1,256 research outputs found

    Active vibration control of flexible beam incorporating recursive least square and neural network algorithms

    Get PDF
    In recent years, active vibration control (AVC) has emerged as an important area of scient ific study especially for vibrat ion suppression of flexible structures. Flexible structures offer great advantages in contrast to the conventional structures, but necessary action must be taken for cancelling the unwanted vibration. In this research, a simulation algorithm represent ing flexible beam with specific condit ions was derived from Euler Bernoulli beam theory. The proposed finite difference (FD) algorithm was developed in such way that it allows the disturbance excitat ion at various points. The predicted resonance frequencies were recorded and validated with theoretical and experimental values. Subsequent ly, flexible beam test rig was developed for collecting data to be used in system ident ificat ion (SI) and controller development. The experimental rig was also utilised for implementation and validat ion of controllers. In this research, parametric and nonparametric SI approaches were used for characterising the dynamic behaviour of a lightweight flexible beam using input - output data collected experimentally. Tradit ional recursive least square (RLS) method and several artificial neural network (ANN) architectures were utilised in emulat ing this highly nonlinear dynamic system here. Once the model of the system was obtained, it was validated through a number of validation tests and compared in terms of their performance in represent ing a real beam. Next, the development of several convent ional and intelligent control schemes with collocated and non-collocated actuator sensor configurat ion for flexible beam vibrat ion attenuation was carried out. The invest igat ion involves design of convent ional proportional-integral-derivat ive (PID) based, Inverse recursive least square active vibrat ion control (RLS-AVC), Inverse neuro active vibration control (Neuro-AVC), Inverse RLS-AVC with gain and Inverse Neuro-AVC with gain controllers. All the developed controllers were tested, verified and validated experimentally. A comprehensive comparat ive performance to highlight the advantages and drawbacks of each technique was invest igated analyt ically and experimentally. Experimental results obtained revealed the superiorit y of Inverse RLS-AVC with gain controller over convent ional method in reducing the crucial modes of vibration of flexible beam structure. Vibration attenuation achieved using proportional (P), proportional-integral (PI), Inverse RLS-AVC, Inverse Neuro- AVC, Inverse RLS-AVC with gain and Inverse Neuro-AVC with gain control strategies are 9.840 dB, 6.840 dB, 9.380 dB, 8.590 dB, 17.240 dB and 5.770 dB, respectively

    Fuzzy-PID controller on ANFIS, NN-NARX and NN-NAR system identification models for cylinder vortex induced vibration

    Get PDF
    In this paper, Fuzzy-PID controller on nonlinear system identification models for cylinder due to vortex induced vibration (VIV) has been presented well. Nonlinear system identification models generated after extracting the input-output data from previous paper. The nonlinear model consisted into three methods: Neural Network (NN-NARX) based on the Nonlinear Auto-Regressive with External (Exogenous) Input, Neural Network (NN-NAR) based on the Nonlinear Auto-Regressive and Adaptive Neuro-Fuzzy Inference System (ANFIS). The work has been divided into two main parts: generating the system identification models to predict the system dynamic behavior and using Fuzzy-PID controller to suppress the cylinder vibration arising from the vortices. For system identification models, the best representation for NAR and NARX models has been chosen depend on two variables which are Number of hidden neurons (NE) and number of delay (ND) then using mean Square Error (MSE) to find the best model. Whereas, calculating the lowest MSE when the ND equal to 2 and the value of NE ranging 1-11 then fixing NE which is giving the lowest MSE and calculating it when the ND ranging 1-11. While, for ANFIS model the process consisted of find the lowest MSE at particular number of membership function (MF) with two inputs and generalized bell shape as a type of MF. For the second part, Fuzzy-PID used to attenuate the effect of vortices on the cylinder on the best representation for all methods. However, the consequences presented that the lowest MSE of NAR model equal 2.8452×10-9 when the NE = 6 and ND = 4. While the best model of the NARX method recorded MSE = 1.2714×10-9 at NE and ND equal to 8 and 2 respectively. Also, the lowest MES for ANFIS model recorded 2.5635×10-13 when the MF equal to 2 for input and output. From another hand, Fuzzy-PID controller has been succeeded to reduce the vortex induced vibration on cylinder for all models but particularly on ANFIS model

    Intelligent identification and control of a flexible beam

    Get PDF
    High demands in weight reduction have been observed in many areas. There are many benefits with weight reduction including reducing cost, increase efficiency and pushing the technology beyond the limit. The weight reduction requires lighter materials to be used, therefore less stiff structures are utilized. The less stiff the structure, the more flexible and easier it is to vibrate. The vibration produced by these types of structures may cause a lot of problems, including fatigue failure, resonance failure, defects, and even life. This project studies a type of structure configuration; a flexible cantilever beam. The objectives of this project are to identify the model and to develop the controller for the flexible beam. Previous studies have shown various methods are suitable to identify the system, these include the ones considered in this project; the parametric modelling using Recursive Least Square, as well as the nonparametric modelling using Multilayer Perceptron Neural Network. An experimental rig of flexible cantilever beam is developed for this project to obtain the input data for the system identification. A Proportional-Integral-Derivative controller is developed utilizing both system models identified, using automatic and heuristic tunings techniques within MATLAB environment. The performance developed by the controller is verified through simulations in MATLAB Simulink. The controller is proven to be stable with significant vibration suppression of the flexible beam

