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ABSTRACT 
With the emergence of high-end smart phones / PDAs there is an 
emerging opportunity to enrich mobile / pervasive services with 
semantic reasoning. This paper presents novel strategies for 
optimising semantic reasoning for realising semantic applications 
and services on mobile devices. Our mTableaux algorithm 
optimises the reasoning process to facilitate service selection. 
Since even optimised reasoning may be too resource intensive to 
complete, depending on ontology size and resource availability, 
we also outline our adaptive reasoning strategy which reduces 
result accuracy when resources become low. We also evaluate the 
impact of our strategies on performance and accuracy and show 
that mTableaux significantly improves performance. 

Categories and Subject Descriptors 
I.2.11 [Artificial Intelligence]: Distributed Artificial Intelligence 
– Intelligent agents.  

General Terms 
Performance, Design, Experimentation. 

Keywords 
Optimised Mobile Reasoning, Approximate Reasoning, Pervasive 
Semantic Discovery. 

1. INTRODUCTION 
The rapid expansion in uptake of mobile devices and in their 
processing capabilities provides many new opportunities for 
mobile users to access services and information in mobile 
environments. However, in order to realise these opportunities 
several new challenges must be addressed. Mobile environments 
are extremely dynamic, meaning that often devices have not met 
the other devices in their area before. As a result, uniform 
software abstraction and loose coupling is paramount in order to 
achieve interoperability between the requester and providers by 

adopting a Mobile Service Oriented Architectures (SOA). Mobile 
SOA classes range from service centric approaches in which a 
high-end broker node provides service matching capabilities 
requiring managed infrastructure provision, to pure peer-to-peer 
(P2P) approaches in which all nodes are equal and dynamically 
form an ad-hoc network of requester and provider nodes on the 
fly [1]. However, reliance on a centralised broker node means that 
when the broker becomes unreachable, the whole environment is 
broken. Since mobile nodes are less reliable than fixed nodes, due 
to constant disconnection and mobility, requiring server centric 
approaches is often not viable. Conversely the emergence of 
semantic web languages, which provide a powerful means to 
describe services by meaning rather than syntactic equivalence, 
require resource intensive reasoning. 

Advances in device capability mean that mobile devices can act 
not only as service consumers but also as service providers or will 
do so in the near future [2, 3] and can be migrated to another 
device if a mobile node moves out of range and becomes 
unavailable [4]. As such, we advocate the need to support a 
decentralised approach to service selection, such that reasoning is 
conducted on the mobile device itself. We identify three 
decentralised environment examples. Figure 1 illustrates a service 
based, centralised approach, while figure 2 illustrates each 
example on-device, decentralised approach. 
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Figure 1. Server-based approach to service selection. 
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Figure 2. On-device approaches to service selection. 

A centralised approach often comes are a significant financial cost 
to the user and creates a potential performance bottleneck and 
single point of failure. Alternatively, in figure 2(a) the services 
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themselves are provided by a fixed node however centralised 
brokering/matching is not provided. Instead the user’s device 
downloads ontologies and performs the reasoning on-demand at 
the user’s request. This avoids the financial costs in provision of 
brokering and the drawbacks of a centralised approach. For 
example, a user’s phone downloads ontologies in a foreign city 
centre as she walks past advertisement points.  

Figure 2(b) is a pure mobile ad-hoc network.  For instance, 
students sharing data on a field trip [5], emergency situations, 
traffic information sharing, etc. In figure 2(c), the services reside 
on the user’s own device, for instance, Google1 and Yahoo2 
already offer many mobile applications such as blogging, news, 
finance, sports, etc, which may be installed or removed depending 
on the user’s needs and the Apple iPhone3 advertises itself as 
having “35,000 apps. And counting.”.  

All of these three on-device, decentralised configurations (in 
figure 2) alleviate the need for high level of infrastructure 
provision, the risk of no service when out of network range, and 
reduce consumption of precious device battery power, involved in 
constant network usage. In addition, it is easy to deploy and 
extremely scalable because the number of devices has no impact 
on performance and making it very suitable to some 
environments. 

As such, in this paper, we address the key issue of providing 
highly optimised semantic reasoning. As a consequence, our 
reasoner will also function on a mobile device, to provide on-
device reasoning. Tableaux algorithm is well known and used by 
reasoners such as Pellet, RacerPro and FaCT++. We aim to 
optimise Tableaux in order to enable these reasoners to function 
in a computationally cost-efficient manner on a mobile device. To 
this end, we present our mTableaux algorithm, which implements 
strategies to optimise description logic (DL) reasoning tasks so 
that relatively large reasoning tasks of several hundred individuals 
and classes may function on small devices. However, these 
optimisations may not be sufficient to effectively compare a 
request against many potential services on a mobile device. For 
instance a reasoning task may be too large to complete entirely, 
with the resources available. Therefore, we also provide an 
adaptive reasoning which matches the most important request 
conditions (to the user) first to make the best use of processing 
time available and support partial matching. We present our 
approach, a prototype and experimental evaluations which 
demonstrate the feasibility of the semantic service discovery to 
operate on a mobile device. 

This paper takes an important step forward in developing scalable 
semantic reasoning techniques which are useful for both mobile / 
pervasive and standard service selection algorithms. The 
remainder of the paper is structured as follows. In section 2 we 
describe related work. In section 3 we present our discovery 
architecture, discussion about semantic reasoning and overview of 
our strategies. In section 4 we describe our strategies to optimise 
the Tableaux algorithm. Since further performance gains may be 
needed for mobile reasoning on large ontologies or requests, we 
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also provide in section 5, strategies which balance efficiency with 
accuracy. In section 6 we discuss our implementation and provide 
evaluations of our work. Finally in section 7 we conclude the 
paper. 

