1,652 research outputs found

    Medical imaging analysis with artificial neural networks

    Get PDF
    Given that neural networks have been widely reported in the research community of medical imaging, we provide a focused literature survey on recent neural network developments in computer-aided diagnosis, medical image segmentation and edge detection towards visual content analysis, and medical image registration for its pre-processing and post-processing, with the aims of increasing awareness of how neural networks can be applied to these areas and to provide a foundation for further research and practical development. Representative techniques and algorithms are explained in detail to provide inspiring examples illustrating: (i) how a known neural network with fixed structure and training procedure could be applied to resolve a medical imaging problem; (ii) how medical images could be analysed, processed, and characterised by neural networks; and (iii) how neural networks could be expanded further to resolve problems relevant to medical imaging. In the concluding section, a highlight of comparisons among many neural network applications is included to provide a global view on computational intelligence with neural networks in medical imaging

    Online Discrimination of Nonlinear Dynamics with Switching Differential Equations

    Full text link
    How to recognise whether an observed person walks or runs? We consider a dynamic environment where observations (e.g. the posture of a person) are caused by different dynamic processes (walking or running) which are active one at a time and which may transition from one to another at any time. For this setup, switching dynamic models have been suggested previously, mostly, for linear and nonlinear dynamics in discrete time. Motivated by basic principles of computations in the brain (dynamic, internal models) we suggest a model for switching nonlinear differential equations. The switching process in the model is implemented by a Hopfield network and we use parametric dynamic movement primitives to represent arbitrary rhythmic motions. The model generates observed dynamics by linearly interpolating the primitives weighted by the switching variables and it is constructed such that standard filtering algorithms can be applied. In two experiments with synthetic planar motion and a human motion capture data set we show that inference with the unscented Kalman filter can successfully discriminate several dynamic processes online

    Industrial process monitoring by means of recurrent neural networks and Self Organizing Maps

    Get PDF
    Industrial manufacturing plants often suffer from reliability problems during their day-to-day operations which have the potential for causing a great impact on the effectiveness and performance of the overall process and the sub-processes involved. Time-series forecasting of critical industrial signals presents itself as a way to reduce this impact by extracting knowledge regarding the internal dynamics of the process and advice any process deviations before it affects the productive process. In this paper, a novel industrial condition monitoring approach based on the combination of Self Organizing Maps for operating point codification and Recurrent Neural Networks for critical signal modeling is proposed. The combination of both methods presents a strong synergy, the information of the operating condition given by the interpretation of the maps helps the model to improve generalization, one of the drawbacks of recurrent networks, while assuring high accuracy and precision rates. Finally, the complete methodology, in terms of performance and effectiveness is validated experimentally with real data from a copper rod industrial plant.Postprint (published version

    ARTIFICIAL NEURAL NETWORKS AND THEIR APPLICATIONS IN BUSINESS

    Get PDF
    In modern software implementations of artificial neural networks the approach inspired by biology has more or less been abandoned for a more practical approach based on statistics and signal processing. In some of these systems, neural networks, or parts of neural networks (such as artificial neurons), are used as components in larger systems that combine both adaptive and non-adaptive elements. There are many problems which are solved with neural networks, especially in business and economic domains.neuron, neural networks, artificial intelligence, feed-forward neural networks, classification

    Review of Neural Network Algorithms

    Get PDF
    The artificial neural network is the core tool of machine learning to realize intelligence. It has shown its advantages in the fields of sound, image, sound, picture, and so on. Since entering the 21st century, the progress of science and technology and people\u27s pursuit of artificial intelligence have introduced the research of artificial neural networks into an upsurge. Firstly, this paper introduces the application background and development process of the artificial neural network in order to clarify the research context of neural networks. Five branches and related applications of single-layer perceptron, linear neural network, BP neural network, Hopfield neural network, and depth neural network are analyzed in detail. The analysis shows that the development trend of the artificial neural network is developing towards a more general, flexible, and intelligent direction. Finally, the future development of the artificial neural network in training mode, learning mode, function expansion, and technology combination has prospected

    Neural networks in geophysical applications

    Get PDF
    Neural networks are increasingly popular in geophysics. Because they are universal approximators, these tools can approximate any continuous function with an arbitrary precision. Hence, they may yield important contributions to finding solutions to a variety of geophysical applications. However, knowledge of many methods and techniques recently developed to increase the performance and to facilitate the use of neural networks does not seem to be widespread in the geophysical community. Therefore, the power of these tools has not yet been explored to their full extent. In this paper, techniques are described for faster training, better overall performance, i.e., generalization,and the automatic estimation of network size and architecture
    corecore