    Intelligent identification and control of a flexible beam

    Get PDF
    High demands in weight reduction have been observed in many areas. There are many benefits with weight reduction including reducing cost, increase efficiency and pushing the technology beyond the limit. The weight reduction requires lighter materials to be used, therefore less stiff structures are utilized. The less stiff the structure, the more flexible and easier it is to vibrate. The vibration produced by these types of structures may cause a lot of problems, including fatigue failure, resonance failure, defects, and even life. This project studies a type of structure configuration; a flexible cantilever beam. The objectives of this project are to identify the model and to develop the controller for the flexible beam. Previous studies have shown various methods are suitable to identify the system, these include the ones considered in this project; the parametric modelling using Recursive Least Square, as well as the nonparametric modelling using Multilayer Perceptron Neural Network. An experimental rig of flexible cantilever beam is developed for this project to obtain the input data for the system identification. A Proportional-Integral-Derivative controller is developed utilizing both system models identified, using automatic and heuristic tunings techniques within MATLAB environment. The performance developed by the controller is verified through simulations in MATLAB Simulink. The controller is proven to be stable with significant vibration suppression of the flexible beam

    Evolutionary algorithms for active vibration control of flexible manipulator

    Get PDF
    Flexible manipulator systems offer numerous advantages over their rigid counterparts including light weight, faster system response, among others. However, unwanted vibration will occur when flexible manipulator is subjected to disturbances. If the advantages of flexible manipulator are not to be sacrificed, an accurate model and efficient control system must be developed. This thesis presents the development of a Proportional-Integral-Derivative (PID) controller tuning method using evolutionary algorithms (EA) for a single-link flexible manipulator system. Initially, a single link flexible manipulator rig, constrained to move in horizontal direction, was designed and fabricated. The input and output experimental data of the hub angle and endpoint acceleration of the flexible manipulator were acquired. The dynamics of the system was later modeled using a system identification (SI) method utilizing EA with linear auto regressive with exogenous (ARX) model structure. Two novel EAs, Genetic Algorithm with Parameter Exchanger (GAPE) and Particle Swarm Optimization with Explorer (PSOE) have been developed in this study by modifying the original Genetic Algorithm (GA) and Particle Swarm Optimization (PSO) algorithms. These novel algorithms were introduced for the identification of the flexible manipulator system. Their effectiveness was then evaluated in comparison to the original GA and PSO. Results indicated that the identification of the flexible manipulator system using PSOE is better compared to other methods. Next, PID controllers were tuned using EA for the input tracking and the endpoint vibration suppression of the flexible manipulator structure. For rigid motion control of hub angle, an auto-tuned PID controller was implemented. While for vibration suppression of the endpoint, several PID controllers were tuned using GA, GAPE, PSO and PSOE. The results have shown that the conventional auto-tuned PID was effective enough for the input tracking of the rigid motion. However, for end-point vibration suppression, the result showed the superiority of PID-PSOE in comparison to PID-GA, PID-GAPE and PID-PSO. The performance of the best simulated controller was validated experimentally later. Through experimental validation, it was found that the PID-PSOE was capable to suppress the vibration of the single-link flexible manipulator with highest attenuation of 31.3 dB at the first mode of the vibration. The outcomes of this research revealed the effectiveness of the PID controller tuned using PSOE for the endpoint vibration suppression of the flexible manipulator amongst other evolutionary methods

    Dynamic Morphing of Smart Trusses and Mechanisms Using Fuzzy and Neuro-Fuzzy Techniques

    Get PDF
    In the present investigation, the principles of dynamic morphing of smart truss structures and mechanisms are discussed. A possible way in order to find the optimal geometry of the structure for the enhancement of structural performance in terms of vibration control is sought. The vibrations of the host dynamic structures are monitored by controllers which are based on the principles of Mamdani-type fuzzy inference and Sugeno-type adaptive neuro-fuzzy inference. More specifically, the objective of the present study is a design, tuning, and an application of robust intelligent control mechanisms by means of the suppression of structural vibrations for several types of excitation forces. The proposed models are discretized by using a finite element method. For the time integration of the equations of motion, the Newmark-β method is used. The calculations and the analysis are conducted within the Matlab environment by using the Adaptive Neuro-Fuzzy Inference System (ANFIS) tool, which is included in the fuzzy toolbox. The controllers are tested with different excitation forces applied on a truss-shaped structure. The control outputs are applied on each time of the simulation in order to achieve the lowest possible deformation and to prevent potential damage or corruption of the structure. The same principles are used for the dynamic morphing of structures and mechanisms. The proposed formulation can be applied, among many others, on smart irrigation systems such as spray booms, on radio-telescope bases, on the spars of smart wings, on aircraft wings etc

    Evolutionary swarm algorithm for modelling and control of horizontal flexible plate structures

