21 research outputs found

    Design and analysis of a high-rate acoustic link for underwater video transmission

    Get PDF
    Thesis (S.M.)--Massachusetts Institute of Technology, Dept. of Ocean Engineering, 2004.Includes bibliographical references (leaves 74-75).A high bit rate acoustic link for underwater video transmission is examined. Currently, encoding standards support video transmission at bit rates as low as 64 kbps. While this rate is still above the limit of commercially available acoustic modems, prototype acoustic modems based on phase coherent modulation/detection have demonstrated successful transmission at 30 kbps over a deep water channel. The key to bridging the remaining gap between the bit-rate needed for video transmission and that supported by the acoustic channel lies in two approaches: use of efficient image/video compression algorithms and use of high-level bandwidth-efficient modulation methods. An experimental system, based on discrete cosine transform (DCT) and Huffman entropy coding for image compression, and variable rate M-ary quadrature amplitude modulation (QAM) was implemented. Phase-coherent equalization is accomplished by joint operation of a decision feedback equalizer (DFE) and a second order phase locked loop (PLL). System performance is demonstrated experimentally, using transmission rate of 25000 symbols/sec at a carrier frequency of 75 kHz over a 10 m vertical path.(cont.) Excellent results were obtained, thus demonstrating bit rates as high as 150 kbps, which are sufficient for real-time transmission of compressed video. As an alternative to conventional QAM signaling, whose high-level constellations are sensitive to phase distortions induced by the channel, M-ary differential amplitude and phase shift keying (DAPSK) was used. DAPSK does not require explicit carrier phase synchronization at the receiver, but instead relies on simple differentially coherent detection. Receiver processing includes a linear equalizer whose coefficients are adjusted using a modified linear least square (LMS) algorithm. Simulation results confirm good performance of the differentially coherent equalization scheme employed.by Konstantinos Pelekanakis.S.M

    Noncoherent sequence detection

    Full text link

    Noncoherent iterative (turbo) decoding

    Full text link

    Electronic processing for optical communication systems

    Get PDF
    I sistemi di comunicazione in fibra ottica risentono di diversi tipi di disturbi, quali ad esempio la dispersione cromatica e la dispersione dei modi di polarizzazione. La compensazione ottica di tali disturbi è possibile ma complessa e costosa, mentre le tecniche di elaborazione elettronica del segnale presentano diversi vantaggi, semplicità, costo, adattabilità. L'equalizzazione elettronica e la strategia di rivelazione di sequenza a massima verosimiglianza rappresentano soluzioni efficaci e realizzabili con semplici modulazioni di ampiezza e anche con più avanzate modulazioni di fase e fase-ampiezza.Optical communication systems are suffering from several typical impairments, chromatic dispersion and polarization mode dispersion. Optical compensation of such impairments is possible but it is technological demanding and expensive, whereas electronic signal processing presents many advantages, implementation ease, cost-efficiency, adaptability. Electronic equalization and maximum likelihood sequence detection represent effective and feasible solutions for simple amplitude modulation formats as well as for more advanced phase and phase-amplitude modulation formats

    Residue number system coded differential space-time-frequency coding.

    Get PDF
    Thesis (Ph.D.)-University of KwaZulu-Natal, Durban, 2007.The rapidly growing need for fast and reliable transmission over a wireless channel motivates the development of communication systems that can support high data rates at low complexity. Achieving reliable communication over a wireless channel is a challenging task largely due to the possibility of multipaths which may lead to intersymbol interference (ISI). Diversity techniques such as time, frequency and space are commonly used to combat multipath fading. Classical diversity techniques use repetition codes such that the information is replicated and transmitted over several channels that are sufficiently spaced. In fading channels, the performance across some diversity branches may be excessively attenuated, making throughput unacceptably small. In principle, more powerful coding techniques can be used to maximize the diversity order. This leads to bandwidth expansion or increased transmission power to accommodate the redundant bits. Hence there is need for coding and modulation schemes that provide low error rate performance in a bandwidth efficient manner. If diversity schemes are combined, more independent dimensions become available for information transfer. The first part of the thesis addresses achieving temporal diversity through employing error correcting coding schemes combined with interleaving. Noncoherent differential modulation does not require explicit knowledge or estimate of the channel, instead the information is encoded in the transitions. This lends itself to the possibility of turbo-like serial concatenation of a standard outer channel encoder with an inner modulation code amenable to noncoherent detection through an interleaver. An iterative approach to joint decoding and demodulation can be realized by exchanging soft information between the decoder and the demodulator. This has been shown to be effective and hold hope for approaching capacity over fast fading channels. However most of these schemes employ low rate convolutional codes as their channel encoders. In this thesis we propose the use of redundant residue number system codes. It is shown that these codes can achieve comparable performance at minimal complexity and high data rates. The second part deals with the possibility of combining several diversity dimensions into a reliable bandwidth efficient communication scheme. Orthogonal frequency division multiplexing (OFDM) has been used to combat multipaths. Combining OFDM with multiple-input multiple-output (MIMO) systems to form MIMO-OFDM not only reduces the complexity by eliminating the need for equalization but also provides large channel capacity and a high diversity potential. Space-time coded OFDM was proposed and shown to be an effective transmission technique for MIMO systems. Spacefrequency coding and space-time-frequency coding were developed out of the need to exploit the frequency diversity due to multipaths. Most of the proposed schemes in the literature maximize frequency diversity predominantly from the frequency-selective nature of the fading channel. In this thesis we propose the use of residue number system as the frequency encoder. It is shown that the proposed space-time-frequency coding scheme can maximize the diversity gains over space, time and frequency domains. The gain of MIMO-OFDM comes at the expense of increased receiver complexity. Furthermore, most of the proposed space-time-frequency coding schemes assume frequency selective block fading channels which is not an ideal assumption for broadband wireless communications. Relatively high mobility in broadband wireless communications systems may result in high Doppler frequency, hence time-selective (rapid) fading. Rapidly changing channel characteristics impedes the channel estimation process and may result in incorrect estimates of the channel coefficients. The last part of the thesis deals with the performance of differential space-time-frequency coding in fast fading channels