2. RELATED WORK  
While current service discovery architectures such as Jini [6], 
UPnP do not make use of semantic languages, there is a growing 
emergence of DAML-S/OWL-S semantic matchmakers such as 
CMU Matchmaker [7] which requires a centralised high-end node 
to perform reasoning using Racer. DIANE [8] is designed for ad-
hoc service discovery and defines its own semantic language. 
Architectures such as Gaia [9] provide semantically driven 
context middleware utilising FaCT++, and Josef [10] establishes a 
virtual mobile which resides in part on a high-end node, for 
resource intensive activities. EASY [11] extends notions from the 
CMU matchmaker to take context and QoS into consideration and 
performs indexed classification of the ontology hierarchy offline 
such that subsequent lookup is much faster. However all of these 
architectures require the existence of a high-end central node, due 
to the fact that semantic reasoners used by these architectures 
(including Prolog, Lisp, Jess, FaCT++, Pellet, RacerPro and 
KAON2) are all resource intensive. Limited resources are the 
biggest barrier when enabling mobile semantic web services for 
mobile terminals [12], because current reasoners cannot be 
deployed to resource constrained devices in their current form.  

Gu et. al. [12] have developed a framework which provides an 
RDF parser, reasoner and sRDQL query engine which runs on 
mobile devices on J2ME with acceptable performance. The main 
drawback is that it only supports a subset of semantic 
technologies and the reasoning engine supports only forward 
chaining rule inference. It does not support backward chaining or 
OWL-DL reasoning.   

Kleeman et. al. [13] have developed KRHyper, a novel first order 
logic (FOL) reasoner for deployment on resource constrained 
devices. In order to use DL with KRHyper it must be transformed 
into a set of disjunctive first order logic clauses. It does not utilise 
caching schemes which incur unnecessary overhead and memory 
consumption for smaller tasks, but optimise larger tasks. 
Performance comparisons with RacerPro show that it performs 
better for small tasks and not as well for larger tasks. This FOL 
reasoner meets the goal of providing competitive performance 
results with a DL reasoner. However, it still suffers from “Out of 
Memory” errors when the reasoning tasks becomes too large for a 
small device to handle.  

Approximate reasoning is suggested to manage the trade-off 
between efficiency and precision by approximating the answer 
given. For instance [14] compares ontology terms by Google 
distance, but this requires Internet access to Google. [15] 
disregards non-horn clauses, to provide a faster but less accurate 
result by resulting reasoner expressivity. [16] provides a novel 
approach which iteratively continues matching conditions until 
there is no more time to continue and assumes a match if all 
conditions checked so far, were matched. [17] builds on this work 
to provide conjunctive query answering and instance retrieval. 
However, these approaches fail to take into consideration the 
importance of particular attributes and match these first to provide 
a service match and level of confidence. 
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Therefore, there is a need for an optimised semantic reasoner 
which performs better than currently available reasoners which is 
also resource-aware and can therefore reduce accuracy of results 
when a completely accurate result is not possible given resource 
or time constraints. In the next section we describe our novel 
architecture to meet this need. 

3. COST EFFICIENT AND ADAPTIVE 
DISCOVERY 
In this section we provide an overview of our architecture and 
semantic reasoning. We also provide a detailed overview of our 
mTableaux optimisation and adaptive reasoning strategies.  

3.1 Architecture 
Our service selection architecture comprises several modules, 
which are illustrated in figure 3. Our architecture supports two 
main goals 1. optimised service discovery onboard small devices, 
2. adaptive discovery, such that result accuracy can be reduced 
when there is insufficient resources available to complete a 
service request.  

In our architecture, the service requester submits a request RQ for 
a service to the Discovery Manager. This manager loads 
appropriate potential services and terms from the database of 
ontologies. The Discovery Manager iteratively compares each 
potential service with the request RQ. It does this by asking the 
Semantic Reasoner module whether the potential service 
advertisement can be inferred to be a member of the RQ 
definition. The Discovery Manager interacts with the Context 
Manager to retrieve resource context information from the user’s 
device or explicit and implicit user preferences. For instance, 
closer services may be preferred to services which are further 
away. Therefore, preferred service advertisements (based on user 
preferences) are checked by the Semantic Reasoner, first. 

Semantic Reasoner
mTableaux
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Discovery ManagerService 
Request DB of OWL 
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Figure 3. Pervasive Service Discovery Architecture. 

The focus of this paper is the optimisation and adaptive reasoning 
strategies which are implemented in mTableaux, within the 
Semantic Reasoner module. mTableaux addresses the need for 
scalable reasoning on a mobile device by providing strategies to 
optimise the reasoning process and balance accuracy with 
efficiency. In the next section we describe our mobile reasoning 
strategies, employed by the mTableaux module, to achieve this. 

3.2 Tableaux Reasoners 
The effective employment of semantic languages requires the use 
of semantic reasoners such as Pellet, FaCT++, RacerPro and 
KAON2. Most of these reasoners utilise the widely used Tableaux 
[18] algorithm. DL Tableaux reasoners, such as Pellet, reduce all 
reasoning tasks to a consistency check. Tableaux is a branching 
algorithm, in which disjunctions form combinations of branches 
in the tree.  

