219 research outputs found

    Adaptive predictive power control for the uplink channel in DS-CDMA cellular systems

    Get PDF
    In this paper, we analyze the conventional closed-loop power-control system. We explain that the system behaves essentially as a companded delta modulator and then derive an expression for the power-control error in terms of the channel fading, which suggests methods for reducing the error variance. This is achieved by using a prediction technique for estimating the channel-power fading profile. The prediction module is combined with several proposed schemes for closed-loop power control. The resulting architectures are shown to result in improved performance in simulations

    Numerical study on failure process of aluminium plate subjected to normal impact by hemispherical projectiles

    Get PDF
    In this paper a study is presented on the numerical analysis of the failure process of aluminium armour plate subjected to normal impact by hemispherical projectiles. The perforation process has been simulated by the application of 3D analysis using IMPACT dynamic FE program suite. The comparison on the elements size of meshing towards failure mode was observed and evaluated. The material behaviour of the target plate was approximated by an appropriate constitutive relation. The study covered different size of meshing element on target plate as well as different level of impact velocities. Different failure modes for each case were found. For low speed impact condition a petalling was observed, whereas for high speed impact a radial neck along with a holes enlargement was observed with better and uniform perforation mode. The deformation and failure mode of the impacted target plate will be given special attention in this investigation

    Uplink channel power control improvement in DS-CDMA system using channel predictions

    Get PDF
    In cellular systems all Mobile’s Station (MS) signals should arrive to Base Station (BS) at equal power, if not the weaker one will be blocked and the strong signals will interference with each other. The research areas include coding and improving power control for uplink channel schemes in cellular systems. Commonly the uplink channel power control schemes utilizes Signal to Interference Ratio (SIR) to design a Power Control Command (PCC) to adjust the transmit power of the mobile station in cellular systems. Conventional SIR based uplink channel power control schemes updates the transmitting power based on the current channel state, in the fact the state of channel will be changed when the transmission is made; the channel is already in its next state. The state is different from previous one. That causes the SIR to drop or rise drastically and lead to Near-Far effect interference resulting in power escalation and making the DSCDMA system go unstable. To overcome these problems, a new approach method has been developed, based on linear quadratic Gaussian (LQG) control and Extended Kalman filter for channel prediction, this method dependent on the channel state instead of the current. Using the proposed method the next state of uplink channel can be predicted and update the power accordingly. This will give us a more stable SIR behavior and leads to stable DS-CDMA system. The simulation of this research is performed using Matlab to show the result of building a DS-CDMA system link with existing SIR based uplink channel power control schemes, implementing the predictive approach for uplink channel power control achieved the signal to interference ratio (SIR) as close as possible to the predefine level in order to maximize a DS-CDMA systems capacity and performance. That is clearly shown in the results when compared with the conventional methods

    Multiuser detection in CDMA using blind techniques

    Get PDF
    Thesis (Master)--Izmir Institute of Technology, Electronics and Communication Engineering, Izmir, 2004Includes bibliographical references (leaves: 63-65)Text in English; Abstract: Turkish and Englishxiv, 69 leavesIn code division multiple access (CDMA) systems, blind multiuser detection (MUD) techniques are of great importance, especially for downlinks, since in practice, it may be unrealistic for a mobile user to know the spreading codes of other active users in the channel. Furthermore, blind methods remove the need for training sequences which leads to a gain in the channel bandwidth. Subspace concept in blind MUD is an alternative process to classical and batch blind MUD techniques based on principle component analysis, or independent component analysis (ICA) and ICA-like algorithms, such as joint approximate diagonalization of eigen-matrices (JADE), blind source separation algorithm with reference system, etc. Briefly, the desired signal is searched in the signal subspace instead of the whole space, in this type of detectors. A variation of the subspace-based MUD is reduced-rank MUD in which a smaller subspace of the signal subspace is tracked where the desired signal is contained in. This latter method leads to a performance gain compared to a standard subspace method. In this thesis, blind signal subspace and reduced-rank MUD techniques are investigated, and applied to minimum mean square error (MMSE) detectors with two different iterative subspace tracking algorithms. The performances of these detectors are compared in different scenarios for additive white Gaussian noise and for multipath fading channels as well. With simulation results the superiority of the reduced-rank detector to the signal subspace detector is shown. Additionally, as a new remark for both detectors, it is shown that, using minimum description length criterion in subspace tracking algorithm results in an increase in rank-tracking ability and correspondingly in the final performance. Finally, the performances of these two detectors are compared with MMSE, adaptive MMSE and JADE detectors