    Get PDF
    Numerous advantages offered by the horizontal flexible structure have attracted increasing industrial applications in many engineering fields particularly in the airport baggage conveyor system, micro hand surgery and semiconductor manufacturing industry. Nevertheless, the horizontal flexible structure is often subjected to disturbance forces as vibration is easily induced in the system. The vibration reduces the performance of the system, thus leading to the structure failure when excessive stress and noise prevail. Following this, it is crucial to minimize unwanted vibration so that the effectiveness and the lifetime of the structure can be preserved. In this thesis, an intelligent proportional-integral-derivative (PID) controller has been developed for vibration suppression of a horizontal flexible plate structure. Initially, a flexible plate experimental rig was designed and fabricated with all clamped edges boundary conditions at horizontal position. Then, the data acquisition and instrumentation systems were integrated into the experimental rig. Several experimental procedures were conducted to acquire the input-output vibration data of the system. Next, the dynamics of the system was modeled using linear auto regressive with exogenous, which is optimized with three types of evolutionary swarm algorithm, namely, the particle swarm optimization (PSO), artificial bee colony (ABC) and bat algorithm (BAT) model structure. Their effectiveness was then validated using mean squared error, correlation tests and pole zero diagram stability. Results showed that the PSO algorithm has superior performance compared to the other algorithms in modeling the system by achieving lowest mean squared error of 6103947.4 , correlation of up to 95 % confidence level and good stability. Next, five types of PID based controllers were chosen to suppress the unwanted vibration, namely, PID-Ziegler Nichols (ZN), PID-PSO, PID-ABC, Fuzzy-PID and PID-Iterative Learning Algorithm (ILA). The robustness of the controllers was validated by exerting different types of disturbances on the system. Amongst all controllers, the simulation results showed that PID tuned by ABC outperformed other controllers with 47.60 dB of attenuation level at the first mode (the dominant mode) of vibration, which is equivalent to 45.99 % of reduction in vibration amplitude. By implementing the controllers experimentally, the superiority of PID-ABC based controller was further verified by achieving an attenuation of 23.83 dB at the first mode of vibration and 21.62 % of reduction in vibration amplitude. This research proved that the PID controller tuned by ABC is superior compared to other tuning algorithms for vibration suppression of the horizontal flexible plate structure

    Active Control of Large Amplitude Nonlinear Free Vibrations and Nonlinear Supersonic Panel Flutter of Beams and Composite Plates Using Piezoelectric Self-Sensing Actuators

    Get PDF
    This thesis employs a coupled structural-electrical finite element modal formulation for the control of nonlinear free vibrations, and supersonic panel flutter of beams and composite plates with and without thermal environment. Multiple modes of the nonlinear free vibration and supersonic panel flutter are considered in the closed loop simulations. Two different controllers are designed and investigated. The first one is the output feedback controller comprised of a Linear Quadratic Regulator (LQR) and an Extended Kalman Filter (EKF). EKF considers the nonlinear state space matrix and has a gain sequence evaluated on-line. Thus the LQR/EKF nonlinear controller has more accurate state estimation over Linear Quadratic Gaussian (LQG) controller for the nonlinear dynamics. The second controller is the output feedback adaptive LQR/EKF controller. This adaptive controller includes a modal frequency identification and state estimation algorithm

    Evolutionary optimisation and real-time self-tuning active vibration control of a flexible beam system

    Get PDF
    Active vibration control has long been recognised as a solution for flexible beam structure to achieve sufficient vibration suppression. The flexible beam dynamic model is derived according to the Euler Bernoulli beam theory. The resonance frequencies of the beam are investigated analytically and the validity was experimentally verified. This thesis focuses on two main parts: proportional-integralderivative (PID) controller tuning methods based on evolutionary algorithms (EA) and real-time self-tuning control using iterative learning algorithm and poleplacement methods. Optimisation methods for determining the optimal values of proportional-integral-derivative (PID) controller parameters for active vibration control of a flexible beam system are presented. The main objective of tuning the PID controller is to obtain a fast and stable system using EA such as genetic algorithm (GA) and differential evolution (DE) algorithms. The PID controller is tuned offline based on the identified model obtained using experimental input-output data. Experimental results have shown that PID parameters tuned by EA outperformed conventional tuning method in term of better transient response. However, in term of vibration attenuation, the performance between DE, GA and Ziegler-Nichols (ZN) method produced about the same value. For real-time selftuning control, successful design and implementation has been accomplished. Two techniques, self-tuning using iterative learning algorithm and self-tuning poleplacement control were implemented to adapt the controller parameters to meet the desired performances. In self-tuning using iterative learning algorithm, its learning mechanism will automatically find new control parameters. Whereas the self tuning pole-placement control uses system identification in real time and then the control parameters are calculated online. It is observed that self-tuning using iterative learning algorithm does not require accurate model of the plant and control the vibration based on the reference error, but it is unable to maintain its transient performance due to the change of physical parameters. Meanwhile, self-tuning poleplacement controller has shown its ability to maintain its transient performance as it was designed based on the desired closed loop poles where the control system can track changes in the plant and disturbance characteristics at every sampling time. Overall results revealed the effectiveness of both control schemes in suppressing the unwanted vibration over conventional fixed gain controllers
    corecore