Reasoners contain a knowledge base (KB), let K denote this KB, 
to which inference queries are performed. K encompasses 

terminological knowledge TBox and assertional knowledge ABox, 
such that K = TBox∪ ABox. TBox encompasses class definitions 
and expressions while ABox encompasses individual and literal 
assertions of class membership and relations. Inferred 
membership for an individual I to class type RQ implies I ∈  RQ, 
where RQ∈TBox and I∈ABox. RQI ∈  is checked by adding 

RQ¬  as a type to I, in a consistent ontology. If a clash exists 

for all branches dependant on RQ¬  for I, then membership is 
proven.  

a

b c

d:A
d:B

P R

R

).( BAR ¬∨¬∀
BA ¬∨¬

BA ¬∨¬

 
Figure 4. Example Clash. 

Figure 4 presents an example in which the individual a is 
connected to the object nodes d and c via role R and to b by role 
P. Inference of a∈RQ is checked by asserting a∈¬RQ, where 
RQ = ).( BAR ¬∨¬∀ .  

Application of the universal quantifier results in BA ¬∨¬  
being added to R neighbours of a, which are d and c. Node d is a 
member of type A and B and therefore clashes for both elements 
of the disjunction, proving that a is a member of RQ. Application 
of any other expressions to node a or d, or any expressions to 
nodes b and c would not lead to a clash and such processing is 
unnecessary.  

In order to illustrate an example of normal Tableaux execution. 
we wish to now check the truth of the inference a∈RQ, where 

)().( DCBARRQ ∧∧∧∀≡ . When RQ is negated it gives 
rise to the disjunction illustrated in figure 5, which expands into 
several sub-disjunctions. When a disjunction is applied using 
Tableaux it gives rise to a new branch. Branches are identified by 
branch number, which is incremented for each disjunction 
applied.  

)())(( DCBAR ¬∨¬∨¬∨¬∃

).( BAR ¬∨¬∃ DC ¬∨¬

AR¬∃ . B¬ C¬ D¬

Branch 0

Branch 1

Branch 2  
Figure 5. Example Disjunction. 

Applying the disjunction from figure 5, gives rise to the Tableaux 
execution given in figure 6. Note that individual a already a 
member of types B, C, and D and is restricted by the max 
cardinality of 0 for role R. The inference test clashes for all 
branches and the inference is proven. Notice that types and edge 
relations are indexed by branch number (shown in brackets before 
type and edge assertions). Note branch 0, indicates explicit types. 
The boxes represent an individual (name is indicated before the 
colon) and contains several types which have been added (after 
the colon) to the individual either explicitly, or by the execution 
of the Tableaux algorithm. Individuals may connect to other 
nodes via roles. 
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a:
BAR ¬∨¬∃ .Branch 1, Element 1:

AR¬∃ .Branch 2, Element 1:

0)0( R≤

a: AR¬∃ .)2(
Apply Expression ARa ¬∃ .:

Apply Expression 0: Ra ≤

a:

anon1: A¬)2(a:   ... (2)R

Clash: a due to R anon1
Restore to Branch 1

B¬Branch 2, Element 2:

B)0( C)0( D)0(

0)0( R≤B)0( C)0( D)0(

0)0( R≤B)0( C)0( D)0(

a: 0)0( R≤B)0( C)0( D)0(

Clash: a contains types B and 
a: 0)0( R≤B)0( C)0( D)0( B¬)2(

B¬
Restore to Branch 0

DC ¬∧¬Branch 1, Element 2:

)().( DCBARa ¬∨¬∨¬∨¬∃∈Check:

a: 0)0( R≤B)0( C)0( D)0( C¬)2(
Branch 2, Element 1:

Branch 2, Element 2:
a: 0)0( R≤B)0( C)0( D)0( D¬)2(

Clash: a contains types C and C¬

Clash: a contains types D and D¬
Clash for all branches, Inference Proven

Restore to Branch 1
a: 0)0( R≤B)0( C)0( D)0(

 
Figure 6. Tableaux Branching Example 

As shown in figure 6, when a clash occurs, for disjunction D, the 
reasoner state is restored to the branch number to which 
disjunction D depends on (was expanded from). Restoring 
reasoner state to an earlier branch state, involves permanently 
removing any type or edge which was added after the branch 
being restored to (ie type or edge with a branch number which is 
larger than the branch number being restored to). For instance in 
figure 6, notice that application of the existential quantifier at 
branch 2 results in the creation of a new edge, which is later 
removed when the reasoner state is restored to branch 1.  

In the next section we introduce and motivate our strategies to 
optimise semantic reasoning such that it can be completed on 
small devices and adaptively reduce result accuracy for faster 
query answering where precision is not needed or where there are 
insufficient resources or time to mandate such efficiency. 

3.3 mTableaux Motivation 
One of the key challenges facing the semantic web and its 
associated applications such as semantic web services, which has 
prevented its uptake on a large scale is performance. Even within 
an organisational Intranet the processing of ontologies can be 
extremely resource intensive. As a result current systems often 
query static semantic data without attempting to draw additional 
inferences, thereby failing to take advantage of one of the key 
benefits of semantics. This situation is only exacerbated when we 
consider the need to reason about a growing pool of 
interconnected ontologies which are distributed over the web. 

Today's reasoners still employ logic processing approaches which 
assume that an entire ontology (and all ontologies which it 
references), are loaded into memory. The logic expressions which 
make up the in-memory ontology, are processed until all possible 
inferences are established to complete the ontology. This 
approach does not take into consideration the increasingly 

distributed, heterogeneous pool of interconnected semantic 
documents. As this pool continues to grow in size, it is simply not 
feasible to assume that all related semantic data can be loaded and 
completed in this way.  

