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ABSTRACT 
 
 
 
 

Active vibration control has long been recognised as a solution for flexible 
beam structure to achieve sufficient vibration suppression. The flexible beam 
dynamic model is derived according to the Euler Bernoulli beam theory. The 
resonance frequencies of the beam are investigated analytically and the validity was 
experimentally verified. This thesis focuses on two main parts: proportional-integral-
derivative (PID) controller tuning methods based on evolutionary algorithms (EA) 
and real-time self-tuning control using iterative learning algorithm and pole-
placement methods. Optimisation methods for determining the optimal values of 
proportional-integral-derivative (PID) controller parameters for active vibration 
control of a flexible beam system are presented. The main objective of tuning the 
PID controller is to obtain a fast and stable system using EA such as genetic 
algorithm (GA) and differential evolution (DE) algorithms. The PID controller is 
tuned offline based on the identified model obtained using experimental input-output 
data. Experimental results have shown that PID parameters tuned by EA 
outperformed conventional tuning method in term of better transient response. 
However, in term of vibration attenuation, the performance between DE, GA and 
Ziegler-Nichols (ZN) method produced about the same value. For real-time self-
tuning control, successful design and implementation has been accomplished. Two 
techniques, self-tuning using iterative learning algorithm and self-tuning pole-
placement control were implemented to adapt the controller parameters to meet the 
desired performances. In self-tuning using iterative learning algorithm, its learning 
mechanism will automatically find new control parameters. Whereas the self tuning 
pole-placement control uses system identification in real time and then the control 
parameters are calculated online. It is observed that self-tuning using iterative 
learning algorithm does not require accurate model of the plant and control the 
vibration based on the reference error, but it is unable to maintain its transient 
performance due to the change of physical parameters. Meanwhile, self-tuning pole-
placement controller has shown its ability to maintain its transient performance as it 
was designed based on the desired closed loop poles where the control system can 
track changes in the plant and disturbance characteristics at every sampling time. 
Overall results revealed the effectiveness of both control schemes in suppressing the 
unwanted vibration over conventional fixed gain controllers. 
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ABSTRAK 
 
 
 
 

 Kawalan getaran aktif telah lama diakui sebagai penyelesaian kepada struktur 
rasuk lentur bagi mencapai penindasan getaran yang berkesan. Model dinamik rasuk 
lentur diperoleh berdasarkan kepada teori rasuk Euler Bernoulli. Frekuensi salunan 
juga diselidik secara analitik dan disahkan secara uji kaji. Tesis ini memfokus kepada 
dua bahagian utama; kaedah talaan pengawal terbitan kamiran berkadaran (PID) 
berasaskan kepada algoritma evolusi (EA) dan kaedah kawalan talaan-diri masa 
nyata dengan menggunakan algoritma pembelajaran berlelaran dan perletakan-kutub. 
Kaedah pengoptimuman dalam menentukan nilai optimum bagi parameter pengawal 
PID untuk mengawal getaran aktif sistem struktur rasuk lentur ditunjukkan. Objektif 
utama adalah untuk mendapatkan sistem yang stabil dan cepat melalui talaan 
pengawal PID dengan menggunakan EA seperti algoritma genetik (GA) dan evolusi 
kebezaan (DE). Pengawal PID ditala secara luar-talian berasaskan kepada model 
yang dikenal pasti dan diperoleh dengan menggunakan data uji kaji masukan-
keluaran. Keputusan uji kaji telah menunjukkan PID yang ditala dengan EA telah 
mengatasi kaedah talaan secara konvensional dari segi sambutan fana. Walau 
bagaimanapun, dari segi pengecilan getaran, prestasi antara DE, GA dan kaedah 
Ziegler-Nichols (ZN) menghasilkan nilai yang lebih kurang sama. Bagi kawalan 
talaan-diri masa nyata, reka bentuk dan pelaksanaan telah berjaya dilakukan. Dua 
teknik, talaan-diri dengan menggunakan algoritma pembelajaran berlelaran dan 
talaan-diri kawalan perletakan-kutub dilaksanakan bagi menyesuaikan parameter 
pengawal dalam memenuhi prestasi yang dikehendaki. Dalam talaan-diri 
menggunakan algoritma pembelajaran berlelaran, mekanisme pembelajaran secara 
automatik akan mencari parameter kawalan baru. Manakala talaan-diri kawalan 
perletakan-kutub dengan menggunakan pengenalpastian sistem dalam masa nyata 
dan kemudian parameter kawalan dikira secara dalam-talian. Daripada pemerhatian 
didapati bahawa talaan-diri menggunakan algoritma pembelajaran berlelaran tidak 
memerlukan model yang tepat untuk loji dan mengawal getaran berdasarkan kepada 
ralat rujukan, tetapi ia tidak dapat mengekalkan prestasi fana kerana berlaku 
perubahan parameter fizikal. Sementara itu, talaan-diri kawalan perletakan-kutub 
telah menunjukkan keupayaan untuk mengekalkan prestasi fana kerana ia direka 
bentuk berdasarkan kutub gelung tertutup yang diingini di mana sistem kawalan 
boleh mengesan perubahan dalam ciri-ciri loji dan gangguan pada setiap masa 
pensampelan. Keputusan keseluruhan menunjukkan keberkesanan kedua-dua skim 
kawalan dalam menindas getaran yang tidak diingini terhadap pengawal 
konvensional gandaan tetap. 
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CHAPTER 1 
 
