932 research outputs found

    Adaptive Speckle Filtering in Radar Imagery

    Get PDF

    Speech Enhancement Exploiting the Source-Filter Model

    Get PDF
    Imagining everyday life without mobile telephony is nowadays hardly possible. Calls are being made in every thinkable situation and environment. Hence, the microphone will not only pick up the user’s speech but also sound from the surroundings which is likely to impede the understanding of the conversational partner. Modern speech enhancement systems are able to mitigate such effects and most users are not even aware of their existence. In this thesis the development of a modern single-channel speech enhancement approach is presented, which uses the divide and conquer principle to combat environmental noise in microphone signals. Though initially motivated by mobile telephony applications, this approach can be applied whenever speech is to be retrieved from a corrupted signal. The approach uses the so-called source-filter model to divide the problem into two subproblems which are then subsequently conquered by enhancing the source (the excitation signal) and the filter (the spectral envelope) separately. Both enhanced signals are then used to denoise the corrupted signal. The estimation of spectral envelopes has quite some history and some approaches already exist for speech enhancement. However, they typically neglect the excitation signal which leads to the inability of enhancing the fine structure properly. Both individual enhancement approaches exploit benefits of the cepstral domain which offers, e.g., advantageous mathematical properties and straightforward synthesis of excitation-like signals. We investigate traditional model-based schemes like Gaussian mixture models (GMMs), classical signal processing-based, as well as modern deep neural network (DNN)-based approaches in this thesis. The enhanced signals are not used directly to enhance the corrupted signal (e.g., to synthesize a clean speech signal) but as so-called a priori signal-to-noise ratio (SNR) estimate in a traditional statistical speech enhancement system. Such a traditional system consists of a noise power estimator, an a priori SNR estimator, and a spectral weighting rule that is usually driven by the results of the aforementioned estimators and subsequently employed to retrieve the clean speech estimate from the noisy observation. As a result the new approach obtains significantly higher noise attenuation compared to current state-of-the-art systems while maintaining a quite comparable speech component quality and speech intelligibility. In consequence, the overall quality of the enhanced speech signal turns out to be superior as compared to state-of-the-art speech ehnahcement approaches.Mobiltelefonie ist aus dem heutigen Leben nicht mehr wegzudenken. Telefonate werden in beliebigen Situationen an beliebigen Orten gefĂŒhrt und dabei nimmt das Mikrofon nicht nur die Sprache des Nutzers auf, sondern auch die UmgebungsgerĂ€usche, welche das VerstĂ€ndnis des GesprĂ€chspartners stark beeinflussen können. Moderne Systeme können durch Sprachverbesserungsalgorithmen solchen Effekten entgegenwirken, dabei ist vielen Nutzern nicht einmal bewusst, dass diese Algorithmen existieren. In dieser Arbeit wird die Entwicklung eines einkanaligen Sprachverbesserungssystems vorgestellt. Der Ansatz setzt auf das Teile-und-herrsche-Verfahren, um störende UmgebungsgerĂ€usche aus Mikrofonsignalen herauszufiltern. Dieses Verfahren kann fĂŒr sĂ€mtliche FĂ€lle angewendet werden, in denen Sprache aus verrauschten Signalen extrahiert werden soll. Der Ansatz nutzt das Quelle-Filter-Modell, um das ursprĂŒngliche Problem in zwei Unterprobleme aufzuteilen, die anschließend gelöst werden, indem die Quelle (das Anregungssignal) und das Filter (die spektrale EinhĂŒllende) separat verbessert werden. Die verbesserten Signale werden gemeinsam genutzt, um das gestörte Mikrofonsignal zu entrauschen. Die SchĂ€tzung von spektralen EinhĂŒllenden wurde bereits in der Vergangenheit erforscht und zum Teil auch fĂŒr die Sprachverbesserung angewandt. Typischerweise wird dabei jedoch das Anregungssignal vernachlĂ€ssigt, so dass die spektrale Feinstruktur des Mikrofonsignals nicht verbessert werden kann. Beide AnsĂ€tze nutzen jeweils die Eigenschaften der cepstralen DomĂ€ne, die unter anderem vorteilhafte mathematische Eigenschaften mit sich bringen, sowie die Möglichkeit, Prototypen eines Anregungssignals zu erzeugen. Wir untersuchen modellbasierte AnsĂ€tze, wie z.B. Gaußsche Mischmodelle, klassische signalverarbeitungsbasierte Lösungen und auch moderne tiefe neuronale Netzwerke in dieser Arbeit. Die so verbesserten Signale werden nicht direkt zur Sprachsignalverbesserung genutzt (z.B. Sprachsynthese), sondern als sogenannter A-priori-Signal-zu-Rauschleistungs-SchĂ€tzwert in einem traditionellen statistischen Sprachverbesserungssystem. Dieses besteht aus einem Störleistungs-SchĂ€tzer, einem A-priori-Signal-zu-Rauschleistungs-SchĂ€tzer und einer spektralen Gewichtungsregel, die ĂŒblicherweise mit Hilfe der Ergebnisse der beiden SchĂ€tzer berechnet wird. Schließlich wird eine SchĂ€tzung des sauberen Sprachsignals aus der Mikrofonaufnahme gewonnen. Der neue Ansatz bietet eine signifikant höhere DĂ€mpfung des StörgerĂ€uschs als der bisherige Stand der Technik. Dabei wird eine vergleichbare QualitĂ€t der Sprachkomponente und der SprachverstĂ€ndlichkeit gewĂ€hrleistet. Somit konnte die GesamtqualitĂ€t des verbesserten Sprachsignals gegenĂŒber dem Stand der Technik erhöht werden

