
Cost Efficient, Adaptive Reasoning Strategies for
Pervasive Service Discovery

Luke A Steller, Shonali Krishnaswamy and Mohamed M. Gaber
Monash University,

900 Dandenong Road,
Caulfield East, VIC, Australia.

+61 3990 32000
{Luke.Steller, Shonali.Krishnaswamy, Mohamed.Gaber}@infotech.monash.edu.au

ABSTRACT
With the emergence of high-end smart phones / PDAs there is an
emerging opportunity to enrich mobile / pervasive services with
semantic reasoning. This paper presents novel strategies for
optimising semantic reasoning for realising semantic applications
and services on mobile devices. Our mTableaux algorithm
optimises the reasoning process to facilitate service selection.
Since even optimised reasoning may be too resource intensive to
complete, depending on ontology size and resource availability,
we also outline our adaptive reasoning strategy which reduces
result accuracy when resources become low. We also evaluate the
impact of our strategies on performance and accuracy and show
that mTableaux significantly improves performance.

Categories and Subject Descriptors
I.2.11 [Artificial Intelligence]: Distributed Artificial Intelligence
– Intelligent agents.

General Terms
Performance, Design, Experimentation.

Keywords
Optimised Mobile Reasoning, Approximate Reasoning, Pervasive
Semantic Discovery.

1. INTRODUCTION
The rapid expansion in uptake of mobile devices and in their
processing capabilities provides many new opportunities for
mobile users to access services and information in mobile
environments. However, in order to realise these opportunities
several new challenges must be addressed. Mobile environments
are extremely dynamic, meaning that often devices have not met
the other devices in their area before. As a result, uniform
software abstraction and loose coupling is paramount in order to
achieve interoperability between the requester and providers by

adopting a Mobile Service Oriented Architectures (SOA). Mobile
SOA classes range from service centric approaches in which a
high-end broker node provides service matching capabilities
requiring managed infrastructure provision, to pure peer-to-peer
(P2P) approaches in which all nodes are equal and dynamically
form an ad-hoc network of requester and provider nodes on the
fly [1]. However, reliance on a centralised broker node means that
when the broker becomes unreachable, the whole environment is
broken. Since mobile nodes are less reliable than fixed nodes, due
to constant disconnection and mobility, requiring server centric
approaches is often not viable. Conversely the emergence of
semantic web languages, which provide a powerful means to
describe services by meaning rather than syntactic equivalence,
require resource intensive reasoning.

Advances in device capability mean that mobile devices can act
not only as service consumers but also as service providers or will
do so in the near future [2, 3] and can be migrated to another
device if a mobile node moves out of range and becomes
unavailable [4]. As such, we advocate the need to support a
decentralised approach to service selection, such that reasoning is
conducted on the mobile device itself. We identify three
decentralised environment examples. Figure 1 illustrates a service
based, centralised approach, while figure 2 illustrates each
example on-device, decentralised approach.

WiFi

Service
matching broker

Service
Provider

Service
Requesters

Centralised

Performs all
service

matching on
users behalf

Figure 1. Server-based approach to service selection.

WiFi /
Bluetooth

Expose
consistent
ontology

Download
ontology
while in
range

Perform
‘on-board’
matching
on needs

basis

Service
Requesters

Ontology
repository

Service
Provider

WiFi /
Bluetooth

Service Providers
& Requestors

Service 1
Service 2

Service n

Requester
Application

Decentralised (a) Decentralised (b) Decentralised (c)

Figure 2. On-device approaches to service selection.

A centralised approach often comes are a significant financial cost
to the user and creates a potential performance bottleneck and
single point of failure. Alternatively, in figure 2(a) the services

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
ICPS’09, July 13–17, 2009, London, United Kingdom.
Copyright 2009 ACM 978-1-60558-644-1/09/07…$5.00.

11

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Portsmouth University Research Portal (Pure)

https://core.ac.uk/display/29578713?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

themselves are provided by a fixed node however centralised
brokering/matching is not provided. Instead the user’s device
downloads ontologies and performs the reasoning on-demand at
the user’s request. This avoids the financial costs in provision of
brokering and the drawbacks of a centralised approach. For
example, a user’s phone downloads ontologies in a foreign city
centre as she walks past advertisement points.

Figure 2(b) is a pure mobile ad-hoc network. For instance,
students sharing data on a field trip [5], emergency situations,
traffic information sharing, etc. In figure 2(c), the services reside
on the user’s own device, for instance, Google1 and Yahoo2
already offer many mobile applications such as blogging, news,
finance, sports, etc, which may be installed or removed depending
on the user’s needs and the Apple iPhone3 advertises itself as
having “35,000 apps. And counting.”.

All of these three on-device, decentralised configurations (in
figure 2) alleviate the need for high level of infrastructure
provision, the risk of no service when out of network range, and
reduce consumption of precious device battery power, involved in
constant network usage. In addition, it is easy to deploy and
extremely scalable because the number of devices has no impact
on performance and making it very suitable to some
environments.

As such, in this paper, we address the key issue of providing
highly optimised semantic reasoning. As a consequence, our
reasoner will also function on a mobile device, to provide on-
device reasoning. Tableaux algorithm is well known and used by
reasoners such as Pellet, RacerPro and FaCT++. We aim to
optimise Tableaux in order to enable these reasoners to function
in a computationally cost-efficient manner on a mobile device. To
this end, we present our mTableaux algorithm, which implements
strategies to optimise description logic (DL) reasoning tasks so
that relatively large reasoning tasks of several hundred individuals
and classes may function on small devices. However, these
optimisations may not be sufficient to effectively compare a
request against many potential services on a mobile device. For
instance a reasoning task may be too large to complete entirely,
with the resources available. Therefore, we also provide an
adaptive reasoning which matches the most important request
conditions (to the user) first to make the best use of processing
time available and support partial matching. We present our
approach, a prototype and experimental evaluations which
demonstrate the feasibility of the semantic service discovery to
operate on a mobile device.

This paper takes an important step forward in developing scalable
semantic reasoning techniques which are useful for both mobile /
pervasive and standard service selection algorithms. The
remainder of the paper is structured as follows. In section 2 we
describe related work. In section 3 we present our discovery
architecture, discussion about semantic reasoning and overview of
our strategies. In section 4 we describe our strategies to optimise
the Tableaux algorithm. Since further performance gains may be
needed for mobile reasoning on large ontologies or requests, we

1 www.google.com/mobile
2 www.yahoo.com/mobile
3 www.apple.com/iphone

also provide in section 5, strategies which balance efficiency with
accuracy. In section 6 we discuss our implementation and provide
evaluations of our work. Finally in section 7 we conclude the
paper.

