21 research outputs found

    Channel Detection and Decoding With Deep Learning

    Full text link
    In this thesis, we investigate the designs of pragmatic data detectors and channel decoders with the assistance of deep learning. We focus on three emerging and fundamental research problems, including the designs of message passing algorithms for data detection in faster-than-Nyquist (FTN) signalling, soft-decision decoding algorithms for high-density parity-check codes and user identification for massive machine-type communications (mMTC). These wireless communication research problems are addressed by the employment of deep learning and an outline of the main contributions are given below. In the first part, we study a deep learning-assisted sum-product detection algorithm for FTN signalling. The proposed data detection algorithm works on a modified factor graph which concatenates a neural network function node to the variable nodes of the conventional FTN factor graph to compensate any detrimental effects that degrade the detection performance. By investigating the maximum-likelihood bit-error rate performance of a finite length coded FTN system, we show that the error performance of the proposed algorithm approaches the maximum a posterior performance, which might not be approachable by employing the sum-product algorithm on conventional FTN factor graph. After investigating the deep learning-assisted message passing algorithm for data detection, we move to the design of an efficient channel decoder. Specifically, we propose a node-classified redundant decoding algorithm based on the received sequence’s channel reliability for Bose-Chaudhuri-Hocquenghem (BCH) codes. Two preprocessing steps are proposed prior to decoding, to mitigate the unreliable information propagation and to improve the decoding performance. On top of the preprocessing, we propose a list decoding algorithm to augment the decoder’s performance. Moreover, we show that the node-classified redundant decoding algorithm can be transformed into a neural network framework, where multiplicative tuneable weights are attached to the decoding messages to optimise the decoding performance. We show that the node-classified redundant decoding algorithm provides a performance gain compared to the random redundant decoding algorithm. Additional decoding performance gain can be obtained by both the list decoding method and the neural network “learned” node-classified redundant decoding algorithm. Finally, we consider one of the practical services provided by the fifth-generation (5G) wireless communication networks, mMTC. Two separate system models for mMTC are studied. The first model assumes that low-resolution digital-to-analog converters are equipped by the devices in mMTC. The second model assumes that the devices' activities are correlated. In the first system model, two rounds of signal recoveries are performed. A neural network is employed to identify a suspicious device which is most likely to be falsely alarmed during the first round of signal recovery. The suspicious device is enforced to be inactive in the second round of signal recovery. The proposed scheme can effectively combat the interference caused by the suspicious device and thus improve the user identification performance. In the second system model, two deep learning-assisted algorithms are proposed to exploit the user activity correlation to facilitate channel estimation and user identification. We propose a deep learning modified orthogonal approximate message passing algorithm to exploit the correlation structure among devices. In addition, we propose a neural network framework that is dedicated for the user identification. More specifically, the neural network aims to minimise the missed detection probability under a pre-determined false alarm probability. The proposed algorithms substantially reduce the mean squared error between the estimate and unknown sequence, and largely improve the trade-off between the missed detection probability and the false alarm probability compared to the conventional orthogonal approximate message passing algorithm. All the aforementioned three parts of research works demonstrate that deep learning is a powerful technology in the physical layer designs of wireless communications

    Spectrally and Energy Efficient Wireless Communications: Signal and System Design, Mathematical Modelling and Optimisation

    Get PDF
    This thesis explores engineering studies and designs aiming to meeting the requirements of enhancing capacity and energy efficiency for next generation communication networks. Challenges of spectrum scarcity and energy constraints are addressed and new technologies are proposed, analytically investigated and examined. The thesis commences by reviewing studies on spectrally and energy-efficient techniques, with a special focus on non-orthogonal multicarrier modulation, particularly spectrally efficient frequency division multiplexing (SEFDM). Rigorous theoretical and mathematical modelling studies of SEFDM are presented. Moreover, to address the potential application of SEFDM under the 5th generation new radio (5G NR) heterogeneous numerologies, simulation-based studies of SEFDM coexisting with orthogonal frequency division multiplexing (OFDM) are conducted. New signal formats and corresponding transceiver structure are designed, using a Hilbert transform filter pair for shaping pulses. Detailed modelling and numerical investigations show that the proposed signal doubles spectral efficiency without performance degradation, with studies of two signal formats; uncoded narrow-band internet of things (NB-IoT) signals and unframed turbo coded multi-carrier signals. The thesis also considers using constellation shaping techniques and SEFDM for capacity enhancement in 5G system. Probabilistic shaping for SEFDM is proposed and modelled to show both transmission energy reduction and bandwidth saving with advantageous flexibility for data rate adaptation. Expanding on constellation shaping to improve performance further, a comparative study of multidimensional modulation techniques is carried out. A four-dimensional signal, with better noise immunity is investigated, for which metaheuristic optimisation algorithms are studied, developed, and conducted to optimise bit-to-symbol mapping. Finally, a specially designed machine learning technique for signal and system design in physical layer communications is proposed, utilising the application of autoencoder-based end-to-end learning. Multidimensional signal modulation with multidimensional constellation shaping is proposed and optimised by using machine learning techniques, demonstrating significant improvement in spectral and energy efficiencies