The fact that semantic languages allow the use of logic to express 
information provides a clear benefit over syntactic approaches. 
However, traditional approaches to logic based reasoning are 
based on absolutes which is an assumption that must be relaxed 
when dealing with the web. A key strength of the semantic web 
languages is their support for distribution. Semantic web 
ontologies do not need to conform to any centrally managed 
structure, they can be developed as independent portions of self 
contained information. The web is also incredibly heterogeneous 
and ontologies will be created by many different entities which 
may have a different and sometimes contradicting view of the 
same or related knowledge. Ontologies will often be created by 
non-experts or machines, which means that they will contain 
inaccuracies or may be sloppy in nature. In addition, different 
users of the web have different requirements. For instance, some 
users may seek an answer at the highest possible accuracy, while 
other users may not require the same degree of accuracy but 
would rather obtain an answer more quickly. These features of 
distribution, inaccuracies, heterogeneity and different perspectives 
and requirements which characterise the world wide web run 
contrary to the absolute and exact nature of logic languages and 
logic based reasoners. Current reasoners only cater for the notion 
of exact truth or failure in inference, and there is no provision for 
partial matching. Given the growing body of semantic knowledge 
on the web, guaranteeing such exactness may require excessive 
processing time and may not be feasible in the amount of memory 
available. A more fine-grained approach for inference matching is 
needed. Current reasoners understand terms such as “a is-a X”, “a 
is-the-same-as b” while it may be more appropriate to say “a is-
almost-a Y”, “a is-similar-to b” and “Yes, except for a few”. This 
situation is illustrated in figure 7, where a service advertisement a 
almost matches a request RQ, clearly a must have some relevance 
to the user is relevant to the user, however current reasoners fail 
to match a with RQ. 

RQ a

 

Figure 7. Advertisement a almost matches request RQ. 

Furthermore, current reasoners do not provide incremental, 
gradual query answering. Rather, they invest significant time in 
completing a search before an exact answer of absolute certainty 
is given, even if the user does not require this level of accuracy 
answer. Current reasoners do not support notions of importance or 
degree of match, for instance current reasoners support questions 
such as “Who has a white van and a red car convertible?” while it 
may be more appropriate to ask “Who has a white van? if that 
person has a red convertible as well that would be great but it is 
not very important to me”. Current reasoners consider all 
requirements to be of equal value and the order in which these are 
checked is arbitrary. A far better approach is to allow importance 
to be associated with each request condition and match the most 
important conditions first in order to make the best use of the 
processing time available, as shown in figure 8.  
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Figure 8. Gradual vs exact inference 

Current reasoners give no result until the final step. Conversely, if 
the most important request conditions are matched first, a gradual 
result can be returned to the user if the reasoner is stopped 
prematurely. Moreover, current reasoners would return false or a 
0.0 match if stopped early, while as shown in figure 8, more than 
half of the degree of match is found in the first 3 seconds, and the 
remaining half is found in the last 7 seconds. If the reasoner is 
stopped after 5 seconds the result 0.84 should be returned. 

In summary, our work focuses on two main objectives: 

• Toward the goal of improved performance, optimisation 
strategies are required to make semantic reasoning feasible 
for both high-end Internet and mobile environments, so that 
the semantic web can better reach its potential for data 
inference. 

• To support situations in which an inference task is too large, 
even with optimisations, there must be some flexibility 
introduced to reasoners. Moreover, current reasoning 
approaches need to be relaxed to handle premature ending of 
a reasoning task, inconsistent data and partial inferences, as 
well as providing approaches to reason about the relevant 
data set rather than entire ontologies. Where there is 
insufficient time or resources available to complete a 
reasoning task, a less accurate result should be provided to 
the user with a degree of match rating a confidence level of 
this result. 

In this paper we briefly introduce our optimisation strategies from 
previous work, which include: 1. selective application of 
consistency rules, 2. skipping disjunctions, 3. applying logical 
expressions are most likely to lead to a clash, first, by searching 
for potential clash paths from: 3a. disjunction branch element 
terms, as they are applied, and 3b. disjunctions as they become 
applicable (by the selective consistency strategy). However, the 
main contribution of this paper is to provide adaptive strategies 
for more flexible reasoning which include: 1. adaptive reasoning, 
2. on-demand ontology loading and 3. clash detection pre-
processing. The optimisation strategies are discussed in the next 
section. 

4. OPTIMISED MATCHING 
Our optimisation strategies address the goal of dramatically 
improving the performance of inference tasks to remove 
performance as a factor which prevents the user of reasoners for 
processing semantic information in both desktop/Internet and 
mobile environments. Our optimisation strategies achieve this 
using two approaches. The first two strategies drop expressions 
which are not considered relevant to the reasoning task in order to 

reduce the size of this task. The third strategy attempts to re-order 
the application of expressions in an attempt to apply first the 
expressions which are more likely to lead to a clash. The 
strategies which drop expressions, do not guarantee completeness, 
however in realistic datasets such as that used in [20] and section 
6 we found no deterioration in result accuracy. We briefly outline 
our optimisation strategies in the following (more details can be 
found in [20]). 

Our selective consistency strategy is as follows. Expansion of 
expressions and application of completion rules assert class types 
to individuals, which may generate these clashes. The only 
construct which, when applied, results in assertion of types to 
individuals other than the one which it is applied to, is the 
universal quantifier, of the form 

}),.({. CbRbabCR ∈→∈∀=∀  [19], where R denotes a 
relation and C denotes a class concept. For instance, if 
I∈ CR.∀  and if the triple <I, R, Z>, exists in K denoting that I 
has a relation R to the object Z, application of CR.∀ for I, results 
in asserting Z ∈C.  Therefore, when RQ¬  is added to I such that 

I∈ RQ¬ , we define the subset of relevant as being limited to I 
and those individuals which branch from this individual as objects 
of roles specified in universal quantifiers. For example in figure 4 
(see section 3.2), nodes a, c and d would be in the subset of 
relevant individuals, because they are connected to a via role R in 

).( BAR ¬∨¬∀ , while node b would not be in the subset. 