2. RELATED WORK
While current service discovery architectures such as Jini [6],
UPnP do not make use of semantic languages, there is a growing
emergence of DAML-S/OWL-S semantic matchmakers such as
CMU Matchmaker [7] which requires a centralised high-end node
to perform reasoning using Racer. DIANE [8] is designed for ad-
hoc service discovery and defines its own semantic language.
Architectures such as Gaia [9] provide semantically driven
context middleware utilising FaCT++, and Josef [10] establishes a
virtual mobile which resides in part on a high-end node, for
resource intensive activities. EASY [11] extends notions from the
CMU matchmaker to take context and QoS into consideration and
performs indexed classification of the ontology hierarchy offline
such that subsequent lookup is much faster. However all of these
architectures require the existence of a high-end central node, due
to the fact that semantic reasoners used by these architectures
(including Prolog, Lisp, Jess, FaCT++, Pellet, RacerPro and
KAON2) are all resource intensive. Limited resources are the
biggest barrier when enabling mobile semantic web services for
mobile terminals [12], because current reasoners cannot be
deployed to resource constrained devices in their current form.

Gu et. al. [12] have developed a framework which provides an
RDF parser, reasoner and sRDQL query engine which runs on
mobile devices on J2ME with acceptable performance. The main
drawback is that it only supports a subset of semantic
technologies and the reasoning engine supports only forward
chaining rule inference. It does not support backward chaining or
OWL-DL reasoning.

Kleeman et. al. [13] have developed KRHyper, a novel first order
logic (FOL) reasoner for deployment on resource constrained
devices. In order to use DL with KRHyper it must be transformed
into a set of disjunctive first order logic clauses. It does not utilise
caching schemes which incur unnecessary overhead and memory
consumption for smaller tasks, but optimise larger tasks.
Performance comparisons with RacerPro show that it performs
better for small tasks and not as well for larger tasks. This FOL
reasoner meets the goal of providing competitive performance
results with a DL reasoner. However, it still suffers from “Out of
Memory” errors when the reasoning tasks becomes too large for a
small device to handle.

Approximate reasoning is suggested to manage the trade-off
between efficiency and precision by approximating the answer
given. For instance [14] compares ontology terms by Google
distance, but this requires Internet access to Google. [15]
disregards non-horn clauses, to provide a faster but less accurate
result by resulting reasoner expressivity. [16] provides a novel
approach which iteratively continues matching conditions until
there is no more time to continue and assumes a match if all
conditions checked so far, were matched. [17] builds on this work
to provide conjunctive query answering and instance retrieval.
However, these approaches fail to take into consideration the
importance of particular attributes and match these first to provide
a service match and level of confidence.

12

Therefore, there is a need for an optimised semantic reasoner
which performs better than currently available reasoners which is
also resource-aware and can therefore reduce accuracy of results
when a completely accurate result is not possible given resource
or time constraints. In the next section we describe our novel
architecture to meet this need.

3. COST EFFICIENT AND ADAPTIVE
DISCOVERY
In this section we provide an overview of our architecture and
semantic reasoning. We also provide a detailed overview of our
mTableaux optimisation and adaptive reasoning strategies.

3.1 Architecture
Our service selection architecture comprises several modules,
which are illustrated in figure 3. Our architecture supports two
main goals 1. optimised service discovery onboard small devices,
2. adaptive discovery, such that result accuracy can be reduced
when there is insufficient resources available to complete a
service request.

In our architecture, the service requester submits a request RQ for
a service to the Discovery Manager. This manager loads
appropriate potential services and terms from the database of
ontologies. The Discovery Manager iteratively compares each
potential service with the request RQ. It does this by asking the
Semantic Reasoner module whether the potential service
advertisement can be inferred to be a member of the RQ
definition. The Discovery Manager interacts with the Context
Manager to retrieve resource context information from the user’s
device or explicit and implicit user preferences. For instance,
closer services may be preferred to services which are further
away. Therefore, preferred service advertisements (based on user
preferences) are checked by the Semantic Reasoner, first.

Semantic Reasoner
mTableaux

Context
Manager

Discovery ManagerService
Request DB of OWL

Ontologies

Service
Requester

Resource Time

Location
User Preferences

xyz

Figure 3. Pervasive Service Discovery Architecture.

The focus of this paper is the optimisation and adaptive reasoning
strategies which are implemented in mTableaux, within the
Semantic Reasoner module. mTableaux addresses the need for
scalable reasoning on a mobile device by providing strategies to
optimise the reasoning process and balance accuracy with
efficiency. In the next section we describe our mobile reasoning
strategies, employed by the mTableaux module, to achieve this.

3.2 Tableaux Reasoners
The effective employment of semantic languages requires the use
of semantic reasoners such as Pellet, FaCT++, RacerPro and
KAON2. Most of these reasoners utilise the widely used Tableaux
[18] algorithm. DL Tableaux reasoners, such as Pellet, reduce all
reasoning tasks to a consistency check. Tableaux is a branching
algorithm, in which disjunctions form combinations of branches
in the tree.

Reasoners contain a knowledge base (KB), let K denote this KB,
to which inference queries are performed. K encompasses

terminological knowledge TBox and assertional knowledge ABox,
such that K = TBox∪ ABox. TBox encompasses class definitions
and expressions while ABox encompasses individual and literal
assertions of class membership and relations. Inferred
membership for an individual I to class type RQ implies I ∈ RQ,
where RQ∈TBox and I∈ABox. RQI ∈ is checked by adding

RQ¬ as a type to I, in a consistent ontology. If a clash exists

for all branches dependant on RQ¬ for I, then membership is
proven.

a

b c

d:A
d:B

P R

R

).(BAR ¬∨¬∀
BA ¬∨¬

BA ¬∨¬

Figure 4. Example Clash.

Figure 4 presents an example in which the individual a is
connected to the object nodes d and c via role R and to b by role
P. Inference of a∈RQ is checked by asserting a∈¬RQ, where
RQ =).(BAR ¬∨¬∀ .

Application of the universal quantifier results in BA ¬∨¬
being added to R neighbours of a, which are d and c. Node d is a
member of type A and B and therefore clashes for both elements
of the disjunction, proving that a is a member of RQ. Application
of any other expressions to node a or d, or any expressions to
nodes b and c would not lead to a clash and such processing is
unnecessary.

