220 research outputs found

    Control Strategies for Machining with Industrial Robots

    Get PDF
    This thesis presents methods for improving machining with industrial robots using control, with focus on increasing positioning accuracy and controlling feed rate. The strong process forces arising during high-speed machining operations, combined with the limited stiffness of industrial robots, have hampered the usage of industrial robots in high-end machining tasks. However, since such manipulators may offer flexible and cost-effective machining solutions compared to conventional machine tools, it is of interest to increase the achievable accuracy using industrial robots. In this thesis, several different methods to increase the machining accuracy are presented. Modeling and control of a piezo-actuated high-dynamic compensation mechanism for usage together with an industrial robot during a machining operation, such as milling in aluminium, is considered. Position control results from experiments are provided, as well as an experimental verification of the benefit of utilizing the online compensation scheme. It is shown that the milling surface accuracy achieved with the proposed compensation mechanism is increased by up to three times compared to the uncompensated case. Because of the limited workspace and the higher bandwidth of the compensator compared to the robot, a mid-ranging approach for control of the relative position between the robot and the compensator is proposed. An adaptive, model-based solution is presented, which is verified through simulations as well as experiments, where a close correspondence with the simulations was achieved. Comparing the IAE from experiments using the proposed controller to previously established methods, a performance increase of up to 56 % is obtained. Additionally, two different approaches to increasing the accuracy of the machining task are also presented in this thesis. The first method is based on identifying a stiffness model of the robot, and using online force measurements in order to modify the position of the robot to compensate for position deflections. The second approach uses online measurements from an optical tracking system to suppress position deviations. In milling experiments performed in aluminium, the absolute accuracy was increased by up to a factor of approximately 6 and 9, for the two approaches, respectively. Robotic machining is often performed using position feedback with a conservative feed rate, to avoid excessive process forces. By controlling the applied force, realized by adjusting the feed rate of the workpiece, precise control over the material removal can be exercised. This will in turn lead to maximization of the time-efficiency of the machining task, since the maximum amount of material can be removed per time unit. This thesis presents an adaptive force controller, based on a derived model of the machining process and an identified model of the Cartesian dynamics of the robot. The controller is evaluated in both simulation and an experimental setup

    Neuro-fuzzy modelling and control of robotic manipulators

    Get PDF
    The work reported in this thesis aims to design and develop a new neuro-fuzzy control system for robotic manipulators using Machine Learning Techniques, Fuzzy Logic Controllers, and Fuzzy Neural Networks. The main idea is to integrate these intelligent techniques to develop an adaptive position controller for robotic manipulators. This will finally lead to utilising one or two coordinated manipulators to perform upper-limb rehabilitation. The main target is to benefit from these intelligent techniques in a systematic way that leads to an efficient control and coordination system. The suggested control system possesses self-learning features so that it can maintain acceptable performance in the presence of uncertain loads. Simulation and modelling stages were performed using dynamical virtual reality programs to demonstrate the ideas of the control and coordination techniques. The first part of the thesis focuses on the development of neuro-fuzzy models that meet the above requirement of mimicking both kinematics and dynamics behaviour of the manipulator. For this purpose, an initial stage for data collection from the motion of the manipulator along random trajectories was performed. These data were then compacted with the help of inductive learning techniques into two sets of if-then rules that form approximation for both of the inverse kinematics and inverse dynamics of the manipulator. These rules were then used in fuzzy neural networks with differentiation characteristics to achieve online tuning of the network adjustable parameters. The second part of the thesis introduces the proposed adaptive neuro-fuzzy joint-based controller. To achieve this target, a feedback Fuzzy-Proportional-Integral-Derivative incremental controller was developed. This controller was then applied as a joint servo-controller for each robot link in addition to the main neuro-fuzzy feedforward controller used to compensate for the dynamics interactions between robot links. A feedback error learning scheme was applied to tune the feedforward neuro-fuzzy controller online using the error back-propagation algorithm. The third part of the thesis presents a neuro-fuzzy Cartesian internal model control system for robotic manipulators. The neuro-fuzzy inverse kinematics model of the manipulator was used in addition to the joint-based controller proposed and the forward mathematical model of the manipulator in an adaptive internal model controller structure. Feedback-error learning scheme was extended to tune both of the joint-based neuro-fuzzy controller and the neuro-fuzzy internal model controller online. The fourth part of the thesis suggests a simple fuzzy hysteresis coordination scheme for two position-controlled robot manipulators. The coordination scheme is based on maintaining certain kinematic relationships between the two manipulators using reference motion synchronisation without explicitly involving the hybrid position/force control or modifying the existing controller structure for either of the manipulators. The key to the success of the new method is to ensure that each manipulator is capable of tracking its own desired trajectory using its own position controller, while synchronizing its motion with the other manipulator motion so that the differential position error between the two manipulators is reduced to zero or kept within acceptable limits. A simplified test-bench emulating upper-limb rehabilitation was used to test the proposed coordination technique experimentally

