16,151 research outputs found

    Experimental and computational analyses reveal that environmental restrictions shape HIV-1 spread in 3D cultures

    No full text
    Here, using an integrative experimental and computational approach, Imle et al. show how cell motility and density affect HIV cell-associated transmission in a three-dimensional tissue-like culture system of CD4+ T cells and collagen, and how different collagen matrices restrict infection by cell-free virions

    Thrombospondin-3 augments injury-induced cardiomyopathy by intracellular integrin inhibition and sarcolemmal instability.

    Get PDF
    Thrombospondins (Thbs) are a family of five secreted matricellular glycoproteins in vertebrates that broadly affect cell-matrix interaction. While Thbs4 is known to protect striated muscle from disease by enhancing sarcolemmal stability through increased integrin and dystroglycan attachment complexes, here we show that Thbs3 antithetically promotes sarcolemmal destabilization by reducing integrin function, augmenting disease-induced decompensation. Deletion of Thbs3 in mice enhances integrin membrane expression and membrane stability, protecting the heart from disease stimuli. Transgene-mediated overexpression of α7β1D integrin in the heart ameliorates the disease predisposing effects of Thbs3 by augmenting sarcolemmal stability. Mechanistically, we show that mutating Thbs3 to contain the conserved RGD integrin binding domain normally found in Thbs4 and Thbs5 now rescues the defective expression of integrins on the sarcolemma. Thus, Thbs proteins mediate the intracellular processing of integrin plasma membrane attachment complexes to regulate the dynamics of cellular remodeling and membrane stability

    Il-15/il-15rα signalling and synaptic transmission: a crosstalk between the immune and the nervous system?

    Get PDF
    Immune and nervous system have been traditionally considered separately, but from ‘90s many studies had unraveled the deep interconnection and interdependence between these two systems, enough to coin the term “neuroimmune system” to define this relationship. While it was well known that central nervous system (CNS) actively communicates with the immune system to control immune responses both centrally and peripherally, the opposite action was just recently discovered. Related to the role of immune system in defending and react, the interactions between immune system and CNS have been classically studied in contexts of neuroinflammation such as trauma, injury and disease [1] [2]. Recent evidences about the neuroinflammatory process in non-pathological conditions and the discovery of the important involvement of adaptive immune system in healthy brain development and activity [3], have opened many questions about physiological neuroimmune cross-talk. In this view, the cytokine network, well known to operate in a bidirectional way affecting both immune and nervous system, has a pivotal role in neuroimmune cross-talk [4]. Traditionally seen as immunomodulators, in the last years has been evident that cytokines are also potent neuromodulators [5]. In the complex cytokine system, interleukin 15 (IL-15) is considered a bridge between adaptive and innate immune system and it is one of the first upregulated cytokines in neuroinflammation [6]. It has many bioregulatory roles which range from those of modulator of selected adaptive immune responses [7] [8] and central player in the development and homeostasis of several immunocyte populations [9] to those of a potent, general inhibitor of apoptosis in multiple systems [9]. Interestingly, has been shown that IL-15 and IL-15Rα deletions affect memory and neurotransmitters concentration suggesting a major role of this signalling in cerebral functions which cannot be compensated during the development [10] [11] [12]. IL-15Rα KO mice, in particular, show decreased retention of spatial memory and contextual fear, both related to hippocampus-dependent memory, and alteration in GABA concentration. Their hippocampal ultrastructure is, however, well preserved, suggesting that the modulatory changes may involve neural plasticity even if the exact role of IL15 in modulating neurotransmission has not been investigated so far. The understandings about the mechanism by which IL-15/IL-15Rα system affect the synaptic transmission may be useful to get insight into the mechanisms of cross talk between the immune and the nervous system and eventually to develop strategies to treat pathologies whose symptoms are memory impairments and neuroinflammation

    Towards a cyber physical system for personalised and automatic OSA treatment

    Get PDF
    Obstructive sleep apnea (OSA) is a breathing disorder that takes place in the course of the sleep and is produced by a complete or a partial obstruction of the upper airway that manifests itself as frequent breathing stops and starts during the sleep. The real-time evaluation of whether or not a patient is undergoing OSA episode is a very important task in medicine in many scenarios, as for example for making instantaneous pressure adjustments that should take place when Automatic Positive Airway Pressure (APAP) devices are used during the treatment of OSA. In this paper the design of a possible Cyber Physical System (CPS) suited to real-time monitoring of OSA is described, and its software architecture and possible hardware sensing components are detailed. It should be emphasized here that this paper does not deal with a full CPS, rather with a software part of it under a set of assumptions on the environment. The paper also reports some preliminary experiments about the cognitive and learning capabilities of the designed CPS involving its use on a publicly available sleep apnea database
    corecore