In order to illustrate an example of normal Tableaux execution.
we wish to now check the truth of the inference a∈RQ, where

)().(DCBARRQ ∧∧∧∀≡ . When RQ is negated it gives
rise to the disjunction illustrated in figure 5, which expands into
several sub-disjunctions. When a disjunction is applied using
Tableaux it gives rise to a new branch. Branches are identified by
branch number, which is incremented for each disjunction
applied.

)())((DCBAR ¬∨¬∨¬∨¬∃

).(BAR ¬∨¬∃ DC ¬∨¬

AR¬∃ . B¬ C¬ D¬

Branch 0

Branch 1

Branch 2
Figure 5. Example Disjunction.

Applying the disjunction from figure 5, gives rise to the Tableaux
execution given in figure 6. Note that individual a already a
member of types B, C, and D and is restricted by the max
cardinality of 0 for role R. The inference test clashes for all
branches and the inference is proven. Notice that types and edge
relations are indexed by branch number (shown in brackets before
type and edge assertions). Note branch 0, indicates explicit types.
The boxes represent an individual (name is indicated before the
colon) and contains several types which have been added (after
the colon) to the individual either explicitly, or by the execution
of the Tableaux algorithm. Individuals may connect to other
nodes via roles.

13

a:
BAR ¬∨¬∃ .Branch 1, Element 1:

AR¬∃ .Branch 2, Element 1:

0)0(R≤

a: AR¬∃ .)2(
Apply Expression ARa ¬∃ .:

Apply Expression 0: Ra ≤

a:

anon1: A¬)2(a: ... (2)R

Clash: a due to R anon1
Restore to Branch 1

B¬Branch 2, Element 2:

B)0(C)0(D)0(

0)0(R≤B)0(C)0(D)0(

0)0(R≤B)0(C)0(D)0(

a: 0)0(R≤B)0(C)0(D)0(

Clash: a contains types B and
a: 0)0(R≤B)0(C)0(D)0(B¬)2(

B¬
Restore to Branch 0

DC ¬∧¬Branch 1, Element 2:

)().(DCBARa ¬∨¬∨¬∨¬∃∈Check:

a: 0)0(R≤B)0(C)0(D)0(C¬)2(
Branch 2, Element 1:

Branch 2, Element 2:
a: 0)0(R≤B)0(C)0(D)0(D¬)2(

Clash: a contains types C and C¬

Clash: a contains types D and D¬
Clash for all branches, Inference Proven

Restore to Branch 1
a: 0)0(R≤B)0(C)0(D)0(

Figure 6. Tableaux Branching Example

As shown in figure 6, when a clash occurs, for disjunction D, the
reasoner state is restored to the branch number to which
disjunction D depends on (was expanded from). Restoring
reasoner state to an earlier branch state, involves permanently
removing any type or edge which was added after the branch
being restored to (ie type or edge with a branch number which is
larger than the branch number being restored to). For instance in
figure 6, notice that application of the existential quantifier at
branch 2 results in the creation of a new edge, which is later
removed when the reasoner state is restored to branch 1.

In the next section we introduce and motivate our strategies to
optimise semantic reasoning such that it can be completed on
small devices and adaptively reduce result accuracy for faster
query answering where precision is not needed or where there are
insufficient resources or time to mandate such efficiency.

3.3 mTableaux Motivation
One of the key challenges facing the semantic web and its
associated applications such as semantic web services, which has
prevented its uptake on a large scale is performance. Even within
an organisational Intranet the processing of ontologies can be
extremely resource intensive. As a result current systems often
query static semantic data without attempting to draw additional
inferences, thereby failing to take advantage of one of the key
benefits of semantics. This situation is only exacerbated when we
consider the need to reason about a growing pool of
interconnected ontologies which are distributed over the web.

Today's reasoners still employ logic processing approaches which
assume that an entire ontology (and all ontologies which it
references), are loaded into memory. The logic expressions which
make up the in-memory ontology, are processed until all possible
inferences are established to complete the ontology. This
approach does not take into consideration the increasingly

distributed, heterogeneous pool of interconnected semantic
documents. As this pool continues to grow in size, it is simply not
feasible to assume that all related semantic data can be loaded and
completed in this way.

The fact that semantic languages allow the use of logic to express
information provides a clear benefit over syntactic approaches.
However, traditional approaches to logic based reasoning are
based on absolutes which is an assumption that must be relaxed
when dealing with the web. A key strength of the semantic web
languages is their support for distribution. Semantic web
ontologies do not need to conform to any centrally managed
structure, they can be developed as independent portions of self
contained information. The web is also incredibly heterogeneous
and ontologies will be created by many different entities which
may have a different and sometimes contradicting view of the
same or related knowledge. Ontologies will often be created by
non-experts or machines, which means that they will contain
inaccuracies or may be sloppy in nature. In addition, different
users of the web have different requirements. For instance, some
users may seek an answer at the highest possible accuracy, while
other users may not require the same degree of accuracy but
would rather obtain an answer more quickly. These features of
distribution, inaccuracies, heterogeneity and different perspectives
and requirements which characterise the world wide web run
contrary to the absolute and exact nature of logic languages and
logic based reasoners. Current reasoners only cater for the notion
of exact truth or failure in inference, and there is no provision for
partial matching. Given the growing body of semantic knowledge
on the web, guaranteeing such exactness may require excessive
processing time and may not be feasible in the amount of memory
available. A more fine-grained approach for inference matching is
needed. Current reasoners understand terms such as “a is-a X”, “a
is-the-same-as b” while it may be more appropriate to say “a is-
almost-a Y”, “a is-similar-to b” and “Yes, except for a few”. This
situation is illustrated in figure 7, where a service advertisement a
almost matches a request RQ, clearly a must have some relevance
to the user is relevant to the user, however current reasoners fail
to match a with RQ.

RQ a

Figure 7. Advertisement a almost matches request RQ.

Furthermore, current reasoners do not provide incremental,
gradual query answering. Rather, they invest significant time in
completing a search before an exact answer of absolute certainty
is given, even if the user does not require this level of accuracy
answer. Current reasoners do not support notions of importance or
degree of match, for instance current reasoners support questions
such as “Who has a white van and a red car convertible?” while it
may be more appropriate to ask “Who has a white van? if that
person has a red convertible as well that would be great but it is
not very important to me”. Current reasoners consider all
requirements to be of equal value and the order in which these are
checked is arbitrary. A far better approach is to allow importance
to be associated with each request condition and match the most
important conditions first in order to make the best use of the
processing time available, as shown in figure 8.

