2,110 research outputs found

    Navigating the future: Building adaptive capacity in international schools

    Get PDF
    Given the pace and complexity of change for schools globally, this study investigates how leaders of international schools are navigating the future for the organisations they lead. The research draws on two pieces of existing literature, firstly that of Adaptive Leadership Theory which has mainly evolved outside the education sector and secondly literature related to the School as a Learning Organisation (SLO) which has not specifically been defined within the international school context. This study explores how relevant and applicable these two concepts are for international schools and investigates what the relationship is between the two concepts. This study is qualitative, using eleven semi-structured interviews with educational leaders working in the international school sector. The participants within this study defined, with a strong degree of consistency, their view of schools as adaptive organisations and of adaptive leadership, identifying three overarching themes: openness, strong sense of identity and empowerment. Participants also defined a set of adaptive leadership behaviours which they viewed as essential for growing adaptive capacity in international school leaders. From the data analysed within this study, the SLO concept is relevant and applicable to an international school context. This research contributes to a gap in the knowledge base relating to adaptivity in the education context, specifically in relation to international schools. Detail is provided on the characteristics of an adaptive international school and adaptive international school leadership. The research provides confidence for the applicability of the SLO model in international schools and defines the interrelationship between this and the concept of adaptivity

    Thinking- Skins

    Get PDF
    Under the guiding concept of a thinking skin, the research project examines the transferability of cyber-physical systems to the application field of façades. It thereby opens up potential increases in the performance of automated and adaptive façade systems and provides a conceptual framework for further research and development of intelligent building envelopes in the current age of digital transformation. The project is characterized by the influence of digital architectural design methods and the associated computational processing of information in the design process. The possible establishment of relationships and dependencies in an architecture understood as a system, in particular, are the starting point for the conducted investigation. With the available automation technologies, the possibility of movable building constructions, and existing computer-based control systems, the technical preconditions for the realisation of complex and active buildings exist today. Against this background, dynamic and responsive constructions that allow adaptations in the operation of the building are a current topic in architecture. In the application field of the building envelope, the need for such designs is evident, particularly with regards to the concrete field of adaptive façades. In its mediating role, the façade is confronted with the dynamic influences of the external microclimate of a building and the changing comfort demands of the indoor climate. The objective in the application of adaptive façades is to increase building efficiency by balancing dynamic influencing factors and requirements. Façade features are diverse and with the increasing integration of building services, both the scope of fulfilled façade functions and the complexity of today’s façades increase. One challenge is the coordination of adaptive functions to ensure effective reactions of the façade as a complete system. The ThinkingSkins research project identifies cyber-physical systems as a possible solution to this challenge. This involves the close integration of physical systems with their digital control. Important features are the decentralized organization of individual system constituents and their cooperation via an exchange of information. Developments in recent decades, such as the miniaturisation of computer technology and the availability of the Internet, have established the technical basis required for these developments. Cyber-physical systems are already employed in many fields of application. Examples are decentralized energy supply, or transportation systems with autonomous vehicles. The influence is particularly evident in the transformation of the industrial sector to Industry 4.0, where formerly mechatronic production plants are networked into intelligent technical systems with the aim of achieving higher and more flexible productivity. In the ThinkingSkins research project it is assumed that the implementation of cyber-physical systems based on the role model of cooperating production plants in IIndustry 4.0 can contribute to an increase in the performance of façades. Accordingly, the research work investigates a possible transfer of cyber-physical systems to the application field of building envelopes along the research question: How can cyber-physical systems be applied to façades, in order to enable coordinated adaptations of networked individual façade functions? To answer this question, four partial studies are carried out, which build upon each other. The first study is based on a literature review, in which the understanding and the state-of-the-art development of intelligent façade systems is examined in comparison to the exemplary field of application of cyber-physical systems in the manufacturing industry. In the following partial study, a second literature search identifies façade functions that can be considered as components of a cyber-physical façade due to their adaptive feasibility and their effect on the façade performance. For the evaluation of the adaptive capabilities, characteristics of their automated and adaptive implementation are assigned to the identified façade functions. The resulting superposition matrix serves as an organizational tool for the third investigation of the actual conditions in construction practice. In a multiple case study, realized façade projects in Germany are examined with regard to their degree of automation and adaptivity. The investigation includes interviews with experts involved in the projects as well as field studies on site. Finally, an experimental examination of the technical feasibility of cyber-physical façade systems is carried out through the development of a prototype. In the sense of an internet of façade functions, the automated adaptive façade functions ventilation, sun protection as well as heating and cooling are implemented in decentrally organized modules. They are connected to a digital twin and can exchange data with each other via a communication protocol. The research project shows that the application field of façades has not yet been exploited for the implementation of cyber-physical systems. With the automation technologies used in building practice, however, many technical preconditions for the development of cyber-physical façade systems already exist. Many features of such a system are successfully implemented within the study by the development of a prototype. The research project therefore comes to the conclusion that the application of cyber-physical systems to the façade is possible and offers a promising potential for the effective use of automation technologies. Due to the lack of artificial intelligence and machine learning strategies, the project does not achieve the goal of developing a façade in the sense of a true ThinkingSkin as the title indicates. A milestone is achieved by the close integration of the physical façade system with a decentralized and integrated control system. In this sense, the researched cyber-physical implementation of façades represents a conceptual framework for the realisation of corresponding systems in building practice, and a pioneer for further research of ThinkingSkins

