3,814 research outputs found

    The Impact of U.S. national and state level policy on the nature and scope of K-12 virtual schooling

    Full text link
    During the past five years, virtual schools in the United States have gained popularity and acceptance as viable alternatives to the traditional school system through provisions for charter schools under Title V, Part B, Subpart 1 of the Elementary and Secondary Education Act of 1965 (ESEA), as amended by the No Child Left Behind Act of 2001. This paper describes the existing federal policies that are driving the online virtual school movement, and how one state, Nevada, has set forth and interpreted specific policies regarding online distance education. In addition, this paper identifies the beliefs acting as the driving forces behind such policies in the United States and discusses implications for other countries also seeking to set forth guidelines for K-12 online distance education programs

    SAT Modulo Monotonic Theories

    Full text link
    We define the concept of a monotonic theory and show how to build efficient SMT (SAT Modulo Theory) solvers, including effective theory propagation and clause learning, for such theories. We present examples showing that monotonic theories arise from many common problems, e.g., graph properties such as reachability, shortest paths, connected components, minimum spanning tree, and max-flow/min-cut, and then demonstrate our framework by building SMT solvers for each of these theories. We apply these solvers to procedural content generation problems, demonstrating major speed-ups over state-of-the-art approaches based on SAT or Answer Set Programming, and easily solving several instances that were previously impractical to solve

    Implementing Distributed Controllers for Systems with Priorities

    Full text link
    Implementing a component-based system in a distributed way so that it ensures some global constraints is a challenging problem. We consider here abstract specifications consisting of a composition of components and a controller given in the form of a set of interactions and a priority order amongst them. In the context of distributed systems, such a controller must be executed in a distributed fashion while still respecting the global constraints imposed by interactions and priorities. We present in this paper an implementation of an algorithm that allows a distributed execution of systems with (binary) interactions and priorities. We also present a comprehensive simulation analysis that shows how sensitive to changes our algorithm is, in particular changes related to the degree of conflict in the system.Comment: In Proceedings FOCLASA 2010, arXiv:1007.499

    Independent Set, Induced Matching, and Pricing: Connections and Tight (Subexponential Time) Approximation Hardnesses

    Full text link
    We present a series of almost settled inapproximability results for three fundamental problems. The first in our series is the subexponential-time inapproximability of the maximum independent set problem, a question studied in the area of parameterized complexity. The second is the hardness of approximating the maximum induced matching problem on bounded-degree bipartite graphs. The last in our series is the tight hardness of approximating the k-hypergraph pricing problem, a fundamental problem arising from the area of algorithmic game theory. In particular, assuming the Exponential Time Hypothesis, our two main results are: - For any r larger than some constant, any r-approximation algorithm for the maximum independent set problem must run in at least 2^{n^{1-\epsilon}/r^{1+\epsilon}} time. This nearly matches the upper bound of 2^{n/r} (Cygan et al., 2008). It also improves some hardness results in the domain of parameterized complexity (e.g., Escoffier et al., 2012 and Chitnis et al., 2013) - For any k larger than some constant, there is no polynomial time min (k^{1-\epsilon}, n^{1/2-\epsilon})-approximation algorithm for the k-hypergraph pricing problem, where n is the number of vertices in an input graph. This almost matches the upper bound of min (O(k), \tilde O(\sqrt{n})) (by Balcan and Blum, 2007 and an algorithm in this paper). We note an interesting fact that, in contrast to n^{1/2-\epsilon} hardness for polynomial-time algorithms, the k-hypergraph pricing problem admits n^{\delta} approximation for any \delta >0 in quasi-polynomial time. This puts this problem in a rare approximability class in which approximability thresholds can be improved significantly by allowing algorithms to run in quasi-polynomial time.Comment: The full version of FOCS 201

    City strategy : final evaluation

    Get PDF
    The City Strategy (CS) concept was first announced in the 2006 Welfare Reform Green Paper – A new deal for welfare: Empowering people to work. CS was designed at a time of growth in the national economy to combat enduring pockets of entrenched worklessness and poverty in urban areas by empowering local institutions to come together in partnerships to develop locally sensitive solutions. It was premised on the idea that developing a better understanding of the local welfare to work arena would allow partnerships to align and pool funding and resources to reduce duplication of services and fill gaps in provision. The ‘theory of change’ underlying CS suggested that such an approach would result in more coordinated services which would be able to generate extra positive outcomes in terms of getting people into jobs and sustaining them in employment over and above existing provision. CS was initially set to run for two years from April 2007 to March 2009 in 15 CS Pathfinder (CSP) areas, varying in size from five wards in one town through single local authority areas to subregional groupings of multiple local authority areas, across Great Britain. In July 2008, the Secretary of State for Work and Pensions announced an extension for a further two years to March 2011. In April 2009, two local areas in Wales, which were in receipt of monies from the Deprived Areas Fund (DAF), were invited by the Department for Work and Pensions (DWP) to form local partnerships with a similar remit to the CSPs, albeit more limited in scope – to develop locally sensitive solutions to economic inactivity, to the CSPs. During the period that the CS initiative was operational, economic conditions changed markedly with a severe recession, followed by fragile recovery. The CSPs had to cope with ongoing changes in policy throughout the lifetime of the CS initiative, including a General Election and a new Coalition Government at Westminster early in the fourth year. While policy changes are a fact of life for local practitioners operating in the welfare to work arena, the global recession in 2008/09 marked a fundamental change in the context in which local partnerships operated

    Confusion Control in Generalized Petri Nets Using Synchronized Events

    Get PDF
    The loss of conflicting information in a Petri net (PN), usually called confusions, leads to incomplete and faulty system behavior. Confusions, as an unfortunate phenomenon in discrete event systems modeled with Petri nets, are caused by the frequent interlacement of conflicting and concurrent transitions. In this paper, confusions are defined and investigated in bounded generalized PNs. A reasonable control strategy for conflicts and confusions in a PN is formulated by proposing elementary conflict resolution sequences (ECRSs) and a class of local synchronized Petri nets (LSPNs). Two control algorithms are reported to control the appeared confusions by generating a series of external events. Finally, an example of confusion analysis and control in an automated manufacturing system is presented
    • …
    corecore