14

Culumative Attributes Match

0

0.2

0.4

0.6

0.8

1

1 2 3 4 5 6 7 8 9 10

Time

Cu
m

ul
at

ive
 D

eg
re

e o
f

Ma
tc

h Current
Reasoners

Proposed
Approach

Stop

Figure 8. Gradual vs exact inference

Current reasoners give no result until the final step. Conversely, if
the most important request conditions are matched first, a gradual
result can be returned to the user if the reasoner is stopped
prematurely. Moreover, current reasoners would return false or a
0.0 match if stopped early, while as shown in figure 8, more than
half of the degree of match is found in the first 3 seconds, and the
remaining half is found in the last 7 seconds. If the reasoner is
stopped after 5 seconds the result 0.84 should be returned.

In summary, our work focuses on two main objectives:

• Toward the goal of improved performance, optimisation
strategies are required to make semantic reasoning feasible
for both high-end Internet and mobile environments, so that
the semantic web can better reach its potential for data
inference.

• To support situations in which an inference task is too large,
even with optimisations, there must be some flexibility
introduced to reasoners. Moreover, current reasoning
approaches need to be relaxed to handle premature ending of
a reasoning task, inconsistent data and partial inferences, as
well as providing approaches to reason about the relevant
data set rather than entire ontologies. Where there is
insufficient time or resources available to complete a
reasoning task, a less accurate result should be provided to
the user with a degree of match rating a confidence level of
this result.

In this paper we briefly introduce our optimisation strategies from
previous work, which include: 1. selective application of
consistency rules, 2. skipping disjunctions, 3. applying logical
expressions are most likely to lead to a clash, first, by searching
for potential clash paths from: 3a. disjunction branch element
terms, as they are applied, and 3b. disjunctions as they become
applicable (by the selective consistency strategy). However, the
main contribution of this paper is to provide adaptive strategies
for more flexible reasoning which include: 1. adaptive reasoning,
2. on-demand ontology loading and 3. clash detection pre-
processing. The optimisation strategies are discussed in the next
section.

4. OPTIMISED MATCHING
Our optimisation strategies address the goal of dramatically
improving the performance of inference tasks to remove
performance as a factor which prevents the user of reasoners for
processing semantic information in both desktop/Internet and
mobile environments. Our optimisation strategies achieve this
using two approaches. The first two strategies drop expressions
which are not considered relevant to the reasoning task in order to

reduce the size of this task. The third strategy attempts to re-order
the application of expressions in an attempt to apply first the
expressions which are more likely to lead to a clash. The
strategies which drop expressions, do not guarantee completeness,
however in realistic datasets such as that used in [20] and section
6 we found no deterioration in result accuracy. We briefly outline
our optimisation strategies in the following (more details can be
found in [20]).

Our selective consistency strategy is as follows. Expansion of
expressions and application of completion rules assert class types
to individuals, which may generate these clashes. The only
construct which, when applied, results in assertion of types to
individuals other than the one which it is applied to, is the
universal quantifier, of the form

}),.({. CbRbabCR ∈→∈∀=∀ [19], where R denotes a
relation and C denotes a class concept. For instance, if
I∈ CR.∀ and if the triple <I, R, Z>, exists in K denoting that I
has a relation R to the object Z, application of CR.∀ for I, results
in asserting Z ∈C. Therefore, when RQ¬ is added to I such that

I∈ RQ¬ , we define the subset of relevant as being limited to I
and those individuals which branch from this individual as objects
of roles specified in universal quantifiers. For example in figure 4
(see section 3.2), nodes a, c and d would be in the subset of
relevant individuals, because they are connected to a via role R in

).(BAR ¬∨¬∀ , while node b would not be in the subset.

Our skip disjunction strategy is described as follows. Disjunctions
are only applied, if they relate to the request type RQ, otherwise it
is skipped. A disjunction is applied when one of its elements
contains a type which can be decomposed from RQ.
Decomposition involves selecting and unfolding atomic class
types, elements of conjunctions/disjunctions or role fillers of
universal quantifiers. For instance in figure 4 (see section 3.2), the
disjunction BA ¬∨¬ , would be applied by this strategy, while

DC ¬∨¬ would not.

Our weighted strategies can be described as follows. The order in
which logical expressions are applied is determined by weightings
associated with these expressions. Weightings are established by
searching for pathways to potential future clashes, and
incrementing the weight of all expressions associated with this
pathway. Figure 4 (see section 3.2) illustrates an example
pathway from node a to d, via).(BAR ¬∨¬∀ and DC ¬∨¬ .
Under our disjunction weighting approach, all applicable (as
deemed by selective consistency) disjunctions may be checked for
potential clash pathways. Alternatively, a more specific approach
is term weighting, where a search for pathway from a specific
term to a clash occurs. We perform this search on terms which are
asserted as a result of the application of a disjunction branch
element. The assumption is that disjunction elements asserted to
the knowledge base, may give rise to a clash which is not
apparent until subsequent expressions on specific individuals are
applied. Application of these expressions should be fast tracked.
Term weighting may be utilised even when disjunction weighting
is enabled, based on the assumption that once a disjunction branch
element term is applied there is an increased incentive to improve
the weight of any potential pathway from this element to a clash.
For example, in figure 4 (see section 3.2), assume the application
of element A¬ to node d, required application of other

15

expressions before a clash is found, the weight of these rules
should be further increased since processing has already been
invested in this pathway. [20] provides more detail on our
optimisation strategies.

While these strategies optimise the reasoning process, it may still
be the case that mTableaux enabled optimised reasoning may still
require too much time to complete, especially when reasoning
with large ontologies and requests. Therefore, we leverage this
approach by providing adaptive strategies to balance result
accuracy with efficiency. We discuss our adaptive strategies in
the next section.

5. ADAPTIVE REASONING
This section describes our approach for taking resource
availability into consideration during the service matching
process, in order to manage the trade-off between efficiency and
accuracy. We begin by we discussing the depth-first strategies
which current Tableaux reasoners and approximate reasoning
approaches such as [16], utilise to iteratively check branch
combinations. Then, in the subsequent sections we introduce our
own novel weighted approach which matches the most important
conditions first.

