3 research outputs found

    New hybrid ensemble method for anomaly detection in data science

    Get PDF
    Anomaly detection is a significant research area in data science. Anomaly detection is used to find unusual points or uncommon events in data streams. It is gaining popularity not only in the business world but also in different of other fields, such as cyber security, fraud detection for financial systems, and healthcare. Detecting anomalies could be useful to find new knowledge in the data. This study aims to build an effective model to protect the data from these anomalies. We propose a new hyper ensemble machine learning method that combines the predictions from two methodologies the outcomes of isolation forest-k-means and random forest using a voting majority. Several available datasets, including KDD Cup-99, Credit Card, Wisconsin Prognosis Breast Cancer (WPBC), Forest Cover, and Pima, were used to evaluate the proposed method. The experimental results exhibit that our proposed model gives the highest realization in terms of receiver operating characteristic performance, accuracy, precision, and recall. Our approach is more efficient in detecting anomalies than other approaches. The highest accuracy rate achieved is 99.9%, compared to accuracy without a voting method, which achieves 97%

    Providing Secure and Reliable Communication for Next Generation Networks in Smart Cities

    Get PDF
    Finding a framework that provides continuous, reliable, secure and sustainable diversified smart city services proves to be challenging in today’s traditional cloud centralized solutions. This article envisions a Mobile Edge Computing (MEC) solution that enables node collaboration among IoT devices to provide reliable and secure communication between devices and the fog layer on one hand, and the fog layer and the cloud layer on the other hand. The solution assumes that collaboration is determined based on nodes’ resource capabilities and cooperation willingness. Resource capabilities are defined using ontologies, while willingness to cooperate is described using a three-factor node criteria, namely: nature, attitude and awareness. A learning method is adopted to identify candidates for the service composition and delivery process. We show that the system does not require extensive training for services to be delivered correct and accurate. The proposed solution reduces the amount of unnecessary traffic flow to and from the edge, by relying on nodeto-node communication protocols. Communication to the fog andcloud layers is used for more data and computing-extensive applications, hence, ensuring secure communication protocols to the cloud. Preliminary simulations are conducted to showcase the effectiveness of adapting the proposed framework to achieve smart city sustainability through service reliability and security. Results show that the proposed solution outperforms other semicooperative and non-cooperative service composition techniques in terms of efficient service delivery and composition delay, service hit ratio, and suspicious node identification

    Validation of design artefacts for blockchain-enabled precision healthcare as a service.

    Get PDF
    Healthcare systems around the globe are currently experiencing a rapid wave of digital disruption. Current research in applying emerging technologies such as Big Data (BD), Artificial Intelligence (AI), Machine Learning (ML), Deep Learning (DL), Augmented Reality (AR), Virtual Reality (VR), Digital Twin (DT), Wearable Sensor (WS), Blockchain (BC) and Smart Contracts (SC) in contact tracing, tracking, drug discovery, care support and delivery, vaccine distribution, management, and delivery. These disruptive innovations have made it feasible for the healthcare industry to provide personalised digital health solutions and services to the people and ensure sustainability in healthcare. Precision Healthcare (PHC) is a new inclusion in digital healthcare that can support personalised needs. It focuses on supporting and providing precise healthcare delivery. Despite such potential, recent studies show that PHC is ineffectual due to the lower patient adoption in the system. Anecdotal evidence shows that people are refraining from adopting PHC due to distrust. This thesis presents a BC-enabled PHC ecosystem that addresses ongoing issues and challenges regarding low opt-in. The designed ecosystem also incorporates emerging information technologies that are potential to address the need for user-centricity, data privacy and security, accountability, transparency, interoperability, and scalability for a sustainable PHC ecosystem. The research adopts Soft System Methodology (SSM) to construct and validate the design artefact and sub-artefacts of the proposed PHC ecosystem that addresses the low opt-in problem. Following a comprehensive view of the scholarly literature, which resulted in a draft set of design principles and rules, eighteen design refinement interviews were conducted to develop the artefact and sub-artefacts for design specifications. The artefact and sub-artefacts were validated through a design validation workshop, where the designed ecosystem was presented to a Delphi panel of twenty-two health industry actors. The key research finding was that there is a need for data-driven, secure, transparent, scalable, individualised healthcare services to achieve sustainability in healthcare. It includes explainable AI, data standards for biosensor devices, affordable BC solutions for storage, privacy and security policy, interoperability, and usercentricity, which prompts further research and industry application. The proposed ecosystem is potentially effective in growing trust, influencing patients in active engagement with real-world implementation, and contributing to sustainability in healthcare
    corecore