Our skip disjunction strategy is described as follows. Disjunctions 
are only applied, if they relate to the request type RQ, otherwise it 
is skipped. A disjunction is applied when one of its elements 
contains a type which can be decomposed from RQ. 
Decomposition involves selecting and unfolding atomic class 
types, elements of conjunctions/disjunctions or role fillers of 
universal quantifiers. For instance in figure 4 (see section 3.2), the 
disjunction BA ¬∨¬ , would be applied by this strategy, while 

DC ¬∨¬  would not. 

Our weighted strategies can be described as follows. The order in 
which logical expressions are applied is determined by weightings 
associated with these expressions. Weightings are established by 
searching for pathways to potential future clashes, and 
incrementing the weight of all expressions associated with this 
pathway. Figure 4 (see section 3.2) illustrates an example 
pathway from node a to d, via ).( BAR ¬∨¬∀  and DC ¬∨¬ . 
Under our disjunction weighting approach, all applicable (as 
deemed by selective consistency) disjunctions may be checked for 
potential clash pathways. Alternatively, a more specific approach 
is term weighting, where a search for pathway from a specific 
term to a clash occurs. We perform this search on terms which are 
asserted as a result of the application of a disjunction branch 
element. The assumption is that disjunction elements asserted to 
the knowledge base, may give rise to a clash which is not 
apparent until subsequent expressions on specific individuals are 
applied. Application of these expressions should be fast tracked. 
Term weighting may be utilised even when disjunction weighting 
is enabled, based on the assumption that once a disjunction branch 
element term is applied there is an increased incentive to improve 
the weight of any potential pathway from this element to a clash. 
For example, in figure 4 (see section 3.2), assume the application 
of element A¬  to node d, required application of other 
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expressions before a clash is found, the weight of these rules 
should be further increased since processing has already been 
invested in this pathway. [20] provides more detail on our 
optimisation strategies. 

While these strategies optimise the reasoning process, it may still 
be the case that mTableaux enabled optimised reasoning may still 
require too much time to complete, especially when reasoning 
with large ontologies and requests. Therefore, we leverage this 
approach by providing adaptive strategies to balance result 
accuracy with efficiency. We discuss our adaptive strategies in 
the next section. 

5. ADAPTIVE REASONING 
This section describes our approach for taking resource 
availability into consideration during the service matching 
process, in order to manage the trade-off between efficiency and 
accuracy. We begin by we discussing the depth-first strategies 
which current Tableaux reasoners and approximate reasoning 
approaches such as [16], utilise to iteratively check branch 
combinations. Then, in the subsequent sections we introduce our 
own novel weighted approach which matches the most important 
conditions first.   

5.1 Current Depth-first Reasoning  
This section is an overview of depth-first reasoning approaches 
which are utilised by current Tableaux reasoners and approximate 
reasoning approaches such as [16]. Assume the user wishes to 
find a movie cinema with Internet café. The request query is 
shown in expression 1, asking for retail outlets which sell coffee, 
Internet over WiFi and movie screenings. 

RetailOutlet ∧  ∃ sellsProduct.Coffee ∧  
∃ sellsProduct.MovieScreening ∧  

 ∃ sellsProduct.(Internet ∧  ∃ supportsComm.WiFi) 

(1) 

Tableaux reasoners utilise a depth-first approach in evaluating the 
above expression, as shown in figure 9.  

RetailOutlet

Coffee

RetailOutlet

Coffee Internet

suportsComm

RetailOutlet

WiFi

Coffee Internet

sellsProduct

suportsComm

RetailOutlet

WiFi

MovieScreening
Coffee Internet

(a) (b) (c) (d)

sellsProduct

 
Figure 9 Depth-first Example 

When matching a particular individual I with a request expression 
RQ the reasoner continues to match each iteration shown in figure 
9, until all conditions have been checked or an open branch is 
found (no clash). Therefore, those results given by each of the 
steps shown in figure 9 are subsets of the results given by the 
previous steps. Query containment can be described as follows.  

Let RQ1, RQ2 denote request queries over a knowledge base K of 
triples. Let K denote the knowledge base, CS the set of class 
definitions, RS the set of relation definitions and OS the object 
assertions, that K = <CS, RS, OS>. Let 'Q 1, 'Q 2 denote the 
results for queries RQ1 and RQ2, respectively. RQ1 is a subset of 

RQ2 if 'RQ 1 is a subset of 'RQ 2 for all objects in the knowledge 
base as shown in equation 2 and query equality is shown in 
equation 3. 

Q1 ⊆  Q2 iff {∀ OS.( 'Q 1 v 'Q 2) } (2) 

Q1 ≡ Q2 iff Q1 ⊆  Q2 ∧  Q2 ⊆  Q1 (3) 

Approaches such as [16] employ approximate reasoning 
approaches to support partial and anytime matching, which are 
based on the assumption that each of the previous iterations are 
subsets of the final iteration in figure 9, when checking 
membership of I ∈  RQ. Therefore, if reasoning is stopped early 
the reasoner returns a true match result, if all of the checked 
conditions were proven. This result is said to be an approximation 
or super result for the true result. However there shortcomings 
with this approach:  

1. particular request conditions or sub-conditions may have a 
different level of importance to the user: the most important 
should be checked first  

2. approximate reasoning approaches still provide only a 
Boolean result and do not provide a degree of match result to 
the user. If the approximation matches, the final result is said 
to be true 

3. pervasive environments are inherently dynamic and contain 
heterogeneous data, therefore there may be instances where 
the reasoner should check subsequent conditions in the 
query, even if some of them were not met by the request.  