5.1 Current Depth-first Reasoning
This section is an overview of depth-first reasoning approaches
which are utilised by current Tableaux reasoners and approximate
reasoning approaches such as [16]. Assume the user wishes to
find a movie cinema with Internet café. The request query is
shown in expression 1, asking for retail outlets which sell coffee,
Internet over WiFi and movie screenings.

RetailOutlet ∧ ∃ sellsProduct.Coffee ∧
∃ sellsProduct.MovieScreening ∧

 ∃ sellsProduct.(Internet ∧ ∃ supportsComm.WiFi)

(1)

Tableaux reasoners utilise a depth-first approach in evaluating the
above expression, as shown in figure 9.

RetailOutlet

Coffee

RetailOutlet

Coffee Internet

suportsComm

RetailOutlet

WiFi

Coffee Internet

sellsProduct

suportsComm

RetailOutlet

WiFi

MovieScreening
Coffee Internet

(a) (b) (c) (d)

sellsProduct

Figure 9 Depth-first Example

When matching a particular individual I with a request expression
RQ the reasoner continues to match each iteration shown in figure
9, until all conditions have been checked or an open branch is
found (no clash). Therefore, those results given by each of the
steps shown in figure 9 are subsets of the results given by the
previous steps. Query containment can be described as follows.

Let RQ1, RQ2 denote request queries over a knowledge base K of
triples. Let K denote the knowledge base, CS the set of class
definitions, RS the set of relation definitions and OS the object
assertions, that K = <CS, RS, OS>. Let 'Q 1, 'Q 2 denote the
results for queries RQ1 and RQ2, respectively. RQ1 is a subset of

RQ2 if 'RQ 1 is a subset of 'RQ 2 for all objects in the knowledge
base as shown in equation 2 and query equality is shown in
equation 3.

Q1 ⊆ Q2 iff {∀ OS.('Q 1 v 'Q 2) } (2)

Q1 ≡ Q2 iff Q1 ⊆ Q2 ∧ Q2 ⊆ Q1 (3)

Approaches such as [16] employ approximate reasoning
approaches to support partial and anytime matching, which are
based on the assumption that each of the previous iterations are
subsets of the final iteration in figure 9, when checking
membership of I ∈ RQ. Therefore, if reasoning is stopped early
the reasoner returns a true match result, if all of the checked
conditions were proven. This result is said to be an approximation
or super result for the true result. However there shortcomings
with this approach:

1. particular request conditions or sub-conditions may have a
different level of importance to the user: the most important
should be checked first

2. approximate reasoning approaches still provide only a
Boolean result and do not provide a degree of match result to
the user. If the approximation matches, the final result is said
to be true

3. pervasive environments are inherently dynamic and contain
heterogeneous data, therefore there may be instances where
the reasoner should check subsequent conditions in the
query, even if some of them were not met by the request.

We employ our novel weighted adaptive reasoning approach to
overcome these shortcomings, which is introduced in the next
section.

5.2 Weighted Adaptive Reasoning
Since certain query conditions may have a different level of
importance to the user, we allow the association of user specified
weightings with each condition and sub-condition. Weighs control
query execution order, rather than depth or breath-first ordering.
Assume that the user deems that while access to the Internet is
more important than coffee, coffee is more important than WiFi
Internet (the user may be happy to use a fixed PC). This gives rise
to the following request query execution (note for illustrative
purposes, coffee has been extended to include Tea, instant coffee
and percolated coffee):

RQ1: RetailOutlet

RQ2: RetailOutlet ∧ ∃ sellsProduct.MovieScreening

RQ3: RetailOutlet ∧ ∃ sellsProduct.MovieScreening ∧
 ∃ sellsProduct.Internet

RQ4: RetailOutlet ∧ ∃ sellsProduct.MovieScreening ∧
 ∃ sellsProduct.Internet ∧ ∃ sellsProduct.(Tea ∧
 (InstantCoffee ∧ PercolatedCoffee))

RQ5: RetailOutlet ∧ ∃ sellsProduct.MovieScreening ∧
 ∃ sellsProduct.(Internet∧ ∃ supportsComm.WiFi)∧
 ∃ sellsProduct. (Tea ∧ (InstantCoffee ∧
 PercoluatedCoffee))

16

Since Tableaux checks inferences by asserting the negation of the
inferred type to an individual, we provide the negation of RQ5 in
expression 4.

¬RetailOutlet ∧ ∀ sellsProduct. ((¬InstantCoffee
∨ ¬Percolated) ∨ ¬Tea) ∧ ∀ sellsProduct.

¬MovieScreening ∧ ∀ sellsProduct. (¬Internet ∧
∀ supportsComm. ¬{WiFi})

(4)

Expression 4 gives rise to the disjunctions and sub-disjunctions
illustrated in figure 10, where elements in the first level
disjunction expand into other disjunctions. When a disjunction
element expands into another disjunction, the expanded
disjunction is said to be dependant on the disjunction from which
it was expanded from. For instance element 9 is dependant on
element 7, and 7 on 5.

Figure 10 also illustrates the weights given to each condition and
sub-condition. Let w denote the user specified weight given to
each condition or sub-condition. If a user has not specified a
weight, 1.0 is used by default. Let rw denote a relative weight,
which is the user specified weight w multiplied by the relative
weight rw of the element which it depends (rw is equivalent to w
if it is the top level disjunction). Rather than depth-first ordering
(see previous section), we wish to execute disjunction elements in
relative weight rw descending order. Let nrw denote a normalized
relative weight. Normalisation implies that the sum of all nrw
values for a disjunction D (ie the nrw of each of its elements) is
equal to the nrw of the disjunction to which D depends (nrw is
used in the next section). We also define a special identifier in
order to index each element uniquely. We call this index a tree-id.