    Ultrasound Signal Processing: From Models to Deep Learning

    Get PDF
    Medical ultrasound imaging relies heavily on high-quality signal processing algorithms to provide reliable and interpretable image reconstructions. Hand-crafted reconstruction methods, often based on approximations of the underlying measurement model, are useful in practice, but notoriously fall behind in terms of image quality. More sophisticated solutions, based on statistical modelling, careful parameter tuning, or through increased model complexity, can be sensitive to different environments. Recently, deep learning based methods have gained popularity, which are optimized in a data-driven fashion. These model-agnostic methods often rely on generic model structures, and require vast training data to converge to a robust solution. A relatively new paradigm combines the power of the two: leveraging data-driven deep learning, as well as exploiting domain knowledge. These model-based solutions yield high robustness, and require less trainable parameters and training data than conventional neural networks. In this work we provide an overview of these methods from the recent literature, and discuss a wide variety of ultrasound applications. We aim to inspire the reader to further research in this area, and to address the opportunities within the field of ultrasound signal processing. We conclude with a future perspective on these model-based deep learning techniques for medical ultrasound applications

    A Study into Speech Enhancement Techniques in Adverse Environment

    Get PDF
    This dissertation developed speech enhancement techniques that improve the speech quality in applications such as mobile communications, teleconferencing and smart loudspeakers. For these applications it is necessary to suppress noise and reverberation. Thus the contribution in this dissertation is twofold: single channel speech enhancement system which exploits the temporal and spectral diversity of the received microphone signal for noise suppression and multi-channel speech enhancement method with the ability to employ spatial diversity to reduce reverberation

    Blind Deconvolution of Anisoplanatic Images Collected by a Partially Coherent Imaging System