    Advanced DSP Techniques for High-Capacity and Energy-Efficient Optical Fiber Communications

    Get PDF
    The rapid proliferation of the Internet has been driving communication networks closer and closer to their limits, while available bandwidth is disappearing due to an ever-increasing network load. Over the past decade, optical fiber communication technology has increased per fiber data rate from 10 Tb/s to exceeding 10 Pb/s. The major explosion came after the maturity of coherent detection and advanced digital signal processing (DSP). DSP has played a critical role in accommodating channel impairments mitigation, enabling advanced modulation formats for spectral efficiency transmission and realizing flexible bandwidth. This book aims to explore novel, advanced DSP techniques to enable multi-Tb/s/channel optical transmission to address pressing bandwidth and power-efficiency demands. It provides state-of-the-art advances and future perspectives of DSP as well

    Advanced transceivers for spectrally-efficient communications

    Get PDF
    In this thesis, we will consider techniques to improve the spectral efficiency of digital communication systems, operating on the whole transceiver scheme. First, we will focus on receiver schemes having detection algorithms with a complexity constraint. We will optimize the parameters of the reduced detector with the aim of maximizing the achievable information rate. Namely, we will adopt the channel shortening technique. Then, we will focus on a technique that is getting very popular in the last years (although presented for the first time in 1975): faster-than-Nyquist signaling, and its extension which is time packing. Time packing is a very simple technique that consists in introducing intersymbol interference on purpose with the aim of increasing the spectral efficiency of finite order constellations. Finally, in the last chapters we will combine all the presented techniques, and we will consider their application to satellite channels.Comment: PhD Thesi

    A Tutorial on Interference Exploitation via Symbol-Level Precoding: Overview, State-of-the-Art and Future Directions

    Get PDF
    IEEE Interference is traditionally viewed as a performance limiting factor in wireless communication systems, which is to be minimized or mitigated. Nevertheless, a recent line of work has shown that by manipulating the interfering signals such that they add up constructively at the receiver side, known interference can be made beneficial and further improve the system performance in a variety of wireless scenarios, achieved by symbol-level precoding (SLP). This paper aims to provide a tutorial on interference exploitation techniques from the perspective of precoding design in a multi-antenna wireless communication system, by beginning with the classification of constructive interference (CI) and destructive interference (DI). The definition for CI is presented and the corresponding mathematical characterization is formulated for popular modulation types, based on which optimization-based precoding techniques are discussed. In addition, the extension of CI precoding to other application scenarios as well as for hardware efficiency is also described. Proof-of-concept testbeds are demonstrated for the potential practical implementation of CI precoding, and finally a list of open problems and practical challenges are presented to inspire and motivate further research directions in this area

    Bandwidth Compressed Waveform and System Design for Wireless and Optical Communications: Theory and Practice