 ¬RetailOutlet

¬InstantCoffee .
¬PerculatedCoffee

∀ sellsProduct .(
¬Tea (¬InstantCoffee
 ¬PerculatedCoffee))

 sellsProduct .(¬Internet
 supportsComm .¬{WiFi})
∀
∀

 supportsComm .
¬{WiFi}

∀¬Tea
w=1.0
rw=0.4

¬Internet

∀

 ¬InstantCoffee ¬PercolatedCoffee

 sellsProduct .
¬MovieScreeningw=1.0

rw=1.0
w=0.4, rw=0.4 w=0.7, rw=0.7 w=0.9, rw=0.9

w=1.0, rw=0.4

w=1.0
rw=0.4

w=0.4, rw=0.28

w=1.0
rw=0.4

w=1.0
rw=0.7

1 235

4 106 7

8 9

tree-id=2-0
rnw=0.33 tree-id=2-1, rnw=0.13 tree-id=2-2, rnw=0.23 tree-id=2-3, rnw=0.30

tree-id=3-0
rnw=0.065 tree-id=3-1, rnw=0.065 tree-id=3-4, rnw=0.066

tree-id=3-3
rnw=0.16

tree-id=4-0
rnw=0.0325

tree-id=4-1
rnw=0.0325

Figure 10. Weighted Approach to Query Execution

Recall from section 3.2, when a disjunction is applied it gives rise
to a branch in the reasoner. Each disjunction element is applied as
a separate branch. The order in which elements (branches) in
figure 10 were applied, is given by the number on the top left of
each element (the order of elements with the same rw is random).
In figure 10, each request query RQ includes the following
elements: RQ1 = {1}, RQ2 = {1, 2}, RQ3 = {1, 2, 3, 4}, RQ4 = {1,
2, 3, 4, 5, 6, 7, 8, 9}, RQ5 = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}. That is, if
the request query RQi is satisfied, then all of the elements to
which it relates, have also been applied and satisfied.

As described in the previous section, Tableaux is a depth-first
branching algorithm, in which branches depend on previous
branches in the tree. This was also shown in section 3.2.

Therefore, for instance, after element 4 is found to clash, the
reasoner state is restored to element 1, before element 5 is
executed. Therefore, the state transition from element 9 to
element 10, requires the re-application of element 3 (and any
completion rules which were fired between element 4 and 5
arising from other concepts in the ontology. Such an approach
therefore results in extra processing, which is unnecessary.
Therefore, ordering disjunction elements by importance in
conjunction with a depth-first approach would potentially increase
processing rather than decrease it. In order to overcome this
problem, we have developed a new mechanism to manage
reasoner state, which replaces depth-first. Under depth-first,
reasoner state is maintained according to branch number iteration
(see section 3.2). Under our approach state is maintained by tree-
id. Our novel approach to state maintenance is described in the
next section.

5.3 State Maintenance
Under our approach we index reasoner state by element identifier
tree-id, rather than by branch iteration (see section 3.2), as in
current Tableaux reasoners. And rather than restoring reasoner
state to an earlier state (as under depth-first), we preserve an
indexed reasoner state for each branch until all dependant nodes
have been evaluated. The reasoner state is indexed in order to
provide different state views, depending on which branch node is
being evaluated.

As shown figure 10 each element is associated with a unique tree-
id, which we utilise to index reasoner state. Let etree-id denote the
tree-id for element e. A tree-id comprises two or three positive
integer values, each separated with a dash. The digit before the
dash indicates the disjunction level of the element and the digit
after the dash indicates the element position in the level. Note the
position index is incremented for each element including those in
different disjunctions on the same level. We denote the third value
as copyid, an optional value used as a delimiter to differentiate
between same disjunctions that are applied to multiple
individuals. This only occurs when a universal quantifier applies a
disjunction as its role filler, for example if)(BAR ∨∀ applies

the disjunction BA∨ to two individuals, element A is given a
tree-id=x-x-0 for one individual and tree-id=x-x-1 for the other.

Each element depends on previous elements, for example
¬InstantCoffee depends on elements {0-0, 1-0, 2-1, 3-1, 4.0}. Let
dep-set denote this set of elements and let edep-set denote the dep-
set for an element e. tree-id 0-0 is reserved for explicit type
assertions (with no dependency) and tree-id 1-0 is reserved as a
reference point to which the first disjunction depends. Therefore,
all elements depend on 0-0 and 1-0.

In order to maintain an indexed reasoner state, to provide different
state views based on tree-id, we define a set S, which is indexed
by tree-id. Each value v in the set S is associated with a tree-id, to
form the pair <v, tree-id>. Multiple v elements in the set S can
have the same tree-id. The view of S at any one time, depends on
the edep-set where e is the current/last disjunction/branch element in
the reasoner. This view is given by view(S, dep-set) and contains
only those values v which have a tree-id contained within edep-set.
For example, when applying the ¬InstantCoffee element 8 in
figure 10, etree-id = 4-0 and edep-set = {1-1, 2-1, 3-1, 4-0}. And for
example, where S = {<v1, 1-0>, <v2,, 1-1>, <v3, 1-1>, < v4, 1-2>,

17

<v5, 2-1>, <v6, 2-3>, <v7, 3-1>, <v8, 4-0>} then sv(S, dep-set) =
{<v2, 1-1>, < v3, 1-1>, < v5, 2-1>, < v7, 3-1>, < v8, 4-0> }.

We utilise instances of S to maintain:

1. the type labels which are added to a particular individual in
the knowledge base

2. the graph of edges (role assertions) in the knowledge base.

This replaces the branch number indexing of types and edges
which occurs when depth-first is employed, as discussed in
section 3.2.

As stated in earlier sections, under our approach we support
partial matching. Therefore, we continue matching even if one
request condition (disjunction element) does not match. This is
distinct from the current Tableaux depth-first approach which
stops and returns a false result as soon as any condition does not
match. However, introducing partial matching can involve
significant processing which may be unnecessary. For instance if
several important attributes fail to match, there is no sense in
checking all other remaining insignificant attributes. Therefore, in
the next section we introduce a strategy for deciding whether to
continue or stop matching.

5.4 Low Resources: Stop Matching
In the case that important request conditions failed to match a
particular service advertisement, a better use of resources may be
to try another service instead of continuing to attempt to match
the remaining conditions which are less important. We specify the
decision as to whether to keep matching a service as being a
trade-off between the three factors 1. the current service
result/degree of match, 2. the weight of the next attribute and 3
resource availability.

Let service-result denote the degree of match which is calculated
by the sum of the normalised-relative nrw (see section 5.1.2)
weights for each condition which was found to successfully match
the service advertisement, and let potential-result denote the total
possible sum of all normalised-relative condition weights nrw
(including any unchecked or non-matching conditions). We
denote curr-result as the ratio of service-result / potential-result.

We model a linear relationship between curr-result and the
normalised-relative weight of the next request condition to match
nrw(next), on a graph as shown in figure 10, where the x axis
denotes the curr-result and the y axis denotes the attribute weight
nrw(next) required, in order to keep matching. A linear line which
crosses the points (x1, y1) and (x2, y2). These points are determined
as follows: y1 and x2 are always 1 (y1 = 1 and x2 = 1) and the
coordinates x1 and y2 are determined on the fly based on the
amount of resources or time remaining where 0 ≤ x1 ≤ 1 and 0 ≤ y2
≤ 1.

