7 research outputs found

    PAPR Reduction Using Huffman and Arithmetic Coding Techniques in F-OFDM System

    Get PDF
    Filtered orthogonal frequency division multiplexing (F-OFDM) was introduced to overcome the high side lobes in the OFDM system. Filtering is implemented in the system to reduce the out-of-band emission (OOBE) for the spectrum utilization and to meet the diversified expectation of the upcoming 5G networks. The main drawback in the system is the high peak to average ratio (PAPR). This paper investigates the method used in reducing the PAPR in the F-OFDM system. The proposed method using the block coding technique to overcome the problem of high PAPR are the Arithmetic coding and Huffman coding. This research evaluates the performance of F-OFDM system based on the PAPR values. From the simulation results, the PAPR reduction of the Arithmetic coding is 8.9% lower, while the Huffman Coding is 6.7% lower in the F-OFDM system. The results prove that the Arithmetic Coding will out-perform the Huffman coding in the F-OFDM system

    Filtered OFDM systems, algorithms and performance analysis for 5G and beyond

    Get PDF
    Filtered orthogonal frequency division multiplexing (F-OFDM) system is a promising waveform for 5G and beyond to enable multi-service system and spectrum efficient network slicing. However, the performance for F-OFDM systems has not been systematically analyzed in literature. In this paper, we first establish a mathematical model for F-OFDM system and derive the conditions to achieve the interference-free one-tap channel equalization. In the practical cases (e.g., insufficient guard interval, asynchronous transmission, etc.), the analytical expressions for inter-symbol-interference (ISI), inter-carrier-interference (ICI) and adjacent-carrier-interference (ACI) are derived, where the last term is considered as one of the key factors for asynchronous transmissions. Based on the framework, an optimal power compensation matrix is derived to make all of the subcarriers having the same ergodic performance. Another key contribution of the paper is that we propose a multi-rate F-OFDM system to enable low complexity low cost communication scenarios such as narrow band Internet of Things (IoT), at the cost of generating inter-subband-interference (ISubBI). Low computational complexity algorithms are proposed to cancel the ISubBI. The result shows that the derived analytical expressions match the simulation results, and the proposed ISubBI cancelation algorithms can significantly save the original F-OFDM complexity (up to 100 times) without significant performance los

    D4.1 Draft air interface harmonization and user plane design

    Full text link
    The METIS-II project envisions the design of a new air interface in order to fulfil all the performance requirements of the envisioned 5G use cases including some extreme low latency use cases and ultra-reliable transmission, xMBB requiring additional capacity that is only available in very high frequencies, as well as mMTC with extremely densely distributed sensors and very long battery life requirements. Designing an adaptable and flexible 5G Air Interface (AI), which will tackle these use cases while offering native multi-service support, is one of the key tasks of METIS-II WP4. This deliverable will highlight the challenges of designing an AI required to operate in a wide range of spectrum bands and cell sizes, capable of addressing the diverse services with often diverging requirements, and propose a design and suitability assessment framework for 5G AI candidates.Aydin, O.; Gebert, J.; Belschner, J.; Bazzi, J.; Weitkemper, P.; Kilinc, C.; Leonardo Da Silva, I.... (2016). D4.1 Draft air interface harmonization and user plane design. https://doi.org/10.13140/RG.2.2.24542.0288