 
 
 

INTRODUCTION 
 
 
 
 

1.1    Introduction  
 

 
Vibrations and dynamic chaos are undesired phenomenon in structures. They 

cause disturbance, discomfort, damage and destruction of the system or the structure. 

The problem of vibration has been reported in many applications including 

automotive, aircraft, electrical machinery and civil structures. Vibration occurs 

whenever a mechanical mechanism is moved intentionally or unintentionally. The 

unwanted vibration may cause damage to structures or degradation to system’s 

performance. Therefore, many attempts have been proposed to reduce this unwanted 

disturbance by considering passive and active controls. The simplest strategy is to 

make the structure more rigid so that the vibration can be resisted, but this may cause 

weight penalty and is not always acceptable. Another common approach is by using 

passive vibration control methods by mounting passive material such as vibration 

dampers or the dynamic absorber. Unfortunately, this method only works well at 

high frequencies or in a narrow frequency range but often have the disadvantage of 

added weight and poor low frequency performance. Furthermore, in many 

applications it is desirable to keep the weight as low as possible, which can make 

passive solutions unattractive (Christopher, 2007). In fact, it is a growing trend in 

manufacturing of engineering systems to reduce the weight of mechanical structures. 

This is particularly so in spacecraft and aircraft engineering, where it is possible to 

substantially decrease costs by use of lighter materials and/or weaker structures. 

However, this will in turn lead to even more flexible structural dynamics which may 

limit the performance of the structure. 
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In contrast with passive vibration control, an active vibration control is more 

effective, reliable, and flexible where the actuator can be adjusted according to the 

characteristic of vibration during operation. The potential of active vibration control 

(AVC) has received extensive attention in recent years due to the rise of many 

applications requiring effective vibration suppression systems such as in aerospace 

structures, hard disk drives, flexible robot arms, and micro-mechanical systems.  

 
 
The concept of AVC was initially proposed by Lueg (1936) for noise 

cancellation. The aim of AVC is to reduce the amplitude of vibration of a dynamic 

system. It works based on artificially generating the cancellation signal to absorb the 

unwanted disturbance force that can reduce the effect of vibration to the system. 

Vibration suppression in AVC can be achieved by detecting and processing via 

suitable control schemes, thus the superimposed disturbance signals will cancel out 

the actual disturbance force. This is found to be more efficient and economical than 

passive control method especially at low frequency vibration suppression. 

Furthermore, AVC method offers a flexibility to control the unwanted vibrations 

with broad band frequencies with some modification on the control algorithms. As a 

result, AVC of flexible structures has attracted many attentions amongst researchers 

and engineers.  