    Adaptive multiple symbol decision feedback for non-coherent detection.

    Get PDF
    Thesis (M.Sc.Eng.)-University of KwaZulu-Natal, Durban, 2006.Non-coherent detection is a simple form of signal detection and demodulation for digital communications. The main drawback of this detection method is the performance penalty incurred, since the channel state information is not known at the receiver. Multiple symbol detection (MSD) is a technique employed to close the gap between coherent and non-coherent detection schemes. Differentially encoded JW-ary phase shift keying (DM-PSK) is the classic modulation technique that is favourable for non-coherent detection. The main drawback for standard differential detection (SDD) has been the error floor incurred for frequency flat fading channels. Recently a decision feedback differential detection (DFDD) scheme, which uses the concept of MSD was proposed and offered significant performance gain over the SDD in the mobile flat fading channel, almost eliminating the error floor. This dissertation investigates multiple symbol decision feedback detection schemes, and proposes alternate adaptive strategies for non-coherent detection. An adaptive algorithm utilizing the numerically stable QR decomposition that does not require training symbols is proposed, named QR-DFDD. The QR-DFDD is modified to use a simpler QR decomposition method which incorporates sliding windows: QRSW-DFDD. This structure offers good tracking performance in flat fading conditions, while achieving near optimal DFDD performance. A bit interleaved coded decision feedback differential demodulation (DFDM) scheme, which takes advantage of the decision feedback concept and iterative decoding, was introduced by Lampe in 2001. This low complexity iterative demodulator relied on accurate channel statistics for optimal performance. In this dissertation an alternate adaptive DFDM is introduced using the recursive least squares (RLS) algorithm. The alternate iterative decoding procedure makes use of the convergence properties of the RLS algorithm that is more stable and achieves superior performance compared to the DFDM

    An Assessment of Indoor Geolocation Systems

    Get PDF
    Currently there is a need to design, develop, and deploy autonomous and portable indoor geolocation systems to fulfil the needs of military, civilian, governmental and commercial customers where GPS and GLONASS signals are not available due to the limitations of both GPS and GLONASS signal structure designs. The goal of this dissertation is (1) to introduce geolocation systems; (2) to classify the state of the art geolocation systems; (3) to identify the issues with the state of the art indoor geolocation systems; and (4) to propose and assess four WPI indoor geolocation systems. It is assessed that the current GPS and GLONASS signal structures are inadequate to overcome two main design concerns; namely, (1) the near-far effect and (2) the multipath effect. We propose four WPI indoor geolocation systems as an alternative solution to near-far and multipath effects. The WPI indoor geolocation systems are (1) a DSSS/CDMA indoor geolocation system, (2) a DSSS/CDMA/FDMA indoor geolocation system, (3) a DSSS/OFDM/CDMA/FDMA indoor geolocation system, and (4) an OFDM/FDMA indoor geolocation system. Each system is researched, discussed, and analyzed based on its principle of operation, its transmitter, the indoor channel, and its receiver design and issues associated with obtaining an observable to achieve indoor navigation. Our assessment of these systems concludes the following. First, a DSSS/CDMA indoor geolocation system is inadequate to neither overcome the near-far effect not mitigate cross-channel interference due to the multipath. Second, a DSSS/CDMA/FDMA indoor geolocation system is a potential candidate for indoor positioning, with data rate up to 3.2 KBPS, pseudorange error, less than to 2 m and phase error less than 5 mm. Third, a DSSS/OFDM/CDMA/FDMA indoor geolocation system is a potential candidate to achieve similar or better navigation accuracy than a DSSS/CDMA indoor geolocation system and data rate up to 5 MBPS. Fourth, an OFDM/FDMA indoor geolocation system is another potential candidate with a totally different signal structure than the pervious three WPI indoor geolocation systems, but with similar pseudorange error performance
    corecore