207 research outputs found

    Finite-time adaptive prescribed performance DSC for pure feedback nonlinear systems with input quantization and unmodeled dynamics

    Get PDF
    This paper presents a new prescribed performance-based finite-time adaptive tracking control scheme for a class of pure-feedback nonlinear systems with input quantization and dynamical uncertainties. To process the input signal, a new quantizer combining the advantages of a hysteresis quantizer and uniform quantizer has been used. Radial basis function neural networks have been utilized to approximate unknown nonlinear smooth functions. An auxiliary system has been employed to estimate unmodeled dynamics by producing a dynamic signal. By introducing a hyperbolic tangent function and performance function, the tracking error was made to fall within the prescribed time-varying constraints. Using modified dynamic surface control (DSC) technology and a finite-time control method, a novel finite-time controller has been designed, and the singularity problem of differentiating each virtual control scheme in the existing finite-time control scheme has been removed. Theoretical analysis shows that all signals in the closed-loop system are semi-globally practically finite-time stable, and that the tracking error converges to a prescribed time-varying region. Simulation results for two numerical examples have been provided to illustrate the validity of the proposed control method

    Neural networks-based adaptive fault-tolerant control for a class of nonstrict-feedback nonlinear systems with actuator faults and input delay

    Get PDF
    This paper addresses the challenge of adaptive control for nonstrict-feedback nonlinear systems that involve input delay, actuator faults, and external disturbance. To deal with the complexities arising from input delay and unknown functions, we have incorporated Pade approximation and radial basis function neural networks, respectively. An adaptive controller has been developed by utilizing the Lyapunov stability theorem and the backstepping approach. The suggested method guarantees that the tracking error converges to a compact neighborhood that contains the origin and that every signal in the closed-loop system is semi-globally uniformly ultimately bounded. To demonstrate the efficacy of the proposed method, an electromechanical system application example, and a numerical example are provided. Additionally, comparative analysis was conducted between the Pade approximation proposed in this paper and the auxiliary systems in the existing method. Furthermore, error assessment criteria have been employed to substantiate the effectiveness of the proposed method by comparing it with existing results

    Dual-Loop Adaptive Iterative Learning Control for a Timoshenko Beam With Output Constraint and Input Backlash

    Get PDF
    • …
    corecore