Attribute
Weight

Current Service Result

1.0

0.6
0.4
0.2

0 1.00.60.40.2

(0.2, 1.0)

(1.0, 0.4)

Keep reasoning

Stop reasoning

0.8

0.8

(0.2, 0.5)

(0.7, 0.9)

Figure 11. Deciding whether to stop matching.

As illustrated in figure 11, if the weight of the next request
condition to match nrw(next) is above the line we keep matching,
while if nrw(next) is below the line stop matching.

In the next section we discuss the implementation of the
optimisation and adaptive strategies from sections 4 and 5, and
provide an evaluation to illustrate their effect on performance and
accuracy.

6. Implementation and Evaluation
In this section we discuss the implementation of our mTableaux
optimisation and adaptive strategies and provide a performance
evaluation, of these strategies. Our evaluation utilizes a Product
case study implemented in an ontology comprising 204 classes
and 241 individuals. In our case study, Bob is searching for a
Movie Cinema with Café which provides WiFi internet and a
public phone, in a foreign city centre. The request is an extension
of that given in Q5 (negated in expression 4) with each condition
associated with the weights provided in figure 10, in section 5.2
(condition weights are only applicable to the adaptive reasoning
strategy).

6.1 Implementation
We have implemented both our optimisation strategies and our
adaptive strategies as an extension to the Pellet 1.5 reasoner
which supports OWL-DL with SHOIN expressivity. Pellet is open
source, allowing us to provide a proof of concept and compare
performance with and without the strategies enabled. We selected
Pellet over FaCT++ because it is written in Java, making it easily
portable to small devices such as PDAs and mobile phones, while
FaCT++ is written in C++. An addition, we are using Jena as the
ontology repository used by Pellet to read the ontology. We
implemented the optimisation strategies from section 4. We
evaluate the impact these have on performance in the next
sections.

6.2 Mobile Performance and Accuracy
Results
We performed an evaluation on a HP iPAQ hx2700 PDA, with
Intel PXA270 624Mhz processor, 64MB RAM, running Windows
Mobile 5.0 with Mysaifu Java J2SE Virtual Machine (JVM) [21],
allocated 15MB of memory. We present results for the
optimisation and adaptive strategies the next two sections,
respectively.

6.2.1 Optimisation Strategies - Results
Figure 12 illustrates the performance results for the optimisation
strategies. We performed a number of tests, each with different
combinations of the strategies enabled. The initials above each
test on the graph indicate the optimisation strategies which were
enabled: selective Consistency, Skip disjunctions, Disjunction
ranking and Term ranking.

18

0

200

400

600

800

1 2 3 4 5 6 7 8 9 10 11 12

Test Number

T
im

e
 (

s
e

c
o

n
d

s
)

A: Total
Consistency

A: Optimisation
Overhead

B: Total
Consistency

B: Optimisation
Overhead

C
S

C
S
T

C
S
D
T

C
S
D C

C
T S

C
D

C
D
T S

D
T

S
DS

T

Figure 12. Processing time for Product scenario.

We performed each test against a: A. matching service individual
and B. non-matching service individual. Where no optimisation
strategies were enabled, an “Out of Memory” error was returned.
Our results show that the selective consistency and skip
disjunction strategies work best and drastically reduce processing
time, with very little overhead. More detailed results can be found
in [22] and [20].

6.2.2 Adaptive Strategies - Results
To demonstrate the feasibility of our adaptive reasoning strategy
we performed a number of tests as outlined in table 1. We
performed one test in which all conditions matched and 3 where
one condition was not matching. Note, that the optimisation
strategies were enabled for these tests and all service result.

In our tests we used the resource preferences illustrated in figure
13, in order to determine whether to keep matching. Therefore,
matching stopped early in tests 2 and 3.

Table 1. Adaptive Reasoning Results

Service Result Time
(excl.
init.)

Total
Time

Test

Actual Theoretical

1. Match 1.0 1.0 24s 53s

2. No Movie
Cinema

0.33 0.69 7s 33s

3. No Internet 0.63 0.76 17s 46s

4. No Coffee 0.86 0.86 25s 54s

In table 1, service result is the sum of normalised-relative nrw
weights associated with each request condition which was
successfully matched against the service advertisement. We also
provide the processing time incurred to perform the consistency
check (checking whether a request condition matched, excluding
initialisation), and the total time (including initialisation). The
“theoretical” service result indicates the degree of match value
given if all request conditions are checked, while the “actual”
service result is that which was returned by the discovery
architecture. The actual result returned is sometimes lower than
the theoretical degree of match because reasoning can be stopped
early and some conditions not checked.

Attribute
Weight

Current Service Result

1.0

0.6
0.4
0.2

0 1.00.60.40.2 0.8

0.8 (0.52, 0.7)
2. No Cinema

3. No Internet

4. No Coffee
(0.73, 0.4) (0.91, 0.23)

(0.4, 1.0)

(1.0, 0.0)

Figure 13. Preferences for deciding whether to stop matching.

Our results show that performance of the adaptive strategy is
similar to the results from the previous section where all
conditions match the potential service. However, when important
conditions do not match, valuable processing time is saved by
avoiding the checking of less important conditions, at the expense
of result accuracy. Our findings therefore show that the adaptive
reasoning strategy meets our goal of balancing the trade-off
between efficiency and accuracy.

In summary our optimisation strategies drastically reduced the
processing time required to match request with potential service
individuals, such that this can be completed on a small device.
When optimised reasoning is still too large to perform in the
available time, we provide adaptive strategies which iteratively
match the most important conditions (as deemed by the user) first
and avoid matching less important conditions when important
conditions failed. This allows the reasoner to move on to checking
another potential service, instead of wasting scarce resources on
continuing to check a service that has already failed vital
conditions. Evaluation of our adaptive approach shows that our
strategies effectively meet this goal.