We employ our novel weighted adaptive reasoning approach to 
overcome these shortcomings, which is introduced in the next 
section. 

5.2 Weighted Adaptive Reasoning 
Since certain query conditions may have a different level of 
importance to the user, we allow the association of user specified 
weightings with each condition and sub-condition. Weighs control 
query execution order, rather than depth or breath-first ordering. 
Assume that the user deems that while access to the Internet is 
more important than coffee, coffee is more important than WiFi 
Internet (the user may be happy to use a fixed PC). This gives rise 
to the following request query execution (note for illustrative 
purposes, coffee has been extended to include Tea, instant coffee 
and percolated coffee): 

RQ1: RetailOutlet 

RQ2: RetailOutlet ∧  ∃ sellsProduct.MovieScreening 

RQ3: RetailOutlet ∧  ∃ sellsProduct.MovieScreening ∧  
       ∃ sellsProduct.Internet 

RQ4: RetailOutlet ∧  ∃ sellsProduct.MovieScreening ∧  
       ∃ sellsProduct.Internet ∧  ∃ sellsProduct.(Tea ∧  
        (InstantCoffee ∧  PercolatedCoffee)) 

RQ5: RetailOutlet ∧  ∃ sellsProduct.MovieScreening ∧  
       ∃ sellsProduct.(Internet∧ ∃ supportsComm.WiFi)∧  
       ∃ sellsProduct. (Tea ∧  (InstantCoffee ∧  
        PercoluatedCoffee)) 
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Since Tableaux checks inferences by asserting the negation of the 
inferred type to an individual, we provide the negation of RQ5 in 
expression 4. 

¬RetailOutlet ∧  ∀ sellsProduct. ((¬InstantCoffee 
∨ ¬Percolated) ∨  ¬Tea) ∧  ∀ sellsProduct. 

¬MovieScreening ∧ ∀ sellsProduct. (¬Internet ∧  
∀ supportsComm. ¬{WiFi} ) 

(4) 

Expression 4 gives rise to the disjunctions and sub-disjunctions 
illustrated in figure 10, where elements in the first level 
disjunction expand into other disjunctions. When a disjunction 
element expands into another disjunction, the expanded 
disjunction is said to be dependant on the disjunction from which 
it was expanded from. For instance element 9 is dependant on 
element 7, and 7 on 5. 

Figure 10 also illustrates the weights given to each condition and 
sub-condition. Let w denote the user specified weight given to 
each condition or sub-condition. If a user has not specified a 
weight, 1.0 is used by default. Let rw denote a relative weight, 
which is the user specified weight w multiplied by the relative 
weight rw of the element which it depends (rw is equivalent to w 
if it is the top level disjunction). Rather than depth-first ordering 
(see previous section), we wish to execute disjunction elements in 
relative weight rw descending order. Let nrw denote a normalized 
relative weight. Normalisation implies that the sum of all nrw 
values for a disjunction D (ie the nrw of each of its elements) is 
equal to the nrw of the disjunction to which D depends (nrw is 
used in the next section). We also define a special identifier in 
order to index each element uniquely. We call this index a tree-id. 

  ¬RetailOutlet

¬InstantCoffee     .
¬PerculatedCoffee

∀   sellsProduct .(
¬Tea    (¬InstantCoffee     
    ¬PerculatedCoffee ))
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Figure 10. Weighted Approach to Query Execution 

Recall from section 3.2, when a disjunction is applied it gives rise 
to a branch in the reasoner. Each disjunction element is applied as 
a separate branch. The order in which elements (branches) in 
figure 10 were applied, is given by the number on the top left of 
each element (the order of elements with the same rw is random). 
In figure 10, each request query RQ includes the following 
elements: RQ1 = {1}, RQ2 = {1, 2}, RQ3 = {1, 2, 3, 4}, RQ4 = {1, 
2, 3, 4, 5, 6, 7, 8, 9}, RQ5 = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}. That is, if 
the request query RQi is satisfied, then all of the elements to 
which it relates, have also been applied and satisfied.  

As described in the previous section, Tableaux is a depth-first 
branching algorithm, in which branches depend on previous 
branches in the tree. This was also shown in section 3.2. 

Therefore, for instance, after element 4 is found to clash, the 
reasoner state is restored to element 1, before element 5 is 
executed. Therefore, the state transition from element 9 to 
element 10, requires the re-application of element 3 (and any 
completion rules which were fired between element 4 and 5 
arising from other concepts in the ontology. Such an approach 
therefore results in extra processing, which is unnecessary. 
Therefore, ordering disjunction elements by importance in 
conjunction with a depth-first approach would potentially increase 
processing rather than decrease it. In order to overcome this 
problem, we have developed a new mechanism to manage 
reasoner state, which replaces depth-first. Under depth-first, 
reasoner state is maintained according to branch number iteration 
(see section 3.2). Under our approach state is maintained by tree-
id. Our novel approach to state maintenance is described in the 
next section. 

5.3 State Maintenance 
Under our approach we index reasoner state by element identifier 
tree-id, rather than by branch iteration (see section 3.2), as in 
current Tableaux reasoners. And rather than restoring reasoner 
state to an earlier state (as under depth-first), we preserve an 
indexed reasoner state for each branch until all dependant nodes 
have been evaluated. The reasoner state is indexed in order to 
provide different state views, depending on which branch node is 
being evaluated.  