    U-model based adaptive internal model control for tracking of nonlinear dynamic plants

    Get PDF
    We present a technique to infer lower bounds on the worst-case runtime complexity of integer programs, where in contrast to earlier work, our approach is not restricted to tail-recursion. Our technique constructs symbolic representations of program executions using a framework for iterative, under-approximating program simplification. The core of this simplification is a method for (under-approximating) program acceleration based on recurrence solving and a variation of ranking functions. Afterwards, we deduce asymptotic lower bounds from the resulting simplified programs using a special-purpose calculus and an SMT encoding. We implemented our technique in our tool LoAT and show that it infers non-trivial lower bounds for a large class of examples

    Adaptation and Learning for Manipulators and Machining

    Get PDF
    This thesis presents methods for improving the accuracy and efficiency of tasks performed using different kinds of industrial manipulators, with a focus on the application of machining. Industrial robots offer a flexible and cost-efficient alternative to machine tools for machining, but cannot achieve as high accuracy out of the box. This is mainly caused by non-ideal properties in the robot joints such as backlash and compliance, in combination with the strong process forces that affect the robot during machining operations. In this thesis, three different approaches to improving the robotic machining accuracy are presented. First, a macro/micro-manipulator approach is considered, where an external compensation mechanism is used in combination with the robot, for compensation of high-frequency Cartesian errors. Two different milling scenarios are evaluated, where a significant increase in accuracy was obtained. The accuracy specification of 50 μm was reached for both scenarios. Because of the limited workspace and the higher bandwidth of the compensation mechanism compared to the robot, two different mid-ranging approaches for control of the relative position between the robot and the compensator are developed and evaluated. Second, modeling and identification of robot joints is considered. The proposed method relies on clamping the manipulator end effector and actuating the joints, while measuring joint motor torque and motor position. The joint stiffness and backlash can subsequently be extracted from the measurements, to be used for compensation of the deflections that occur during machining. Third, a model-based iterative learning control (ILC) approach is proposed, where feedback is provided from three different sensors of varying investment costs. Using position measurements from an optical tracking system, an error decrease of up to 84 % was obtained. Measurements of end-effector forces yielded an error decrease of 55 %, and a force-estimation method based on joint motor torques decreased the error by 38 %. Further investigation of ILC methods is considered for a different kind of manipulator, a marine vibrator, for the application of marine seismic acquisition. A frequency-domain ILC strategy is proposed, in order to attenuate undesired overtones and improve the tracking accuracy. The harmonics were suppressed after approximately 20 iterations of the ILC algorithm, and the absolute tracking error was r educed by a factor of approximately 50. The final problem considered in this thesis concerns increasing the efficiency of machining tasks, by minimizing cycle times. A force-control approach is proposed to maximize the feed rate, and a learning algorithm for path planning of the machining path is employed for the case of machining in non-isotropic materials, such as wood. The cycle time was decreased by 14 % with the use of force control, and on average an additional 28 % decrease was achieved by use of a learning algorithm. Furthermore, by means of reinforcement learning, the path-planning algorithm is refined to provide optimal solutions and to incorporate an increased number of machining directions