7. CONCLUSION AND FUTURE WORK
We have presented novel strategies for improving the scalability
of the Tableaux algorithm for mobile semantic reasoning.
mTableaux was shown to significantly improve the performance
of pervasive discovery reasoning tasks so that they can be
completed on small resource constrained devices. However, in
some cases the request may still be too complex or there may
exist too many potential services to check each service
completely, within a reasonable amount of time. In addition, for
the semantic web to reach its true potential it must effectively
handle explicit and inferred relationships between heterogeneous
data and support partial and incomplete matching. Therefore, as
the main contribution for this paper we have developed a strategy
for adaptive reasoning. As opposed to currently used Tableaux
depth-first strategies, our we use a weighted approach which
matches the most important inference conditions first, to make the
best use of the processing time and resources available. If the
reasoning process is stopped prematurely, a known service result
is given to the user. In the evaluations of our prototype we
demonstrate the significant processing savings achieved by
stopping the reasoning process as soon as important request
conditions fail to match.

In future work, we are developing more formal metrics for
assessing degree of match and in particular a confidence or
uncertainty level in the degree of match given. We seek to create
and evaluate more scenarios and stop reasoning based on two
constraints: 1. time bound responses in which a user seeks a result
within a specified time frame, and 2. confidence bound results, in
which the user seeks a result only to a certain level of confidence,

19

eg the degree of match after checking 90 percent of the request
conditions. In addition it is not feasible to require the entire
ontology to be loaded into memory in such a distributed
environment as the web, or constrained memory of a mobile
device. Only a small part of the ontology (or those ontologies
imported) may be relevant to the reasoning ask. Therefore, we are
developing an on-demand ontology loading strategy which only
loads terms from an ontology as these are needed by the reasoner.

8. REFERENCES
[1] Gehlen G. and Pham L. Mobile Web Services for Peer-to-

Peer Applications. In proc. Consumer Communications and
Networking Conference (CCNC), 3 - 6 January, 2005. p. 427
- 33.

[2] Tergujeff R., Haajanen J., Leppanen J. and Toivonen S.
Mobile SOA: Service Orientation on Lightweight Mobile
Devices. In proc. International Conference on Web Services
(ICWS), 9 - 13 July, Salt Lake City, USA, IEEE, 2007. p.
1224 - 5.

[3] Srirama SN., Jarke M. and Parinz W. Mobile Web Service
Provisioning. In proc. Advanced International Conference on
Telecommunications and International Conference on
Internet and Web Applications and Services (AICT/ICIW),
19 - 25 February, 2006.

[4] Kim Y-S. and Lee K-H. A Light-weight Framework for
Hosting Web Services on Mobile Devices. In proc. 5th
European Conference on Web Services (ECOWS), 26 - 28
November, IEEE, 2007. p. 255 - 63.

[5] Chatti MA., Srirama S., Kensche D. and Cao Y. Mobile Web
Services for Collaborative Learning. In proc. 4th
International Workshop on Wireless, Mobile and Ubiquitous
Technology in Education November, IEEE, 2006. p. 129 -
33.

[6] Arnold K., O'Sullivan B., Scheifler RW., Waldo J. and
Woolrath A. The Jini Specification, Addison-Wesley 1999.

[7] Srinivasan N., Paolucci M. and Sycara K. Semantic Web
Service Discovery in the OWL-S IDE. In proc. 39th Hawaii
International Conference on System Sciences, Hawaii, 2005.

[8] Küster U., König-Ries B. and Klein M. Discovery and
Mediation using DIANE Service Descriptions. In proc.
Second Semantic Web Service Challenge 2006 Workshop,
June 15 - 16, Budva, Montenegro, 2006.

[9] Ranganathan A. and Campbell RH. A Middleware for
Context-Aware Agents in Ubiquitous Computing
Environments. In proc. ACM/IFIP/USENIX International
Middleware Conference, June, Rio de Janeiro, Brazil, 2003.
p. 143 - 61.

[10] Noll J., Alam S. and Chowdhury MMR. Integrating Mobile
Devices into Semantic Services Environments. In proc. 4th

Internation Conference on Wireless and Mobile
Communications (ICWMC), July 27 2008 - August 1,
Athens, IEEE, 2008. p. 137-43.

[11] Mokhtar SB., Preuveneers D., Georgantas N. and Issarny V.
EASY: Efficient SemAntic Service DiscoverY in Pervasive
Computing Environments with QoS and Context Support.
Journal Of System and Software. 2008, 81(5).

[12] Gu T., Kwok Z., Koh KK. and Pung HK. A Mobile
Framework Supporting Ontology Processing and Reasoning.
In proc. 2nd Workshop on Requirements and Solutions for
Pervasive Software Infrastructure (RSPS) in conjunction
with the 9th International Conference on Ubiquitous
Computing (Ubicomp '07), September, Austria, 2007.

[13] Kleemann T. Towards Mobile Reasoning. In proc.
International Workshop on Description Logics (DL2006),
May 30 - June 1, Windermere, Lake District, UK, 2006.

[14] Gligorov R., Kate Wt., Aleksovski Z. and Harmelen Fv.
Using Google Distance to Weight Approximate Ontology
Matches. In proc. 16th international Conference on World
Wide Web ACM, 2007.

[15] Hitzler P. and Vrandecic D. Resolution-Based Approximate
Reasoning for OWL DL In proc. Semantic Web - ISWC,
Springer Berlin / Heidelberg, 2005.

[16] Stuckenschmidt H. and Kolb M. Partial Matchmaking for
Complex Product and Service Descriptions. 2008.

[17] Wache H., Groot P. and Stuckenschmidt H. Scalable
Instance Retrieval for the Semantic Web by Approximation
In proc. Web Information Systems Engineering – WISE
2005 Workshops, Springer Berlin / Heidelberg, 2005.

[18] Horrocks I. and Sattler U. A Tableaux Decision Procedure
for SHOIQ. In proc. 19th International Conference on
Artificial Intelligence (IJCAI 2005), 2005.

[19] Baader F., Calvanese D., McGuinness DL., Nardi D. and
Patel-Schneider PF. The Description Logic Handbook:
Theory, Implementation, and Applications, Cambridge
University Press 2003.

[20] Steller L. and Krishnaswamy S. Pervasive Service
Discovery: mTableaux Mobile Reasoning. International
Conference on Semantic Systems (I-Semantics). Graz,
Austria 2008.

[21] Mysaifu. Mysaifu JVM. (2009),
http://www2s.biglobe.ne.jp/~dat/java/project/jvm/index_en.h
tml

[22] Steller L. and Krishnaswamy S. Optimised Semantic
Reasoning for Pervasive Service Discovery. International
Conference on Service Oriented Computing (ICSOC).
Sydney, Australia 2008.

20