    Adaptive power control in CDMA cellular communication systems

    Get PDF
    Power control is an essential radio resource management method in CDMA cellular communication systems, where co-channel interference is the primary capacity-limiting factor. Power control aims to control the transmission power levels in such a way that acceptable quality of service for the users is guaranteed with lowest possible transmission powers. All users benefit from the minimized interference and the preserved signal qualities. In this thesis new closed loop power control algorithms for CDMA cellular communication systems are proposed. To cope with the random changes of the radio channel and interference, adaptive algorithms are considered that utilize ideas from self-tuning control systems. The inherent loop delay associated with closed loop power control can be included in the design process, and thus alleviated with the proposed methods. Another problem in closed-loop power control is that extensive control signaling consumes radio resources, and thus the control feedback bandwidth must be limited. A new approach to enhance the performance of closed-loop power control in limited-feedback-case is presented, and power control algorithms based on the new approach are proposed. The performances of the proposed algorithms are evaluated through both analysis and computer simulations, and compared with well-known algorithms from the literature. The results indicate that significant performance improvements are achievable with the proposed algorithms.reviewe

    Radio resource management and metric estimation for multicarrier CDMA systems

    Get PDF

    Transmitter Optimization in Multiuser Wireless Systems with Quality of Service Constraints

    Get PDF
    In this dissertation, transmitter adaptation for optimal resource allocation in wireless communication systems are investigated. First, a multiple access channel model is considered where many transmitters communicate with a single receiver. This scenario is a basic component of a. wireless network in which multiple users simultaneously access the resources of a wireless service provider. Adaptive algorithms for transmitter optimization to meet Quality-of-Service (QoS) requirements in a distributed manner are studied. Second, an interference channel model is considered where multiple interfering transmitter-receiver pairs co-exist such that a given transmitter communicates with its intended receiver in the presence of interference from other transmitters. This scenario models a wireless network in which several wireless service providers share the spectrum to offer their services by using dynamic spectrum access and cognitive radio (CR) technologies. The primary objective of dynamic spectrum access in the CR approach is to enable use of the frequency band dynamically and opportunistically without creating harmful interference to licensed incumbent users. Specifically, CR users are envisioned to be able to provide high bandwidth and efficient utilization of the spectrum via dynamic spectrum access in heterogeneous networks. In this scenario, a distributed method is investigated for combined precoder and power adaptation of CR transmitters for dynamic spectrum sharing in cognitive radio systems. Finally, the effect of limited feedback for transmitter optimization is analyzed where precoder adaptation uses the quantized version of interference information or the predictive vector quantization for incremental updates. The performance of the transmitter adaptation algorithms is also studied in the context of fading channels

    Final report on the evaluation of RRM/CRRM algorithms

    Get PDF
    Deliverable public del projecte EVERESTThis deliverable provides a definition and a complete evaluation of the RRM/CRRM algorithms selected in D11 and D15, and evolved and refined on an iterative process. The evaluation will be carried out by means of simulations using the simulators provided at D07, and D14.Preprin

    Multi-carrier CDMA using convolutional coding and interference cancellation

    Get PDF
    SIGLEAvailable from British Library Document Supply Centre-DSC:DXN016251 / BLDSC - British Library Document Supply CentreGBUnited Kingdo

    A General Framework for Analyzing, Characterizing, and Implementing Spectrally Modulated, Spectrally Encoded Signals

    Get PDF
    Fourth generation (4G) communications will support many capabilities while providing universal, high speed access. One potential enabler for these capabilities is software defined radio (SDR). When controlled by cognitive radio (CR) principles, the required waveform diversity is achieved via a synergistic union called CR-based SDR. Research is rapidly progressing in SDR hardware and software venues, but current CR-based SDR research lacks the theoretical foundation and analytic framework to permit efficient implementation. This limitation is addressed here by introducing a general framework for analyzing, characterizing, and implementing spectrally modulated, spectrally encoded (SMSE) signals within CR-based SDR architectures. Given orthogonal frequency division multiplexing (OFDM) is a 4G candidate signal, OFDM-based signals are collectively classified as SMSE since modulation and encoding are spectrally applied. The proposed framework provides analytic commonality and unification of SMSE signals. Applicability is first shown for candidate 4G signals, and resultant analytic expressions agree with published results. Implementability is then demonstrated in multiple coexistence scenarios via modeling and simulation to reinforce practical utility
    corecore