 
 
Due to the advance in theory and practice, the flexible structure has the 

ability to sustain with complex environments. A number of strategies based on 

conventional control and intelligent control scheme have been proposed in AVC 

system such as direct velocity feedback control, positive feedback control, H infinity 

control, sliding mode control, fuzzy control, adaptive control, self-tuning control, 

neural network control (Eski and Yildirim, 2009; Liang et al., 2011; Mahmoodi and 

Ahmadian, 2009; Marinaki et al., 2010; Salleh and Tokhi, 2010; Shin et al., 2012; 

Zhi-cheng et al., 2009).  Recent development of AVC is briefly reviewed in Chapter 

2.  
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1.2    Problem statement 
 

 
Vibration reduction is a critical problem related to flexible structures 

especially in the application of aerospace application and robotics system, which 

often employs flexible structures that generally light weight and have relatively low 

damping for the fundamental and initial model. Furthermore, the frequency 

associated with these models are low, the vibration control of nodes become an 

important issue in light flexible structures. Active vibration control has been used as 

a solution for flexible structures to achieve sufficient vibration suppression for 

required precision accuracy.  

 
 

With the emergence of smart materials such as a piezoelectric patch, the 

studies in active vibration control become more attractive. This is because smart 

materials offer low energy consumption, can be small in size, have fast response and 

can be integrated with the structures (Preumont, 2011b). In the case of active 

vibration control of flexible structures, such a piezoelectric material is normally 

bonded onto the structure which acts an actuator or sensor. Hence, it will add 

complexity to the analysis and modeling of the system.  

 
 
Control strategies of flexible structures often depend on adequate modeling of 

the system dynamics. Many analytical model based approaches have been proposed 

to establish the physical model of the system behavior for a structure embedded with 

PZT such as finite element analysis, dynamic analysis of the modal response and etc. 

(Narayanan and Balamurugan, 2003; Tehrani et al., 2011; Wang et al., 2011b; Zhi-

cheng et al., 2009). However, those approaches are less effective under high 

precision system because of the difficulty in simulating the properties for such 

complicated system and sometimes, hindered by factors such as assuming perfect 

bonding between the structure and its actuator, and high computation time 

(Ezhilarasi et al., 2006).   

 
 
In addition, the assumption is contradictory to reality because of some special 

difficulties which involve, for example unmodeled dynamics of the flexible beam, 

component degradation, changing payload, changing structure parameters, etc. can 
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destabilize a conventional fixed parameter control strategy (Kumar et al., 2006). 

Therefore, it is necessary to search for a good model of the flexible structure in order 

to obtain a better control performance. Suitable modelling of a dynamic system such 

a flexible structure, may results in good control (Darus and Al-Khafaji, 2012; 

Tavakolpour et al., 2010b) 

 
 
Thus, in this research, experimental study based on self-tuning control 

schemes was conducted in such a way that a real-time computer control can be 

applied to demonstrate the performances of the proposed control schemes. The three 

groups of vibration control schemes employed in this research are PID tuning using  

evolutionary algorithm based, self-tuning iterative learning algorithm based, and self-

tuning pole-placement control. In PID tuning evolutionary algorithm (EA) based, 

PID is tuned by EA based on the estimated model using recursive least square 

technique. Then for self-tuning iterative learning algorithm based, the controller is 

tuned based on the error between the required set point and the actual value 

regardless to the knowledge of the system. Finally, for self-tuning pole-placement 

control, the controller is tuning online as the dynamic changes occur on the system 

itself or from the external disturbances.  The performance of these control schemes 

are analysed separately via real-time PC-based computer control.   

 
 
 
 

1.3    Objectives of the study 
 

 
This research focuses on the practical implementation of AVC schemes via 

real-time PC-based computer control for flexible beam system by understanding and 

proving the behavior of smart structure under control strategy. Hence, three 

important objectives are stated below:  

 
 

1. To develop PID controller tuning strategies using evolutionary algorithm that 

can effectively suppress the unwanted vibration on a flexible beam system. 
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2. To investigate the performance of active vibration control using real-time 

self-tuning control in suppressing the unwanted vibration on a flexible beam 

system under variation of disturbance excitation and system parameter. 

 
3. To perform comparative assessment between self-tuning PID control and 

self-tuning pole-placement control schemes. 

 
 
 
 

1.4    Scope of the study 
 
 
The scope of the research is as follows: 
 
1. In this study, the evolutionary algorithms considered to tune PID controller 

are genetic algorithm and differential evolution. The performance of the 

controller in suppressing the vibration is investigated based on the most 

dominant mode of frequency obtains from the resonance test.  