    ThinkingSkins:

    Get PDF
    New technologies and automation concepts emerge in the digitalization of our environment. This is, for example, reflected by intelligent production systems in Industry 4.0. A core aspect of such systems is their cyber-physical implementation, which aims to increase productivity and flexibility through embedded computing capacities and the cooperation of decentrally networked production plants. This development stage of automation has not yet been achieved in the current state-of-the-art of façades. Being responsible for the execution of adaptive measures, façade automation is part of hierarchically and centrally organised Building Automation Systems (BAS). The research project ThinkingSkins is guided by the hypothesis that, aiming at an enhanced overall building performance, façades can be implemented as cyber-physical systems. Accordingly, it addresses the research question: How can cyber-physical systems be applied to façades, in order to enable coordinated adaptations of networked individual façade functions? The question is approached in four partial investigations. First, a comprehensive understanding of intelligent systems in both application fields, façades and Industry 4.0, is elaborated by a literature review. Subsequently, relevant façade functions are identified by a second literature review in a superposition matrix, which also incorporates characteristics for a detailed assessment of each function’s adaptive capacities. The third investigation focuses on existing conditions in building practice by means of a multiple case study analysis. Finally, the technical feasibility of façades implemented as cyber-physical systems is investigated by developing a prototype. The research project identifies the possibility and promising potential of cyberphysical façades. As result, the doctoral dissertation provides a conceptual framework for the implementation of such systems in building practice and for further research

    Learning Content and Software Evaluation and Personalisation Problems

    Get PDF
    The paper aims to analyse several scientific approaches how to evaluate, implement or choose learning content and software suitable for personalised users/learners needs. Learning objects metadata customisation method as well as the Method of multiple criteria evaluation and optimisation of learning software represented by the experts' additive utility function are analysed in more detail. The value of the experts' additive utility function depends on the learning software quality evaluation criteria, their ratings and weights. The Method is based on the software engineering Principle which claims that one should evaluate the learning software using the two different groups of quality evaluation criteria - `internal quality' criteria defining the general software quality aspects, and `quality in use' criteria defining software personalisation possibilities. The application of the Method and Principle for the evaluation and optimisation of learning software is innovative in technology enhanced learning theory and practice. Application of the method of the experts' (decision makers') subjectivity minimisation analysed in the paper is also a new aspect in technology enhanced learning science. All aforementioned approaches propose an efficient practical instrumentality how to evaluate, design or choose learning content and software suitable for personalised learners needs

    Methodological Approach and Technological Framework to Break the Current Limitations of MOOC Model

    Get PDF
    [EN]A methodological approach and technological framework are proposed to improve learning outcomes in Massive Open Online Courses (MOOCs), taking into account the distinguishing features of this kind of massive courses over traditional online courses. The proposed methodology integrates the learning strategies of xMOOCs and cMOOCs with adaptivity and knowledge management capabilities. In order to test the learning results of the methodology and the need of supporting technological framework for it, a MOOC was made based on the methodological proposal and using a MOOC platform called MiríadaX. The quantitative results have improved considerably the MOOC completion rate (compared to the average of the rest of MOOC MiríadaX) and the qualitative results show a great satisfaction with the learning outcomes of the learners. However, the technological environment did not allow us develop all the methodological capabilities and it was one of the main concerns of the MOOC attendances. Therefore, from the analysis of collected data and considering the limitations of current MOOC technology platforms, a technological framework has been designed. It may incorporate the proposed methodology in an efficient and effective way. Based on this proposed technological framework, a MOOC platform has been developed and delivered, used by three Spanish Universities to offer MOOCs. This new platform and the supported technological framework have been tested with a first pilot with promising result

    Designing adaptivity in educational games to improve learning

    Get PDF
    The study of pedagogy has shown that students have different ways of learning and processing information. Students in a classroom learn best when being taught by a teacher who is able to adapt and/or change the pedagogical model being used, to better suit said students and/or the subject being taught. When considering other teaching mediums such as computer-assisted learning systems or educational video games, research also identified the benefits of adapting educational features to better teach players. However, effective methods for adaptation in educational video games are less well researched.This study addresses four points regarding adaptivity within educational games. Firstly, a framework for making any game adaptive was extracted from the literature. Secondly, an algorithm capable of monitoring, modelling and executing adaptations was developed and explained using the framework. Thirdly, the algorithm's effect on learning gains in players was evaluated using a customised version of Minecraft as the educational game and topics from critical thinking as the educational content. Lastly, a methodology explaining the process of utilising the algorithm with any educational game and the evaluation of said methodology were detailed

    Management: thesis, antithesis, synthesis

    Get PDF
    Increasingly, managers live in a world of paradox. For instance, they are told that they must manage by surrendering control and that they must stay on top by continuing to learn, thus admitting that they do not fully know what they do. Paradox is becoming increasingly pervasive in and around organizations, increasing the need for an approach to management that allows both researchers and practitioners to address these paradoxes. A synthesis is required between such contradictory forces as efficiency and effectiveness, planning and action, and structure and freedom. A dialectical view of strategy and organizations, built from four identifiable principles of simultaneity, locality, minimality and generality, enables us to build the tools to achieve such synthesis. Put together, these principles offer new perspectives for researchers to look at management phenomena and provide practitioners with a means of addressing the increasingly paradoxical world that they confront.dialectics, improvisation, paradox, synthesis
    corecore