    Get PDF
    This thesis addresses theoretical and practical challenges of spectrally efficient frequency division multiplexing (SEFDM) systems in both wireless and optical domains. SEFDM improves spectral efficiency relative to the well-known orthogonal frequency division multiplexing (OFDM) by non-orthogonally multiplexing overlapped sub-carriers. However, the deliberate violation of orthogonality results in inter carrier interference (ICI) and associated detection complexity, thus posing many challenges to practical implementations. This thesis will present solutions for these issues. The thesis commences with the fundamentals by presenting the existing challenges of SEFDM, which are subsequently solved by proposed transceivers. An iterative detection (ID) detector iteratively removes self-created ICI. Following that, a hybrid ID together with fixed sphere decoding (FSD) shows an optimised performance/complexity trade-off. A complexity reduced Block-SEFDM can subdivide the signal detection into several blocks. Finally, a coded Turbo-SEFDM is proved to be an efficient technique that is compatible with the existing mobile standards. The thesis also reports the design and development of wireless and optical practical systems. In the optical domain, given the same spectral efficiency, a low-order modulation scheme is proved to have a better bit error rate (BER) performance when replacing a higher order one. In the wireless domain, an experimental testbed utilizing the LTE-Advanced carrier aggregation (CA) with SEFDM is operated in a realistic radio frequency (RF) environment. Experimental results show that 40% higher data rate can be achieved without extra spectrum occupation. Additionally, a new waveform, termed Nyquist-SEFDM, which compresses bandwidth and suppresses out-of-band power leakage is investigated. A 4th generation (4G) and 5th generation (5G) coexistence experiment is followed to verify its feasibility. Furthermore, a 60 GHz SEFDM testbed is designed and built in a point-to-point indoor fiber wireless experiment showing 67% data rate improvement compared to OFDM. Finally, to meet the requirements of future networks, two simplified SEFDM transceivers are designed together with application scenarios and experimental verifications

    Spectrum Optimisation in Wireless Communication Systems: Technology Evaluation, System Design and Practical Implementation

    Get PDF
    Two key technology enablers for next generation networks are examined in this thesis, namely Cognitive Radio (CR) and Spectrally Efficient Frequency Division Multiplexing (SEFDM). The first part proposes the use of traffic prediction in CR systems to improve the Quality of Service (QoS) for CR users. A framework is presented which allows CR users to capture a frequency slot in an idle licensed channel occupied by primary users. This is achieved by using CR to sense and select target spectrum bands combined with traffic prediction to determine the optimum channel-sensing order. The latter part of this thesis considers the design, practical implementation and performance evaluation of SEFDM. The key challenge that arises in SEFDM is the self-created interference which complicates the design of receiver architectures. Previous work has focused on the development of sophisticated detection algorithms, however, these suffer from an impractical computational complexity. Consequently, the aim of this work is two-fold; first, to reduce the complexity of existing algorithms to make them better-suited for application in the real world; second, to develop hardware prototypes to assess the feasibility of employing SEFDM in practical systems. The impact of oversampling and fixed-point effects on the performance of SEFDM is initially determined, followed by the design and implementation of linear detection techniques using Field Programmable Gate Arrays (FPGAs). The performance of these FPGA based linear receivers is evaluated in terms of throughput, resource utilisation and Bit Error Rate (BER). Finally, variants of the Sphere Decoding (SD) algorithm are investigated to ameliorate the error performance of SEFDM systems with targeted reduction in complexity. The Fixed SD (FSD) algorithm is implemented on a Digital Signal Processor (DSP) to measure its computational complexity. Modified sorting and decomposition strategies are then applied to this FSD algorithm offering trade-offs between execution speed and BER

    Software and hardware implementation techniques for digital communications-related algorithms

    Get PDF
    There are essentially three areas addressed in the body of this thesis. (a) The first is a theoretical investigation into the design and development of a practically realizable implementation of a maximum-likelihood detection process to deal with digital data transmission over HF radio links. These links exhibit multipath properties with delay spreads that can easily extend over 12 to 15 milliseconds. The project was sponsored by the Ministry of Defence through the auspices of the Science and Engineering Research Council. The primary objective was to transmit voice band data at a minimum rate of 2.4 kb/s continuously for long periods of time during the day or night. Computer simulation models of HF propagation channels were created to simulate atmospheric and multipath effects of transmission from London to Washington DC, Ankara, and as far as Melbourne, Australia. Investigations into HF channel estimation are not the subject of this thesis. The detection process assumed accurate knowledge of the channel. [Continues.

