6 research outputs found

    High power amplifier pre-distorter based on neural-fuzzy systems for OFDM signals

    Get PDF
    In this paper, a novel High Power Amplifier (HPA) pre-distorter based on Adaptive Networks - Fuzzy Inference Systems (ANFIS) for Orthogonal Frequency Division Multiplexing (OFDM) signals is proposed and analyzed. Models of Traveling Wave Tube Amplifiers (TWTA) and Solid State Power Amplifiers (SSPA), both memoryless and with memory, have been used for evaluation of the proposed technique. After training, the ANFIS linearizes the HPA response and thus, the obtained signal is extremely similar to the original. An average Error Vector Magnitude (EVM) of 10-6 can be easily obtained with our proposal. As a consequence, the Bit Error Rate (BER) degradation is negligible showing a better performance than what can be achieved with other methods available in the literature. Moreover, the complexity of the proposed scheme is reducedThis work was supported in part by projectsMULTIADAPTIVE (TEC2008-06327-C03-02) and AECI Program of Research Cooperation with MoroccoPublicad

    Compensation of nonlinear distortion in RF amplifiers for mobile communications

    Get PDF
    Compensation of nonlinear distortion of power amplifiers in mobile communications is an important requirement for improving power consumption performance while maintaining efficiency, since mobile phone became an essential accessory for everyone nowadays. This problem demands a good power amplifier model, in order to develop an effective predistortion system. Current researches are focused on modelling and predistortion of power amplifiers with memory, as well as memoryless ones. Different methods for modelling are used, as the Volterra series, polynomial models, look-up tables, the Hammerstein models, the Wiener models, and artificial intelligence systems. For predistortion feedback, feedforward and digital predistortion techniques are used. Among digital predistortion methods there are artificial intelligence systems, used in this thesis for linearization of power amplifier. This thesis presents developed robust method for modelling power amplifiers without memory effects and gives a comparison of proposed method with least squares method. Also, this research presents two novel techniques based on artificial intelligence systems for modelling and predistortion of highly nonlinear power amplifier with memory. The first approach is based on artificial neural networks, while the second one uses adaptive fuzzy logic systems. Forward and inverse models of power amplifier are created with both proposed methods. Superiority of artificial intelligence systems over partial least squares method is presented. Developed models are employed in a cascade to make a linearized system. Verification of proposed methods is carried out through the signal performance parameters and spectra of measured signal and signal from predistortion system. The feasibility and performances of the proposed digital predistortions are examined by simulations and experiments. The comparison of proposed methods is given to present advantages/disadvantages of both methods. The achieved distortion suppression from 72.2% to 93.6% and spectral regrowth improvement from 11.4 dB to 16.2 dB prove that the proposed methods have great ability to compensate the nonlinear distortion in power amplifier

    An Adaptive Fuzzy Logic System for the Compensation of Nonlinear Distortion in Wireless Power Amplifiers

    Get PDF
    Computational intelligent systems are becoming an increasingly attractive solution for power amplifier (PA) behavioural modelling, due to their excellent approximation capability. This paper utilizes an adaptive fuzzy logic system (AFLS) for the modelling of the highly nonlinear MIMIX CFH2162-P3 PA. Moreover, PA’s inverse model based also on AFLS has been developed in order to act as a pre-distorter unit. Driving an LTE 1.4 MHz 64 QAM signal at 880 MHz as centre frequency at PA’s input, very good modelling performance was achieved, for both PA’s forward and inverse dynamics. A comparative study of AFLS and neural networks (NN) has been carried out to establish AFLS as an effective, robust, and easy-to-implement baseband model, which is suitable for inverse modelling of PAs and capable to be used as an effective digital pre-distorter. Pre-distortion system based on AFLS, achieved distortion suppression of 84.2%, compared to the 48.4% gained using the NN-based equivalent schem

    Linealización de amplificadores de radiofrecuencia con redes neuronales

    Get PDF
    Linealización de Amplificadores de Radiofrecuencia con Redes Neuronales:En está tesis doctoral se aborda la linealización de amplificadores de Radiofrecuencia en profundidad.En primer lugar se lleva a cabo una descripción detallada de los diversos sistemas de linealización de amplificadores de radiofrecuencia existentes en la actualidad.Posteriormente se lleva a cabo una minuciosa descripción de la modulación de telecomunicaciones TETRA, sobre la cual va a implementarse el sistema de linealización del amplificador de radiofrecuencia.A continuación se selecciona la tecnología del amplificador de Radiofrecuencia, llevando a cabo un riguroso análisis de las tres tecnologías más importantes (LDMOS, GaN y GaAs) y demostrando las principales ventajas de la solución escogida.Posteriormente, se implementa un sistema de linealización basado en redes neuronales, capaz de linealizar el amplificador de Radiofrecuencia seleccionado, de forma que se cumplan los estándares de telecomunicaciones internacionales para la modulación TETRA y consiguiendo que la complejidad del sistema sea la menor posible, de cara a poder ser implementado empleando los mínimos recursos computacionales y con el menor coste económico posible.Por último se lleva a cabo la implementación física real de la solución completa en un terminal portátil de telecomunicaciones, obteniendo unos excelentes resultados en cuanto a prestaciones y ahorro económico y de recursos computacionales de esta solución respecto a las existentes en el mercado hasta la fecha.<br /

    Data Acquisition Applications

    Get PDF
    Data acquisition systems have numerous applications. This book has a total of 13 chapters and is divided into three sections: Industrial applications, Medical applications and Scientific experiments. The chapters are written by experts from around the world, while the targeted audience for this book includes professionals who are designers or researchers in the field of data acquisition systems. Faculty members and graduate students could also benefit from the book

    Pertanika Journal of Science & Technology

    Get PDF
    corecore