    Get PDF
    Coherent imaging systems offer unique benefits to system operators in terms of resolving power, range gating, selective illumination and utility for applications where passively illuminated targets have limited emissivity or reflectivity. This research proposes a novel blind deconvolution algorithm that is based on a maximum a posteriori Bayesian estimator constructed upon a physically based statistical model for the intensity of the partially coherent light at the imaging detector. The estimator is initially constructed using a shift-invariant system model, and is later extended to the case of a shift-variant optical system by the addition of a transfer function term that quantifies optical blur for wide fields-of-view and atmospheric conditions. The estimators are evaluated using both synthetically generated imagery, as well as experimentally collected image data from an outdoor optical range. The research is extended to consider the effects of weighted frame averaging for the individual short-exposure frames collected by the imaging system. It was found that binary weighting of ensemble frames significantly increases spatial resolution

    Sparse nonlinear optimization for signal processing and communications

    Get PDF
    This dissertation proposes three classes of new sparse nonlinear optimization algorithms for network echo cancellation (NEC), 3-D synthetic aperture radar (SAR) image reconstruction, and adaptive turbo equalization in multiple-input multiple-output (MIMO) underwater acoustic (UWA) communications, respectively. For NEC, the proposed two proportionate affine projection sign algorithms (APSAs) utilize the sparse nature of the network impulse response (NIR). Benefiting from the characteristics of l₁-norm optimization, affine projection, and proportionate matrix, the new algorithms are more robust to impulsive interferences and colored input than the conventional adaptive algorithms. For 3-D SAR image reconstruction, the proposed two compressed sensing (CS) approaches exploit the sparse nature of the SAR holographic image. Combining CS with the range migration algorithms (RMAs), these approaches can decrease the load of data acquisition while recovering satisfactory 3-D SAR image through l₁-norm optimization. For MIMO UWA communications, a robust iterative channel estimation based minimum mean-square-error (MMSE) turbo equalizer is proposed for large MIMO detection. The MIMO channel estimation is performed jointly with the MMSE equalizer and the maximum a posteriori probability (MAP) decoder. The proposed MIMO detection scheme has been tested by experimental data and proved to be robust against tough MIMO channels. --Abstract, page iv

    Noise-Enhanced and Human Visual System-Driven Image Processing: Algorithms and Performance Limits

    Get PDF
    This dissertation investigates the problem of image processing based on stochastic resonance (SR) noise and human visual system (HVS) properties, where several novel frameworks and algorithms for object detection in images, image enhancement and image segmentation as well as the method to estimate the performance limit of image segmentation algorithms are developed. Object detection in images is a fundamental problem whose goal is to make a decision if the object of interest is present or absent in a given image. We develop a framework and algorithm to enhance the detection performance of suboptimal detectors using SR noise, where we add a suitable dose of noise into the original image data and obtain the performance improvement. Micro-calcification detection is employed in this dissertation as an illustrative example. The comparative experiments with a large number of images verify the efficiency of the presented approach. Image enhancement plays an important role and is widely used in various vision tasks. We develop two image enhancement approaches. One is based on SR noise, HVS-driven image quality evaluation metrics and the constrained multi-objective optimization (MOO) technique, which aims at refining the existing suboptimal image enhancement methods. Another is based on the selective enhancement framework, under which we develop several image enhancement algorithms. The two approaches are applied to many low quality images, and they outperform many existing enhancement algorithms. Image segmentation is critical to image analysis. We present two segmentation algorithms driven by HVS properties, where we incorporate the human visual perception factors into the segmentation procedure and encode the prior expectation on the segmentation results into the objective functions through Markov random fields (MRF). Our experimental results show that the presented algorithms achieve higher segmentation accuracy than many representative segmentation and clustering algorithms available in the literature. Performance limit, or performance bound, is very useful to evaluate different image segmentation algorithms and to analyze the segmentability of the given image content. We formulate image segmentation as a parameter estimation problem and derive a lower bound on the segmentation error, i.e., the mean square error (MSE) of the pixel labels considered in our work, using a modified Cramér-Rao bound (CRB). The derivation is based on the biased estimator assumption, whose reasonability is verified in this dissertation. Experimental results demonstrate the validity of the derived bound

    Reconstruction of anisoplanatic adaptive optics images

    Get PDF
    • 

    corecore