    Timing-Error Tolerance Techniques for Low-Power DSP: Filters and Transforms

    Get PDF
    Low-power Digital Signal Processing (DSP) circuits are critical to commercial System-on-Chip design for battery powered devices. Dynamic Voltage Scaling (DVS) of digital circuits can reclaim worst-case supply voltage margins for delay variation, reducing power consumption. However, removing static margins without compromising robustness is tremendously challenging, especially in an era of escalating reliability concerns due to continued process scaling. The Razor DVS scheme addresses these concerns, by ensuring robustness using explicit timing-error detection and correction circuits. Nonetheless, the design of low-complexity and low-power error correction is often challenging. In this thesis, the Razor framework is applied to fixed-precision DSP filters and transforms. The inherent error tolerance of many DSP algorithms is exploited to achieve very low-overhead error correction. Novel error correction schemes for DSP datapaths are proposed, with very low-overhead circuit realisations. Two new approximate error correction approaches are proposed. The first is based on an adapted sum-of-products form that prevents errors in intermediate results reaching the output, while the second approach forces errors to occur only in less significant bits of each result by shaping the critical path distribution. A third approach is described that achieves exact error correction using time borrowing techniques on critical paths. Unlike previously published approaches, all three proposed are suitable for high clock frequency implementations, as demonstrated with fully placed and routed FIR, FFT and DCT implementations in 90nm and 32nm CMOS. Design issues and theoretical modelling are presented for each approach, along with SPICE simulation results demonstrating power savings of 21 – 29%. Finally, the design of a baseband transmitter in 32nm CMOS for the Spectrally Efficient FDM (SEFDM) system is presented. SEFDM systems offer bandwidth savings compared to Orthogonal FDM (OFDM), at the cost of increased complexity and power consumption, which is quantified with the first VLSI architecture

    SYMBOL LEVEL PRECODING TECHNIQUES FOR HARDWARE AND POWER EFFICIENT WIRELESS TRANSCEIVERS

    Get PDF
    Large-scale antennas are crucial for next generation wireless communication systems as they improve spectral efficiency, reliability and coverage compared to the traditional ones that are employing antenna arrays of few elements. However, the large number of antenna elements leads to a big increase in power consumption of conventional fully digital transceivers due to the one Radio Frequency (RF) chain / per antenna element requirement. The RF chains include a number of different components among which are the Digital-to-Analog Converters (DACs)/Analog-to-Digital Converters (ADCs) that their power consumption increases exponential with the resolution they support. Motivated by this, in this thesis, a number of different architectures are proposed with the view to reduce the power consumption and the hardware complexity of the transceiver. In order to optimize the transmission of data through them, corresponding symbol level precoding (SLP) techniques were developed for the proposed architectures. SLP is a technique that mitigates multi-user interference (MUI) by designing the transmitted signals using the Channel State Information and the information-bearing symbols. The cases of both frequency flat and frequency selective channels were considered. First, three different power efficient transmitter designs for transmission over frequency flat channels and their respective SLP schemes are considered. The considered systems tackle the high hardware complexity and power consumption of existing SLP techniques by reducing or completely eliminating fully digital RF chains. The precoding design is formulated as a constrained least squares problem and efficient algorithmic solutions are developed via the Coordinate Descent method. Next, the case of frequency selective channels is considered. To this end, Constant Envelope precoding in a Multiple Input Multiple Output Orthogonal Frequency Division Multiplexing system (CE MIMO-OFDM) is considered. In CE MIMO-OFDM the transmitted signals for each antenna are designed to have constant amplitude regardless of the channel realization and the information symbols that must be conveyed to the users. This facilitates the use of power-efficient components, such as phase shifters and non-linear power amplifiers. The precoding problem is firstly formulated as a least-squares problem with a unit-modulus constraint and solved using an algorithm based on the coordinate descent (CCD) optimization framework and then, after reformulating the problem into an unconstrained non-linear least squares problem, a more computationally efficient solution using the Gauss-Newton algorithm is presented. Then, CE MIMO-OFDM is considered for a system with low resolution DACs. The precoding design problem is formulated as a mixed discrete- continuous least-squares optimization one which is NP-hard. An efficient low complexity solution is developed based also on the CCD optimization framework. Finally, a precoding scheme is presented for OFDM transmission in MIMO systems based on one-bit DACs and ADCs at the transmitter’s and the receiver’s end, respectively, as a way to reduce the total power consumption. The objective of the precoding design is to mitigate the effects of one-bit quantization and the problem is formulated and then is split into two NP hard least squares optimization problems. Algorithmic solutions are developed for the solution of the latter problems, based on the CCD framework
    corecore