21,692 research outputs found

    Pengembangan Algoritma Pembelajaran Untuk Jaringan Syaraf Tiruan Diagonal Recurrent Dalam Sistem Kendali Derau Akustik Secara Aktif

    Full text link
    Active Noise Control (ANC) system emphasizes at USAge of adaptation algorithm and adaptive control structure. In this research is presented experimental result of active noise control system at free space using Diagonal Recurrent Artificial Neural Network control structure. The objective of this research is to develop an Extended Kalman Filter (EKF) algorithm for Diagonal Recurrent Artificial Neural Network control structure, named as Extended Kalman Filter Diagonal Recurrent (EKFDR) algorithm. Experimental result shows that amount of neuron in artificial neural network can be reduced by using diagonal recurrent artificial neural network, without lessening control system performance. Nonlinearity of secondary path in active noise control system can complicate control process. Experimental result shows that diagonal recurrent artificial neural network with EKFDR algorithm produced a better performance than linear controller in compensating of secondary path nonlinearity

    Symmetric complex-valued RBF receiver for multiple-antenna aided wireless systems

    No full text
    A nonlinear beamforming assisted detector is proposed for multiple-antenna-aided wireless systems employing complex-valued quadrature phase shift-keying modulation. By exploiting the inherent symmetry of the optimal Bayesian detection solution, a novel complex-valued symmetric radial basis function (SRBF)-network-based detector is developed, which is capable of approaching the optimal Bayesian performance using channel-impaired training data. In the uplink case, adaptive nonlinear beamforming can be efficiently implemented by estimating the system’s channel matrix based on the least squares channel estimate. Adaptive implementation of nonlinear beamforming in the downlink case by contrast is much more challenging, and we adopt a cluster-variationenhanced clustering algorithm to directly identify the SRBF center vectors required for realizing the optimal Bayesian detector. A simulation example is included to demonstrate the achievable performance improvement by the proposed adaptive nonlinear beamforming solution over the theoretical linear minimum bit error rate beamforming benchmark

    Comparative evaluation of approaches in T.4.1-4.3 and working definition of adaptive module

    Get PDF
    The goal of this deliverable is two-fold: (1) to present and compare different approaches towards learning and encoding movements us- ing dynamical systems that have been developed by the AMARSi partners (in the past during the first 6 months of the project), and (2) to analyze their suitability to be used as adaptive modules, i.e. as building blocks for the complete architecture that will be devel- oped in the project. The document presents a total of eight approaches, in two groups: modules for discrete movements (i.e. with a clear goal where the movement stops) and for rhythmic movements (i.e. which exhibit periodicity). The basic formulation of each approach is presented together with some illustrative simulation results. Key character- istics such as the type of dynamical behavior, learning algorithm, generalization properties, stability analysis are then discussed for each approach. We then make a comparative analysis of the different approaches by comparing these characteristics and discussing their suitability for the AMARSi project
    • 

    corecore