As shown figure 10 each element is associated with a unique tree-
id, which we utilise to index reasoner state. Let etree-id denote the 
tree-id for element e. A tree-id comprises two or three positive 
integer values, each separated with a dash. The digit before the 
dash indicates the disjunction level of the element and the digit 
after the dash indicates the element position in the level. Note the 
position index is incremented for each element including those in 
different disjunctions on the same level. We denote the third value 
as copyid, an optional value used as a delimiter to differentiate 
between same disjunctions that are applied to multiple 
individuals. This only occurs when a universal quantifier applies a 
disjunction as its role filler, for example if )( BAR ∨∀  applies 

the disjunction BA∨  to two individuals, element A is given a 
tree-id=x-x-0 for one individual and tree-id=x-x-1 for the other. 

Each element depends on previous elements, for example 
¬InstantCoffee depends on elements {0-0, 1-0, 2-1, 3-1, 4.0}. Let 
dep-set denote this set of elements and let edep-set denote the dep-
set for an element e. tree-id 0-0 is reserved for explicit type 
assertions (with no dependency) and tree-id 1-0 is reserved as a 
reference point to which the first disjunction depends. Therefore, 
all elements depend on 0-0 and 1-0. 

In order to maintain an indexed reasoner state, to provide different 
state views based on tree-id, we define a set S, which is indexed 
by tree-id. Each value v in the set S is associated with a tree-id, to 
form the pair <v, tree-id>. Multiple v elements in the set S can 
have the same tree-id. The view of S at any one time, depends on 
the edep-set where e is the current/last disjunction/branch element in 
the reasoner. This view is given by view(S, dep-set) and contains 
only those values v which have a tree-id contained within edep-set. 
For example, when applying the ¬InstantCoffee element 8 in 
figure 10, etree-id = 4-0 and edep-set = {1-1, 2-1, 3-1, 4-0}. And for 
example, where S = {<v1, 1-0>, <v2,, 1-1>, <v3, 1-1>, < v4, 1-2>, 
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<v5, 2-1>, <v6, 2-3>, <v7, 3-1>, <v8, 4-0>} then sv(S, dep-set) = 
{<v2, 1-1>, < v3, 1-1>, < v5, 2-1>, < v7, 3-1>, < v8, 4-0> }.  

We utilise instances of S to maintain:  

1. the type labels which are added to a particular individual in 
the knowledge base  

2. the graph of edges (role assertions) in the knowledge base.  

This replaces the branch number indexing of types and edges 
which occurs when depth-first is employed, as discussed in 
section 3.2. 

As stated in earlier sections, under our approach we support 
partial matching. Therefore, we continue matching even if one 
request condition (disjunction element) does not match. This is 
distinct from the current Tableaux depth-first approach which 
stops and returns a false result as soon as any condition does not 
match. However, introducing partial matching can involve 
significant processing which may be unnecessary. For instance if 
several important attributes fail to match, there is no sense in 
checking all other remaining insignificant attributes. Therefore, in 
the next section we introduce a strategy for deciding whether to 
continue or stop matching.  

5.4 Low Resources: Stop Matching 
In the case that important request conditions failed to match a 
particular service advertisement, a better use of resources may be 
to try another service instead of continuing to attempt to match 
the remaining conditions which are less important. We specify the 
decision as to whether to keep matching a service as being a 
trade-off between the three factors 1. the current service 
result/degree of match, 2. the weight of the next attribute and 3 
resource availability.  

Let service-result denote the degree of match which is calculated 
by the sum of the normalised-relative nrw (see section 5.1.2) 
weights for each condition which was found to successfully match 
the service advertisement, and let potential-result denote the total 
possible sum of all normalised-relative condition weights nrw 
(including any unchecked or non-matching conditions). We 
denote curr-result as the ratio of service-result / potential-result.  

We model a linear relationship between curr-result and the 
normalised-relative weight of the next request condition to match 
nrw(next), on a graph as shown in figure 10, where the x axis 
denotes the curr-result and the y axis denotes the attribute weight 
nrw(next) required, in order to keep matching. A linear line which 
crosses the points (x1, y1) and (x2, y2). These points are determined 
as follows: y1 and x2 are always 1 (y1 = 1 and x2 = 1) and the 
coordinates x1 and y2 are determined on the fly based on the 
amount of resources or time remaining where 0 ≤ x1 ≤ 1 and 0 ≤ y2 
≤ 1.  
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Figure 11. Deciding whether to stop matching. 

As illustrated in figure 11, if the weight of the next request 
condition to match nrw(next) is above the line we keep matching, 
while if nrw(next) is below the line stop matching.  

In the next section we discuss the implementation of the 
optimisation and adaptive strategies from sections 4 and 5, and 
provide an evaluation to illustrate their effect on performance and 
accuracy.  

6. Implementation and Evaluation 
In this section we discuss the implementation of our mTableaux 
optimisation and adaptive strategies and provide a performance 
evaluation, of these strategies. Our evaluation utilizes a Product 
case study implemented in an ontology comprising 204 classes 
and 241 individuals. In our case study, Bob is searching for a 
Movie Cinema with Café which provides WiFi internet and a 
public phone, in a foreign city centre. The request is an extension 
of that given in Q5 (negated in expression 4) with each condition 
associated with the weights provided in figure 10, in section 5.2 
(condition weights are only applicable to the adaptive reasoning 
strategy).  

6.1 Implementation 
We have implemented both our optimisation strategies and our 
adaptive strategies as an extension to the Pellet 1.5 reasoner 
which supports OWL-DL with SHOIN expressivity. Pellet is open 
source, allowing us to provide a proof of concept and compare 
performance with and without the strategies enabled. We selected 
Pellet over FaCT++ because it is written in Java, making it easily 
portable to small devices such as PDAs and mobile phones, while 
FaCT++ is written in C++. An addition, we are using Jena as the 
ontology repository used by Pellet to read the ontology. We 
implemented the optimisation strategies from section 4. We 
evaluate the impact these have on performance in the next 
sections. 