 

2. The real-time self-tuning control schemes are based on the self-tuning of 

proportional and PID control using iterative learning algorithm and self-

tuning pole-placement control schemes.  

 

3. The robustness test for the proposed self-tuning control schemes are limited 

to variation of disturbance amplitude and beam tip load. 

 

4. The comparative study between self-tuning of PID control using iterative 

learning algorithm (ILPID) and self-tuning pole-placement control (STPPC) 

highlight the performance of each control scheme in terms of settling time, 

actuator voltage dynamic behavior and vibration attenuation with regard to 

applied disturbance. 

 

5. The graphical user interface is developed for online parameter adjustment, 

data saving and displaying the time response and frequency response on the 

actual vibration on a flexible beam. 
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1.5    Research contributions 
 
 

A brief outline of the main contributions of this research is given in this 

subsection as follows: 

 
1. This research provides details implementation of proportional integral 

derivative (PID) controller tuning via evolutionary algorithm (EA) (i.e. 

genetic algorithm and differential evolution) that optimally suppress the 

vibration of a flexible beam system using piezoelectric (PZT) actuator. This 

new approach allows the PID parameters to be tuned based on the identified 

model from a real plant using parametric system identification technique, 

which represents the dynamic characteristic of the system incorporated with 

smart materials i.e. PZT, and avoid the tangled mathematic or physical model 

development. The validity of the estimated model is validated by comparing 

its natural frequency of the dominant modes with the actual natural 

frequency. Test results show that the new approach of an proportional integral 

derivative (PID) controller tuning via evolutionary algorithm (EA) 

outperform the conventional tuning methods (i.e. Ziegler Nichols) in terms of 

transient response. 

 
2.  This research provides the outcomes from the experimental of AVC in 

flexible beam system using self-tuning control scheme based on ILA with a 

simple design approached run with graphical user interface (GUI) using 

LabVIEW programming. Its offers great advantageous in terms of vibration 

suppression, and robustness to the change of disturbance. In this study, the 

stopping criterion error based on the deflection of the beam is introduced in 

order to stop the learning process when the criterion is met. GUI has allowed 

online parameter adjustment and vibration monitoring of the actual process. 

 
3. Active vibration control is performed using online self-tuning pole-placement 

control (STPPC) of a flexible beam system which is designed with a simple 

model structure Auto-Regressive with Exogenous Input (ARX) model. This 

simple structure offers several advantages which are easy to implement in 

real-time and reduce computation time where the overall computational task 

can be performed effectively. The controller is executed on real-time personal 
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computer (PC) based control. The implementation of self-tuning algorithm in 

LabVIEW programming is briefly explained. Its graphical user interface 

(GUI) was developed in such a way that user can perform online monitoring 

and manipulation of control parameters that are part of the active vibration 

control (AVC) of a flexible beam system. Results showing the transient 

performance between the self-tuning controller and a fixed controller due to a 

load change on a flexible beam. Self-tuning algorithm developed in 

mathscript coding integrated with the graphical programming language, G, in 

LabVIEW is briefly explained. 

 
 
 
 

1.6    Methodology of the Study 
 
 

After literature review has been carried out, the simulation model of the beam 

is developed using finite difference method. The modeling is done using suitable 

programming environment. The deflection of the beam can be observed dynamically 

at a finite duration of time.  The simulated model is validated by comparing its 

resonance modes with the experimental values.  

 
 
In order to demonstrate the practicality of the proposed control scheme, an 

experimental rig is developed. The vibration of the beam is measured using laser 

displacement sensor where the signal is transmitted to a data acquisition card for 

analog-to-digital conversion of the signal. The control algorithms will compute the 

amount of piezo-actuator voltage to suppress the vibration of the beam. The input 

voltage that is sent to the piezo-actuator need to be amplified by an amplifier, so that 

it can be operated sufficiently. The disturbance force is excited vertically at the free-

end of the beam as a point force by using a piezo-actuator. Finally, real-time 

monitoring and control can be established directly from the computer system. The 

performance of the proposed controllers in attenuating the unwanted vibration is then 

investigated. 
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Then, resonance test is conducted via simulation and experimentation in order 

to identify the resonance frequency of a flexible beam system. Results from this test 

will identify the dominant modes of natural frequency which is the frequency of 

interest in vibration control.  

