35,630 research outputs found

    Network-Aware Stream Query Processing in Mobile Ad-Hoc Networks

    Get PDF

    Machine Learning in Wireless Sensor Networks: Algorithms, Strategies, and Applications

    Get PDF
    Wireless sensor networks monitor dynamic environments that change rapidly over time. This dynamic behavior is either caused by external factors or initiated by the system designers themselves. To adapt to such conditions, sensor networks often adopt machine learning techniques to eliminate the need for unnecessary redesign. Machine learning also inspires many practical solutions that maximize resource utilization and prolong the lifespan of the network. In this paper, we present an extensive literature review over the period 2002-2013 of machine learning methods that were used to address common issues in wireless sensor networks (WSNs). The advantages and disadvantages of each proposed algorithm are evaluated against the corresponding problem. We also provide a comparative guide to aid WSN designers in developing suitable machine learning solutions for their specific application challenges.Comment: Accepted for publication in IEEE Communications Surveys and Tutorial

    XML Document Adaptation Queries (XDAQ)

    Get PDF
    Adaptive web applications combine data retrieval on the web with reasoning so as to generate context dependent contents. The data is retrieved either as content or as context specifications. Content data is, for example, fragments of a textbook or e-commerce catalogue, whereas context data is, for example, a user model or a device profile. Current adaptive web applications are often implemented using ad hoc and heterogeneous techniques. This paper describes a novel approach called ā€XML Document Adaptation Queries (XDAQ)ā€ requiring less heterogeneous software components. The approach is based on using a web query language for data retrieval (content as well as context) and on a novel generic formalism to express adaptation. The approach is generic in the sense that it is applicable with all web query and transformation languages, for example with XQuery and XSLT

    Look No Further: Adapting the Localization Sensory Window to the Temporal Characteristics of the Environment

    Full text link
    Many localization algorithms use a spatiotemporal window of sensory information in order to recognize spatial locations, and the length of this window is often a sensitive parameter that must be tuned to the specifics of the application. This letter presents a general method for environment-driven variation of the length of the spatiotemporal window based on searching for the most significant localization hypothesis, to use as much context as is appropriate but not more. We evaluate this approach on benchmark datasets using visual and Wi-Fi sensor modalities and a variety of sensory comparison front-ends under in-order and out-of-order traversals of the environment. Our results show that the system greatly reduces the maximum distance traveled without localization compared to a fixed-length approach while achieving competitive localization accuracy, and our proposed method achieves this performance without deployment-time tuning.Comment: Pre-print of article appearing in 2017 IEEE Robotics and Automation Letters. v2: incorporated reviewer feedbac

    Vision systems with the human in the loop

    Get PDF
    The emerging cognitive vision paradigm deals with vision systems that apply machine learning and automatic reasoning in order to learn from what they perceive. Cognitive vision systems can rate the relevance and consistency of newly acquired knowledge, they can adapt to their environment and thus will exhibit high robustness. This contribution presents vision systems that aim at flexibility and robustness. One is tailored for content-based image retrieval, the others are cognitive vision systems that constitute prototypes of visual active memories which evaluate, gather, and integrate contextual knowledge for visual analysis. All three systems are designed to interact with human users. After we will have discussed adaptive content-based image retrieval and object and action recognition in an office environment, the issue of assessing cognitive systems will be raised. Experiences from psychologically evaluated human-machine interactions will be reported and the promising potential of psychologically-based usability experiments will be stressed
    • ā€¦
    corecore