674 research outputs found

    Aerial base stations with opportunistic links for next generation emergency communications

    Get PDF
    Rapidly deployable and reliable mission-critical communication networks are fundamental requirements to guarantee the successful operations of public safety officers during disaster recovery and crisis management preparedness. The ABSOLUTE project focused on designing, prototyping, and demonstrating a high-capacity IP mobile data network with low latency and large coverage suitable for many forms of multimedia delivery including public safety scenarios. The ABSOLUTE project combines aerial, terrestrial, and satellites communication networks for providing a robust standalone system able to deliver resilience communication systems. This article focuses on describing the main outcomes of the ABSOLUTE project in terms of network and system architecture, regulations, and implementation of aerial base stations, portable land mobile units, satellite backhauling, S-MIM satellite messaging, and multimode user equipments

    Aerial-terrestrial communications: terrestrial cooperation and energy-efficient transmissions to aerial-base stations

    Get PDF
    Hybrid aerial-terrestrial communication networks based on low-altitude platforms are expected to meet optimally the urgent communication needs of emergency relief and recovery operations for tackling large-scale natural disasters. The energy-efficient operation of such networks is important given that the entire network infrastructure, including the battery-operated ground terminals, exhibits requirements to operate under power-constrained situations. In this paper, we discuss the design and evaluation of an adaptive cooperative scheme intended to extend the survivability of the battery-operated aerial-terrestrial communication links. We propose and evaluate a real-time adaptive cooperative transmission strategy for dynamic selection between direct and cooperative links based on the channel conditions for improved energy efficiency. We show that the cooperation between mobile terrestrial terminals on the ground could improve energy efficiency in the uplink, depending on the temporal behavior of the terrestrial and aerial uplink channels. The corresponding delay in having cooperative (relay-based) communications with relay selection is also addressed. The simulation analysis corroborates that the adaptive transmission technique improves overall energy efficiency of the network whilst maintaining low latency, enabling real-time applications

    Designing and Implementing Future Aerial Communication Networks

    Get PDF
    Providing "connectivity from the sky" is the new innovative trend in wireless communications. High and low altitude platforms, drones, aircrafts and airships are being considered as the candidates for deploying wireless communications complementing the terrestrial communication infrastructure. In this article, we report the detailed account of the design and implementation challenges of an aerial network consisting of LTE Advanced (LTE-A) base stations. In particular, we review achievements and innovations harnessed by an aerial network composed of Helikite platforms. Helikites can be raised in the sky to bring Internet access during special events and in the aftermath of an emergency. The trial phase of the system mounting LTE-A technology onboard Helikites to serve users on the ground showed not only to be very encouraging but that such a system could offer even a longer lasting solution provided that inefficiency in powering the radio frequency equipment in the Helikite can be overcome.Comment: IEEE Communications Magazine 201

    Space-Air-Ground Integrated 6G Wireless Communication Networks: A Review of Antenna Technologies and Application Scenarios

    Get PDF
    A review of technological solutions and advances in the framework of a Vertical Heterogeneous Network (VHetNet) integrating satellite, airborne and terrestrial networks is presented. The disruptive features and challenges offered by a fruitful cooperation among these segments within a ubiquitous and seamless wireless connectivity are described. The available technologies and the key research directions for achieving global wireless coverage by considering all these layers are thoroughly discussed. Emphasis is placed on the available antenna systems in satellite, airborne and ground layers by highlighting strengths and weakness and by providing some interesting trends in research. A summary of the most suitable applicative scenarios for future 6G wireless communications are finally illustrated

    Modeling the Use of an Airborne Platform for Cellular Communications Following Disruptions

    Get PDF
    In the wake of a disaster, infrastructure can be severely damaged, hampering telecommunications. An Airborne Communications Network (ACN) allows for rapid and accurate information exchange that is essential for the disaster response period. Access to information for survivors is the start of returning to self-sufficiency, regaining dignity, and maintaining hope. Real-world testing has proven that such a system can be built, leading to possible future expansion of features and functionality of an emergency communications system. Currently, there are no airborne civilian communications systems designed to meet the demands of the public following a natural disaster. A system allowing even a limited amount of communications post-disaster is a great improvement on the current situation, where telecommunications are frequently not available. It is technically feasible to use an airborne, wireless, cellular system quickly deployable to disaster areas and configured to restore some of the functions of damaged terrestrial telecommunications networks. The system requirements were presented, leading to the next stage of the planned research, where a range of possible solutions were examined. The best solution was selected based on the earlier, predefined criteria. The system was modeled, and a test ii system built. The system was tested and redesigned when necessary, to meet the requirements. The research has shown how the combination of technology, especially the recent miniaturizations and move to open source software for cellular network components can allow sophisticated cellular networks to be implemented. The ACN system proposed could enable connectivity and reduce the communications problems that were experienced following Hurricane Sandy and Katrina. Experience with both natural and man-made disasters highlights the fact that communications are useful only to the extent that they are accessible and useable by the population
    corecore