6.2 Mobile Performance and Accuracy 
Results 
We performed an evaluation on a HP iPAQ hx2700 PDA, with 
Intel PXA270 624Mhz processor, 64MB RAM, running Windows 
Mobile 5.0 with Mysaifu Java J2SE Virtual Machine (JVM) [21], 
allocated 15MB of memory. We present results for the 
optimisation and adaptive strategies the next two sections, 
respectively. 

6.2.1 Optimisation Strategies - Results 
Figure 12 illustrates the performance results for the optimisation 
strategies. We performed a number of tests, each with different 
combinations of the strategies enabled. The initials above each 
test on the graph indicate the optimisation strategies which were 
enabled: selective Consistency, Skip disjunctions, Disjunction 
ranking and Term ranking.  
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Figure 12. Processing time for Product scenario. 

We performed each test against a: A. matching service individual 
and B. non-matching service individual. Where no optimisation 
strategies were enabled, an “Out of Memory” error was returned. 
Our results show that the selective consistency and skip 
disjunction strategies work best and drastically reduce processing 
time, with very little overhead. More detailed results can be found 
in [22] and [20]. 

6.2.2 Adaptive Strategies - Results 
To demonstrate the feasibility of our adaptive reasoning strategy 
we performed a number of tests as outlined in table 1. We 
performed one test in which all conditions matched and 3 where 
one condition was not matching. Note, that the optimisation 
strategies were enabled for these tests and all service result. 

In our tests we used the resource preferences illustrated in figure 
13, in order to determine whether to keep matching. Therefore, 
matching stopped early in tests 2 and 3. 

Table 1. Adaptive Reasoning Results 

Service Result Time 
(excl. 
init.) 

Total 
Time 

Test 

Actual Theoretical   

1. Match  1.0 1.0 24s 53s 

2. No Movie 
Cinema 

0.33 0.69 7s 33s 

3. No Internet 0.63 0.76 17s 46s 

4. No Coffee 0.86 0.86 25s 54s 

In table 1, service result is the sum of normalised-relative nrw 
weights associated with each request condition which was 
successfully matched against the service advertisement. We also 
provide the processing time incurred to perform the consistency 
check (checking whether a request condition matched, excluding 
initialisation), and the total time (including initialisation). The 
“theoretical” service result indicates the degree of match value 
given if all request conditions are checked, while the “actual” 
service result is that which was returned by the discovery 
architecture. The actual result returned is sometimes lower than 
the theoretical degree of match because reasoning can be stopped 
early and some conditions not checked. 
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Figure 13. Preferences for deciding whether to stop matching. 

Our results show that performance of the adaptive strategy is 
similar to the results from the previous section where all 
conditions match the potential service. However, when important 
conditions do not match, valuable processing time is saved by 
avoiding the checking of less important conditions, at the expense 
of result accuracy. Our findings therefore show that the adaptive 
reasoning strategy meets our goal of balancing the trade-off 
between efficiency and accuracy.  

In summary our optimisation strategies drastically reduced the 
processing time required to match request with potential service 
individuals, such that this can be completed on a small device. 
When optimised reasoning is still too large to perform in the 
available time, we provide adaptive strategies which iteratively 
match the most important conditions (as deemed by the user) first 
and avoid matching less important conditions when important 
conditions failed. This allows the reasoner to move on to checking 
another potential service, instead of wasting scarce resources on 
continuing to check a service that has already failed vital 
conditions. Evaluation of our adaptive approach shows that our 
strategies effectively meet this goal.  

7. CONCLUSION AND FUTURE WORK 
We have presented novel strategies for improving the scalability 
of the Tableaux algorithm for mobile semantic reasoning. 
mTableaux was shown to significantly improve the performance 
of pervasive discovery reasoning tasks so that they can be 
completed on small resource constrained devices. However, in 
some cases the request may still be too complex or there may 
exist too many potential services to check each service 
completely, within a reasonable amount of time. In addition, for 
the semantic web to reach its true potential it must effectively 
handle explicit and inferred relationships between heterogeneous 
data and support partial and incomplete matching. Therefore, as 
the main contribution for this paper we have developed a strategy 
for adaptive reasoning. As opposed to currently used Tableaux 
depth-first strategies, our we use a weighted approach which 
matches the most important inference conditions first, to make the 
best use of the processing time and resources available. If the 
reasoning process is stopped prematurely, a known service result 
is given to the user. In the evaluations of our prototype we 
demonstrate the significant processing savings achieved by 
stopping the reasoning process as soon as important request 
conditions fail to match.  

In future work, we are developing more formal metrics for 
assessing degree of match and in particular a confidence or 
uncertainty level in the degree of match given. We seek to create 
and evaluate more scenarios and stop reasoning based on two 
constraints: 1. time bound responses in which a user seeks a result 
within a specified time frame, and 2. confidence bound results, in 
which the user seeks a result only to a certain level of confidence, 
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eg the degree of match after checking 90 percent of the request 
conditions. In addition it is not feasible to require the entire 
ontology to be loaded into memory in such a distributed 
environment as the web, or constrained memory of a mobile 
device. Only a small part of the ontology (or those ontologies 
imported) may be relevant to the reasoning ask. Therefore, we are 
developing an on-demand ontology loading strategy which only 
loads terms from an ontology as these are needed by the reasoner.  
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