch(V) ≥ ch(V) + (2 × (1/2)) = 3.

If 𝑑𝐻(V) = 3, then ch(V) = ch(V) = 3.
If 𝑑𝐻(V) = 4, then V is adjacent to at most two 2-vertices

by Claim 4. Hence ch(V) ≥ ch(V) − (2 × (1/2)) = 3.
If 𝑑𝐻(V) = 5, then V is adjacent to at most four 2-vertices

by Claim 5. Hence ch(V) ≥ ch(V) − (4 × (1/2)) = 3.
If 𝑑𝐻(V) ≥ 6, then ch(V) ≥ ch(V) − ((1/2)𝑑𝐻(V)) =

(1/2)𝑑𝐻(V) ≥ 3.
From the above discussion, we have ∑V∈𝑉(𝐻) ch

(V) ≥
3, which is a contradiction. This completes the proof of
Theorem 8.
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