3,767 research outputs found

    Three-dimensional finite element modelling of stack pollutant emissions

    Get PDF
    In this paper we propose a finite element method approach formodelling the air quality in a local scale over complex terrain. The area of interest is up to tens of kilometres and it includes pollutant sources. The proposed methodology involves the generation of an adaptive tetrahedral mesh, the computation of an ambient wind field, the inclusion of the plume rise effect in the wind field, and the simulation of transport and reaction of pollutants. The methodology is used to simulate a fictitious pollution episode in La Palma island (Canary Island, Spain).Peer ReviewedPostprint (published version

    On the coupling between an ideal fluid and immersed particles

    Get PDF
    In this paper we use Lagrange-Poincare reduction to understand the coupling between a fluid and a set of Lagrangian particles that are supposed to simulate it. In particular, we reinterpret the work of Cendra et al. by substituting velocity interpolation from particle velocities for their principal connection. The consequence of writing evolution equations in terms of interpolation is two-fold. First, it gives estimates on the error incurred when interpolation is used to derive the evolution of the system. Second, this form of the equations of motion can inspire a family of particle and hybrid particle-spectral methods where the error analysis is "built-in". We also discuss the influence of other parameters attached to the particles, such as shape, orientation, or higher-order deformations, and how they can help with conservation of momenta in the sense of Kelvin's circulation theorem.Comment: to appear in Physica D, comments and questions welcom

    Invariant Discretization Schemes Using Evolution-Projection Techniques

    Full text link
    Finite difference discretization schemes preserving a subgroup of the maximal Lie invariance group of the one-dimensional linear heat equation are determined. These invariant schemes are constructed using the invariantization procedure for non-invariant schemes of the heat equation in computational coordinates. We propose a new methodology for handling moving discretization grids which are generally indispensable for invariant numerical schemes. The idea is to use the invariant grid equation, which determines the locations of the grid point at the next time level only for a single integration step and then to project the obtained solution to the regular grid using invariant interpolation schemes. This guarantees that the scheme is invariant and allows one to work on the simpler stationary grids. The discretization errors of the invariant schemes are established and their convergence rates are estimated. Numerical tests are carried out to shed some light on the numerical properties of invariant discretization schemes using the proposed evolution-projection strategy

    Symplectic-energy-momentum preserving variational integrators

    Get PDF
    The purpose of this paper is to develop variational integrators for conservative mechanical systems that are symplectic and energy and momentum conserving. To do this, a space–time view of variational integrators is employed and time step adaptation is used to impose the constraint of conservation of energy. Criteria for the solvability of the time steps and some numerical examples are given

    Grid generation for the solution of partial differential equations

    Get PDF
    A general survey of grid generators is presented with a concern for understanding why grids are necessary, how they are applied, and how they are generated. After an examination of the need for meshes, the overall applications setting is established with a categorization of the various connectivity patterns. This is split between structured grids and unstructured meshes. Altogether, the categorization establishes the foundation upon which grid generation techniques are developed. The two primary categories are algebraic techniques and partial differential equation techniques. These are each split into basic parts, and accordingly are individually examined in some detail. In the process, the interrelations between the various parts are accented. From the established background in the primary techniques, consideration is shifted to the topic of interactive grid generation and then to adaptive meshes. The setting for adaptivity is established with a suitable means to monitor severe solution behavior. Adaptive grids are considered first and are followed by adaptive triangular meshes. Then the consideration shifts to the temporal coupling between grid generators and PDE-solvers. To conclude, a reflection upon the discussion, herein, is given
    corecore