719 research outputs found

    Robust Sliding Mode Control Based on GA Optimization and CMAC Compensation for Lower Limb Exoskeleton

    Get PDF
    A lower limb assistive exoskeleton is designed to help operators walk or carry payloads. The exoskeleton is required to shadow human motion intent accurately and compliantly to prevent incoordination. If the user’s intention is estimated accurately, a precise position control strategy will improve collaboration between the user and the exoskeleton. In this paper, a hybrid position control scheme, combining sliding mode control (SMC) with a cerebellar model articulation controller (CMAC) neural network, is proposed to control the exoskeleton to react appropriately to human motion intent. A genetic algorithm (GA) is utilized to determine the optimal sliding surface and the sliding control law to improve performance of SMC. The proposed control strategy (SMC_GA_CMAC) is compared with three other types of approaches, that is, conventional SMC without optimization, optimal SMC with GA (SMC_GA), and SMC with CMAC compensation (SMC_CMAC), all of which are employed to track the desired joint angular position which is deduced from Clinical Gait Analysis (CGA) data. Position tracking performance is investigated with cosimulation using ADAMS and MATLAB/SIMULINK in two cases, of which the first case is without disturbances while the second case is with a bounded disturbance. The cosimulation results show the effectiveness of the proposed control strategy which can be employed in similar exoskeleton systems

    Review of sliding mode control application in autonomous underwater vehicles

    Get PDF
    973-984This paper presents a review of sliding mode control for autonomous underwater vehicles (AUVs). The AUVs are used under water operating in the presence of uncertainties (due to hydrodynamics coefficients) and external disturbances (due to water currents, waves, etc.). Sliding mode controller is one of the nonlinear robust controllers which is robust towards uncertainties, parameter variations and external disturbances. The evolution of sliding mode control in motion control studies of autonomous underwater vehicles is summarized throughout for the last three decades. The performance of the controller is examined based on the chattering reduction, accuracy (steady state error reduction), and robustness against perturbation. The review on sliding mode control for AUVs provides insights for readers to design new techniques and algorithms, to enhance the existing family of sliding mode control strategies into a new one or to merge and re-supervise the control techniques with other control strategies, in which, the aim is to obtain good controller design for AUVs in terms of great performance, stability and robustness

    Development and Implementation of Some Controllers for Performance Enhancement and Effective Utilization of Induction Motor Drive

    Get PDF
    The technological development in the field of power electronics and DSP technology is rapidly changing the aspect of drive technology. Implementations of advanced control strategies like field oriented control, linearization control, etc. to AC drives with variable voltage, and variable frequency source is possible because of the advent of high modulating frequency PWM inverters. The modeling complexity in the drive system and the subsequent requirement for modern control algorithms are being easily taken care by high computational power, low-cost DSP controllers. The present work is directed to study, design, development, and implementation of various controllers and their comparative evaluations to identify the proper controller for high-performance induction motor (IM) drives. The dynamic modeling for decoupling control of IM is developed by making the flux and torque decoupled. The simulation is carried out in the stationary reference frame with linearized control based on state-space linearization technique. Further, comprehensive and systematic design procedures are derived to tune the PI controllers for both electrical and mechanical subsystems. However, the PI-controller performance is not satisfactory under various disturbances and system uncertainties. Also, precise mathematical model, gain values, and continuous tuning are required for the controller design to obtain high performance. Thus, to overcome these drawbacks, an adapted control strategy based on Adaptive Neuro-Fuzzy Inference System (ANFIS) based controller is developed and implemented in real-time to validate different control strategies. The superiority of the proposed controller is analyzed and is contrasted with the conventional PI controller-based linearized IM drive. The simplified neuro-fuzzy control (NFC) integrates the concept of fuzzy logic and neural network structure like conventional NFC, but it has the advantages of simplicity and improved computational efficiency over conventional NFC as the single input introduced here is an error instead of two inputs error and change in error as in conventional NFC. This structure makes the proposed NFC robust and simple as compared to conventional NFC and thus, can be easily applied to real-time industrial applications. The proposed system incorporated with different control methods is also validated with extensive experimental results using DSP2812. The effectiveness of the proposed method using feedback linearization of IM drive is investigated in simulation as well as in experiment with different working modes. It is evident from the comparative results that the system performance is not deteriorated using proposed simplified NFC as compared to the conventional NFC, rather it shows superior performance over PI-controller-based drive. A hybrid fuel cell (FC) supply system to deliver the power demanded by the feedback linearization (FBL) based IM drive is designed and implemented. The modified simple hybrid neuro-fuzzy sliding-mode control (NFSMC) incorporated with the intuitive FBL substantially reduces torque chattering and improves speed response, giving optimal drive performance under system uncertainties and disturbances. This novel technique also has the benefit of reduced computational burden over conventional NFSMC and thus, suitable for real-time industrial applications. The parameters of the modified NFC is tuned by an adaptive mechanism based on sliding-mode control (SMC). A FC stack with a dc/dc boost converter is considered here as a separate external source during interruption of main supply for maintaining the supply to the motor drive control through the inverter, thereby reducing the burden and average rating of the inverter. A rechargeable battery used as an energy storage supplements the FC during different operating conditions of the drive system. The effectiveness of the proposed method using FC-based linearized IM drive is investigated in simulation, and the efficacy of the proposed controller is validated in real-time. It is evident from the results that the system provides optimal dynamic performance in terms of ripples, overshoot, and settling time responses and is robust in terms of parameters variation and external load