    Analysis of filtered OFDM for 5G

    Get PDF
    Trabalho de conclusão de curso (graduação)—Universidade de Brasília, Instituto de Ciências Exatas, Departamento de Engenharia Elétrica, 2018.A quarta geração de comunicações móveis, 4G, proveu conexões com altas velocidades, taxas de dados e resiliência na última década. No entanto, novas tecnologias estão surgindo e estas popularizarão-se no futuro próximo. Tecnologias como veículos autônomos, monitoramento de saúde, jogos onlines e Internet das Coisas (IoT) demandarão altíssimas taxas de dados (20 Gbps), baixíssima latência (1 ms) e baixo consumo de energia. Para atender a estes requisitos, é esper- ada uma mudança de paradigma em telecomunicações. O OFDM filtrado (fOFDM) traz uma redução considerável das radiações fora de banda, possibilitando a divisão do espectro em sub- bandas, que possuem numerologias independentes e podem ser transmitidas sem a necessidade de sincronia global. Deste modo, esta forma de onda visa atender as mais heterogêneas aplicações na interface aérea da quinta geração (5G), além de aumentar a eficiência espectral dos sistemas de telecomunicações. Neste trabalho, o desempenho do fOFDM foi avaliado, por meio de simulações computacionais, sob diversas circunstâncias, tais como propagação com multipercurso, interferên- cia, transmissão assíncrona, diferentes filtros, etc. Os resultados destes estudos são comparados ao OFDM, para que se tenha uma melhor percepção das diferenças entre as duas tecnologias.The fourth generation of mobile communications (4G) provided high speed, high bit rate and resilient connections for the last decade. However, new technologies are appearing and they are expected to become popular in the near future. Technologies like autonomous vehicles, health care monitoring, online gaming and Internet of Things (IoT) will demand high bit rates (20 Gbps), ultra-low latency (1 ms) and low power consumption. In order to attend these requirements, a paradigm shift is expected in telecommunications. Filtered OFDM (fOFDM) brings a considerable out-of-band emission (OOBE) reduction, making it possible to divide the spectrum into sub- bands, which have independent numerology and may be transmitted without the need of global synchrony. Therefore, this waveform seeks to support the most heterogeneous applications, while also enhancing the system’s spectral efficiency. In this work, fOFDM’s performance was studied, by computational simulations, under diverse circumstances, e.g., multipath propagation, interference, asynchronous transmission, different filters, etc. The investigations results are compared to OFDM, in order to attain a better perception of the differences between the two technologies

    New methods of partial transmit sequence for reducing the high peak-to-average-power ratio with low complexity in the ofdm and f-ofdm systems

    Get PDF
    The orthogonal frequency division multiplexing system (OFDM) is one of the most important components for the multicarrier waveform design in the wireless communication standards. Consequently, the OFDM system has been adopted by many high-speed wireless standards. However, the high peak-to-average- power ratio (PAPR) is the main obstacle of the OFDM system in the real applications because of the non-linearity nature in the transmitter. Partial transmit sequence (PTS) is one of the effective PAPR reduction techniques that has been employed for reducing the PAPR value 3 dB; however, the high computational complexity is the main drawback of this technique. This thesis proposes novel methods and algorithms for reducing the high PAPR value with low computational complexity depending on the PTS technique. First, three novel subblocks partitioning schemes, Sine Shape partitioning scheme (SS-PTS), Subsets partitioning scheme (Sb-PTS), and Hybrid partitioning scheme (H-PTS) have been introduced for improving the PAPR reduction performance with low computational complexity in the frequency-domain of the PTS structure. Secondly, two novel algorithms, Grouping Complex iterations algorithm (G-C-PTS), and Gray Code Phase Factor algorithm (Gray-PF-PTS) have been developed to reduce the computational complexity for finding the optimum phase rotation factors in the time domain part of the PTS structure. Third, a new hybrid method that combines the Selective mapping and Cyclically Shifts Sequences (SLM-CSS-PTS) techniques in parallel has been proposed for improving the PAPR reduction performance and the computational complexity level. Based on the proposed methods, an improved PTS method that merges the best subblock partitioning scheme in the frequency domain and the best low-complexity algorithm in the time domain has been introduced to enhance the PAPR reduction performance better than the conventional PTS method with extremely low computational complexity level. The efficiency of the proposed methods is verified by comparing the predicted results with the existing modified PTS methods in the literature using Matlab software simulation and numerical calculation. The results that obtained using the proposed methods achieve a superior gain in the PAPR reduction performance compared with the conventional PTS technique. In addition, the number of complex addition and multiplication operations has been reduced compared with the conventional PTS method by about 54%, and 32% for the frequency domain schemes, 51% and 65% for the time domain algorithms, 18% and 42% for the combining method. Moreover, the improved PTS method which combines the best scheme in the frequency domain and the best algorithm in the time domain outperforms the conventional PTS method in terms of the PAPR reduction performance and the computational complexity level, where the number of complex addition and multiplication operation has been reduced by about 51% and 63%, respectively. Finally, the proposed methods and algorithms have been applied to the OFDM and Filtered-OFDM (F-OFDM) systems through Matlab software simulation, where F-OFDM refers to the waveform design candidate in the next generation technology (5G)