 
 

After validating the resonance frequency of a flexible beam, control strategies 

are developed experimentally for PID tuning using evolutionary algorithms, self-

tuning using iterative learning algorithm, and self-tuning pole-placement control. All 

these control strategies are implemented in real-time computer control using 

LabVIEW programming software with GUI. This GUI is intended to be an 

interactive learning tool that will allow user to get a feeling for how the active 

vibration control can be monitored and controlled in a real world. The performance 

of each of the control schemes are compared with a conventional control, 

conventional tuning methods and fixed controller. A performance analysis is carried 

out to highlight the advantages and the drawbacks between the proposed control 

schemes and conventional methods.    

 
 

Finally, a comparative study between self-tuning using iterative learning 

algorithm and self-tuning pole-placement control schemes were carried out and 

reported in this chapter. The main objective of the comparative study is to observe 

the difference in performance simultaneously and also to exploit the benefits of using 

the proposed strategies. The overall performance of the control schemes is 

concluded. The proposed research strategy in the form of a flow chart is graphically 

shown in Figure 1.1. 
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Figure 1.1:  Research strategies flowchart 
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1.7    Organisation of the thesis 
 
 

This thesis is organised into 7 chapters. A brief outline of contents of the 

thesis is as follows: 

 
 
Chapter 1 presents an overview of the research problem. It involves the background 

and problem statement of the research as well as the objectives of the study and 

contributions. The methodology and flow chart of the thesis is also outlined in this 

chapter. 

 
 
Chapter 2 is devoted to a literature study on AVC of the flexible structures. A brief 

overview of modeling approached based on finite different (FD) model is briefly 

reviewed. Then, recent applications of the proposed control schemes were 

highlighted. Finally the gaps between the proposed control schemes with the 

previous researcher are identified.  

 
 
Chapter 3 presents the dynamic modelling and experimental setup of a flexible beam 

system. The dynamic equation of a flexible beam system is described and its 

corresponding simulation algorithm is developed. Then, experimental rig was 

developed to demonstrate the effectiveness of the proposed control scheme online via 

computer system. The experimental devices, experimental setup and method of 

capturing data are elaborated. The resonance test is carried out to find the dominant 

mode of the beam using the same types of excitation signal used in the simulation. 

Results from the experimental are compared with simulation and theoretical model 

where the accuracy of the measured and simulation frequencies is examined. 

 
 
Chapter 4 presents a new approach of proportional integral derivative (PID) 

controller tuning via evolutionary algorithm (EA) that optimally suppress the 

vibration of a flexible beam system. This chapter starts with brief explanation of GA 

and DE in tuning the PID tuning controller. Then, those tuning methods were applied 

to tune the PID controller based on the identified flexible beam model. The benefits 

that it provides over conventional tuning method are illustrated. 
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Chapter 5 presents the development of self-tuning control using iterative learning 

algorithm for proportional and PID controller to suppress vibration of the flexible 

beam via real-time computer control. Before the implementation of the proposed 

controller on experimental rig, the working principle of ILA in tuning the controller 

parameter is observed via simulation environment. The effects of parameters in ILA 

such as learning parameter and stopping criterion to the control performance are 

presented. Then, the performance of self-tuning control schemes based on iterative 

learning algorithm is validated experimentally and compared with the conventional 

control schemes. 

 
 
Chapter 6 presents the results of the online self-tuning pole-placement control 

scheme applied to control the vibration of a flexible beam via experimental rig. The 

performance of the controller is investigated by moving the pole location 

horizontally on the real axis of the z-plane. Then, the robustness of the proposed 

control scheme is tested by changing the physical parameter of the beam and 

comparisons are made with the results from a fixed gain controller. Finally, the 

performance between self-tuning using iterative learning and self-tuning pole-

placement controls is demonstrated. The comparison between both control schemes 

revealed several findings which identifying the strengths and weaknesses of both of 

these control techniques.  

 
 
The final chapter of this thesis, Chapter 7, summarises the work presented and draws 

relevant conclusions. Future works to the field of AVC of a flexible beam are 

discussed. 
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