    Study and RTDS implementation of some controllers for performance and power quality improvement of an induction motor drive system

    Get PDF
    The present research work is directed to study of some controllers for design, modelling, simulation and RTDS implementation of induction motor (IM) drive system to identify suitable controller for high performance.Initially dynamic modelling and simulation of a feedback linearization scheme for high performance IM drive is carried out. The flux measurement required in this scheme is achieved using flux estimator rather sensor to simplify the system. The complexity and calculation involved in reference frame transformation is taken care by implementing the scheme in stationary reference frame. Two linear and independent subsystems: (i) Electrical and (ii) Mechanical are created by linearizing control scheme. The systematic design of closed loop control scheme using Proportional Integral (PI) controller is developed for implementation. To take care of uncertainties in the system the Fuzzy controller is added to speed controller. Sliding Mode (SM) controller considered to be a robust control strategy is designed and developed for IM drive. A procedure of finding gain and bandwidth of the controller is developed to take care of model inaccuracies, load disturbances and rotor resistance variation. During practical implementation of this controller for IM leads to oscillations and of state variable chattering due to presence of limiter and PWM inverter in the system. Iterative Learning controller (ILC) introduced in recent time is gaining popularity due to capability to take care of short comings of Sliding Mode controller. Feedback and feed forward Iterative Learning controller combining fuzzy logic is designed and developed. The MATLAB/SIMULINK model of IM drive with controllers designed are simulated under various possible operating conditions. A comparative study of three controllers is carried out in similar situation and the response of the drive system is presented.Normally we neglect stability aspect of IM while investigating procedure for performance improvement of IM drive. Stability study of IM in open loop and closed vii loop conditions using Lyapunov criteria and also considering the power balance equation are presented

    Decoupled Fractional Super-Twisting Stabilization of Interconnected Mobile Robot Under Harsh Terrain Conditions

    Get PDF
    The four-wheel omnidirectional mobile robot usually suffers disturbed or unstable lateral motion under harsh terrain conditions (such as uneven or oiled ground). Generally for such a challenging situation, the lumped disturbances and interconnected states render available coupling solutions difficult to achieve demand-satisfied performance. This paper proposes a novel decoupled fractional super-twisting sliding mode control (FST-SMC) method by (i) constructing an inverse system-based decoupling to form a pseudolinear composition system; (ii) presenting an enhanced nominal sliding law for chattering mitigation and (iii) designing an unbiased multi-layer fuzzy estimator with gain-learning capacity to compensate for the lumped disturbances actively. Given that the identified disturbances can be directly reflected in the FST-SMC law, this method guarantees an accurate and robust control without causing gain overestimation. Theoretical analysis is offered to verify the asymptotic stability. Under harsh terrain conditions, experimental results validate the effectiveness of the proposed FST-SMC method

    Fractional Order Fault Tolerant Control - A Survey

    Get PDF
    In this paper, a comprehensive review of recent advances and trends regarding Fractional Order Fault Tolerant Control (FOFTC) design is presented. This novel robust control approach has been emerging in the last decade and is still gathering great research efforts mainly because of its promising results and outcomes. The purpose of this study is to provide a useful overview for researchers interested in developing this interesting solution for plants that are subject to faults and disturbances with an obligation for a maintained performance level. Throughout the paper, the various works related to FOFTC in literature are categorized first by considering their research objective between fault detection with diagnosis and fault tolerance with accommodation, and second by considering the nature of the studied plants depending on whether they are modelized by integer order or fractional order models. One of the main drawbacks of these approaches lies in the increase in complexity associated with introducing the fractional operators, their approximation and especially during the stability analysis. A discussion on the main disadvantages and challenges that face this novel fractional order robust control research field is given in conjunction with motivations for its future development. This study provides a simulation example for the application of a FOFTC against actuator faults in a Boeing 747 civil transport aircraft is provided to illustrate the efficiency of such robust control strategies

    Adaptive Neural Network-Based Control of a Hybrid AC/DC Microgrid

    Get PDF
    In this paper, the behavior of a grid-connected hybrid ac/dc microgrid has been investigated. Different renewable energy sources - photovoltaics modules and a wind turbine generator - have been considered together with a solid oxide fuel cell and a battery energy storage system. The main contribution of this paper is the design and the validation of an innovative online-trained artificial neural network-based control system for a hybrid microgrid. Adaptive neural networks are used to track the maximum power point of renewable energy generators and to control the power exchanged between the front-end converter and the electrical grid. Moreover, a fuzzy logic-based power management system is proposed in order to minimize the energy purchased from the electrical grid. The operation of the hybrid microgrid has been tested in the MATLAB/Simulink environment under different operating conditions. The obtained results demonstrate the effectiveness, the high robustness and the self-adaptation ability of the proposed control system
    corecore