    Adaptive Control of Arm Movement based on Cerebellar Model

    Get PDF
    This study is an attempt to take advantage of a cerebellar model to control a biomimetic arm. Aware that a variety of cerebellar models with different levels of details has been developed, we focused on a high-level model called MOSAIC. This model is thought to be able to describe the cerebellar functionality without getting into the details of the neural circuitry. To understand where this model exactly fits, we glanced over the biology of the cerebellum and a few alternative models. Certainly, the arm control loop is composed of other components. We reviewed those elements with emphasis on modeling for our simulation. Among these models, the arm and the muscle system received the most attention. The musculoskeletal model tested independently and by means of optimization techniques, a human-like control of arm through muscle activations achieved. We have discussed how MOSAIC can solve a control problem and what drawbacks it has. Consequently, toward making a practical use of MOSAIC model, several ideas developed and tested. In this process, we borrowed concepts and methods from the control theory. Specifically, known schemes of adaptive control of a manipulator, linearization and approximation were utilized. Our final experiment dealt with a modified/adjusted MOSAIC model to adaptively control the arm. We call this model ORF-MOSAIC (Organized by Receptive Fields MOdular Selection And Identification for Control). With as few as 16 modules, we were able to control the arm in a workspace of 30 x 30 cm. The system was able to adapt to an external field as well as handling new objects despite delays. The discussion section suggests that there are similarities between microzones in the cerebellum and the modules of this new model

    Modelling and Interactional Control of a Multi-fingered Robotic Hand for Grasping and Manipulation.

    Get PDF
    PhDIn this thesis, the synthesis of a grasping and manipulation controller of the Barrett hand, which is an archetypal example of a multi-fingered robotic hand, is investigated in some detail. This synthesis involves not only the dynamic modelling of the robotic hand but also the control of the joint and workspace dynamics as well as the interaction of the hand with object it is grasping and the environment it is operating in. Grasping and manipulation of an object by a robotic hand is always challenging due to the uncertainties, associated with non-linearities of the robot dynamics, unknown location and stiffness parameters of the objects which are not structured in any sense and unknown contact mechanics during the interaction of the hand’s fingers and the object. To address these challenges, the fundamental task is to establish the mathematical model of the robot hand, model the body dynamics of the object and establish the contact mechanics between the hand and the object. A Lagrangian based mathematical model of the Barrett hand is developed for controller implementation. A physical SimMechanics based model of the Barrett hand is also developed in MATLAB/Simulink environment. A computed torque controller and an adaptive sliding model controller are designed for the hand and their performance is assessed both in the joint space and in the workspace. Stability analysis of the controllers are carried out before developing the control laws. The higher order sliding model controllers are developed for the position control assuming that the uncertainties are in place. Also, this controllers enhance the performance by reducing chattering of the control torques applied to the robot hand. A contact model is developed for the Barrett hand as its fingers grasp the object in the operating environment. The contact forces during the simulation of the interaction of the fingers with the object were monitored, for objects with different stiffness values. Position and force based impedance controllers are developed to optimise the contact force. To deal with the unknown stiffness of the environment, adaptation is implemented by identifying the impedance. An evolutionary algorithm is also used to estimate the desired impedance parameters of the dynamics of the coupled robot and compliant object. A Newton-Euler based model is developed for the rigid object body. A grasp map and a hand Jacobian are defined for the Barrett hand grasping an object. A fixed contact model with friction is considered for the grasping and the manipulation control. The compliant dynamics of Barrett hand and object is developed and the control problem is defined in terms of the contact force. An adaptive control framework is developed and implemented for different grasps and manipulation trajectories of the Barrett hand. The adaptive controller is developed in two stages: first, the unknown robot and object dynamics are estimated and second, the contact force is computed from the estimated dynamics. The stability of the controllers is ensured by applying Lyapunov’s direct method

    Teleoperated and cooperative robotics : a performance oriented control design

    Get PDF
    corecore