    D2.2 Draft Overall 5G RAN Design

    Full text link
    This deliverable provides the consolidated preliminary view of the METIS-II partners on the 5 th generation (5G) radio access network (RAN) design at a mid-point of the project. The overall 5G RAN is envisaged to operate over a wide range of spectrum bands comprising of heterogeneous spectrum usage scenarios. More precisely, the 5G air interface (AI) is expected to be composed of multiple so-called AI variants (AIVs), which include evolved legacy technology such as Long Term Evolution Advanced (LTE-A) as well as novel AIVs, which may be tailored to particular services or frequency bands.Arnold, P.; Bayer, N.; Belschner, J.; Rosowski, T.; Zimmermann, G.; Ericson, M.; Da Silva, IL.... (2016). D2.2 Draft Overall 5G RAN Design. https://doi.org/10.13140/RG.2.2.17831.1424

    Reduced complexity detection for massive MIMO-OFDM wireless communication systems

    Get PDF
    PhD ThesisThe aim of this thesis is to analyze the uplink massive multiple-input multipleoutput with orthogonal frequency-division multiplexing (MIMO-OFDM) communication systems and to design a receiver that has improved performance with reduced complexity. First, a novel receiver is proposed for coded massive MIMO-OFDM systems utilizing log-likelihood ratios (LLRs) derived from complex ratio distributions to model the approximate effective noise (AEN) probability density function (PDF) at the output of a zero-forcing equalizer (ZFE). These LLRs are subsequently used to improve the performance of the decoding of low-density parity-check (LDPC) codes and turbo codes. The Neumann large matrix approximation is employed to simplify the matrix inversion in deriving the PDF. To verify the PDF of the AEN, Monte-Carlo simulations are used to demonstrate the close-match fitting between the derived PDF and the experimentally obtained histogram of the noise in addition to the statistical tests and the independence verification. In addition, complexity analysis of the LLR obtained using the newly derived noise PDF is considered. The derived LLR can be time consuming when the number of receive antennas is very large in massive MIMO-OFDM systems. Thus, a reduced complexity approximation is introduced to this LLR using Newton’s interpolation with different orders and the results are compared to exact simulations. Further simulation results over time-flat frequency selective multipath fading channels demonstrated improved performance over equivalent systems using the Gaussian approximation for the PDF of the noise. By utilizing the PDF of the AEN, the PDF of the signal-to-noise ratio (SNR) is obtained. Then, the outage probability, the closed-form capacity and three approximate expressions for the channel capacity are derived based on that PDF. The system performance is further investigated by exploiting the PDF of the AEN to derive the bit error rate (BER) for the massive MIMO-OFDM system with different M-ary modulations. Then, the pairwise error probability (PEP) is derived to obtain the upper-bounds for the convolutionally coded and turbo coded massive MIMO-OFDM systems for different code generators and receive antennas. Furthermore, the effect of the fixed point data representation on the performance of the massive MIMO-OFDM systems is investigated using reduced detection implementations for MIMO detectors. The motivation for the fixed point analysis is the need for a reduced complexity detector to be implemented as an optimum massive MIMO detector with low precision. Different decomposition schemes are used to build the linear detector based on the IEEE 754 standard in addition to a user-defined precision for selected detectors. Simulations are used to demonstrate the behaviour of several matrix inversion schemes under reduced bit resolution. The numerical results demonstrate improved performance when using QR-factorization and pivoted LDLT decomposition schemes at reduced precision.Iraqi Government and the Iraqi Ministry of Higher Education and Scientific researc
    corecore