71 research outputs found

    Network selection mechanism for telecardiology application in high speed environment

    Get PDF
    The existing network selection schemes biased either to cost or Quality of Service (QoS) are not efficient enough for telecardiology application in high traveling speed environment. Selection of the candidate network that is fulfilling the telecardiology service requirements as well as user preference is a challenging issue. This is because the preference of telecardiology user might change based on the patient health condition. This research proposed a novel Telecardiology-based Handover Decision Making (THODM) mechanism that consists of three closely integrated algorithms: Adaptive Service Adjustment (ASA), Dwelling Time Prediction (DTP) and Patient Health Condition-based Network Evaluation (PHCNE). The ASA algorithm guarantees the quality of telecardiology service when none of the available networks fulfils the service requirements. The DTP algorithm minimizes the probability of handover failure and unnecessary handover to Wireless Local Area Network (WLAN), while optimizing the connection time with WLAN in high traveling speed environment. The PHCNE algorithm evaluates the quality of available networks and selects the best network based on the telecardiology services requirement and the patient health condition. Simulation results show that the proposed THODM mechanism reduced the number of handover failures and unnecessary handovers up to 80.0% and 97.7%, respectively, compared with existing works. The cost of THODM mechanism is 20% and 85.3% lower than the Speed Threshold-based Handover (STHO) and Bandwidth-based Handover (BWHO) schemes, respectively. In terms of throughput, the proposed scheme is up to 75% higher than the STHO scheme and 370% greater than the BWHO scheme. For telecardiology application in high traveling speed environment, the proposed THODM mechanism has better performance than the existing network selection schemes

    User-centric based vertical handover decision algorithm for telecardiology application in heterogeneous networks

    Get PDF
    The traditional telecardiology system which is integrated with a single wireless technology is unable to guarantee the patient always get connected to the telecardiology service provider. To overcome this problem, an adaptive user-centric based vertical handover algorithm is proposed to allow the telecardiology system operates in heterogeneous wireless technologies. The proposed algorithm guarantees the quality of service and maintains the user’s satisfaction at the highest level. The algorithm was compared with traditional quality of service based and cost based vertical handover algorithms. The results show that proposed algorithm is performed better than the traditional algorithms

    Ubiquitous Computing for Remote Cardiac Patient Monitoring: A Survey

    Get PDF
    New wireless technologies, such as wireless LAN and sensor networks, for telecardiology purposes give new possibilities for monitoring vital parameters with wearable biomedical sensors, and give patients the freedom to be mobile and still be under continuous monitoring and thereby better quality of patient care. This paper will detail the architecture and quality-of-service (QoS) characteristics in integrated wireless telecardiology platforms. It will also discuss the current promising hardware/software platforms for wireless cardiac monitoring. The design methodology and challenges are provided for realistic implementation

    Telemedicine

    Get PDF
    Telemedicine is a rapidly evolving field as new technologies are implemented for example for the development of wireless sensors, quality data transmission. Using the Internet applications such as counseling, clinical consultation support and home care monitoring and management are more and more realized, which improves access to high level medical care in underserved areas. The 23 chapters of this book present manifold examples of telemedicine treating both theoretical and practical foundations and application scenarios

    Med-e-Tel 2016

    Get PDF

    Med-e-Tel 2014

    Get PDF

    Efficient and secured wireless monitoring systems for detection of cardiovascular diseases

    Get PDF
    Cardiovascular Disease (CVD) is the number one killer for modern era. Majority of the deaths associated with CVD can entirely be prevented if the CVD struck person is treated with urgency. This thesis is our effort in minimizing the delay associated with existing tele-cardiology application. We harnessed the computational power of modern day mobile phones to detect abnormality in Electrocardiogram (ECG). If abnormality is detected, our innovative ECG compression algorithm running on the patient's mobile phone compresses and encrypts the ECG signal and then performs efficient transmission towards the doctors or hospital services. According to the literature, we have achieved the highest possible compression ratio of 20.06 (95% compression) on ECG signal, without any loss of information. Our 3 layer permutation cipher based ECG encoding mechanism can raise the security strength substantially higher than conventional AES or DES algorithms. If in near future, a grid of supercomputers can compare a trillion trillion trillion (1036) combinations of one ECG segment (comprising 500 ECG samples) per second for ECG morphology matching, it will take approximately 9.333 X 10970 years to enumerate all the combinations. After receiving the compressed ECG packets the doctor's mobile phone or the hospital server authenticates the patient using our proposed set of ECG biometric based authentication mechanisms. Once authenticated, the patients are diagnosed with our faster ECG diagnosis algorithms. In a nutshell, this thesis contains a set of algorithms that can save a CVD affected patient's life by harnessing the power of mobile computation and wireless communication

    Performance evaluation of cooperation strategies for m-health services and applications

    Get PDF
    Health telematics are becoming a major improvement for patients’ lives, especially for disabled, elderly, and chronically ill people. Information and communication technologies have rapidly grown along with the mobile Internet concept of anywhere and anytime connection. In this context, Mobile Health (m-Health) proposes healthcare services delivering, overcoming geographical, temporal and even organizational barriers. Pervasive and m-Health services aim to respond several emerging problems in health services, including the increasing number of chronic diseases related to lifestyle, high costs in existing national health services, the need to empower patients and families to self-care and manage their own healthcare, and the need to provide direct access to health services, regardless the time and place. Mobile Health (m- Health) systems include the use of mobile devices and applications that interact with patients and caretakers. However, mobile devices have several constraints (such as, processor, energy, and storage resource limitations), affecting the quality of service and user experience. Architectures based on mobile devices and wireless communications presents several challenged issues and constraints, such as, battery and storage capacity, broadcast constraints, interferences, disconnections, noises, limited bandwidths, and network delays. In this sense, cooperation-based approaches are presented as a solution to solve such limitations, focusing on increasing network connectivity, communication rates, and reliability. Cooperation is an important research topic that has been growing in recent years. With the advent of wireless networks, several recent studies present cooperation mechanisms and algorithms as a solution to improve wireless networks performance. In the absence of a stable network infrastructure, mobile nodes cooperate with each other performing all networking functionalities. For example, it can support intermediate nodes forwarding packets between two distant nodes. This Thesis proposes a novel cooperation strategy for m-Health services and applications. This reputation-based scheme uses a Web-service to handle all the nodes reputation and networking permissions. Its main goal is to provide Internet services to mobile devices without network connectivity through cooperation with neighbor devices. Therefore resolving the above mentioned network problems and resulting in a major improvement for m-Health network architectures performances. A performance evaluation of this proposal through a real network scenario demonstrating and validating this cooperative scheme using a real m-Health application is presented. A cryptography solution for m-Health applications under cooperative environments, called DE4MHA, is also proposed and evaluated using the same real network scenario and the same m-Health application. Finally, this work proposes, a generalized cooperative application framework, called MobiCoop, that extends the incentive-based cooperative scheme for m-Health applications for all mobile applications. Its performance evaluation is also presented through a real network scenario demonstrating and validating MobiCoop using different mobile applications

    Crossing Borders - Digital Transformation and the U.S. Health Care System

    Get PDF
    corecore