2,079 research outputs found

    A novel diffusion tensor imaging-based computer-aided diagnostic system for early diagnosis of autism.

    Get PDF
    Autism spectrum disorders (ASDs) denote a significant growing public health concern. Currently, one in 68 children has been diagnosed with ASDs in the United States, and most children are diagnosed after the age of four, despite the fact that ASDs can be identified as early as age two. The ultimate goal of this thesis is to develop a computer-aided diagnosis (CAD) system for the accurate and early diagnosis of ASDs using diffusion tensor imaging (DTI). This CAD system consists of three main steps. First, the brain tissues are segmented based on three image descriptors: a visual appearance model that has the ability to model a large dimensional feature space, a shape model that is adapted during the segmentation process using first- and second-order visual appearance features, and a spatially invariant second-order homogeneity descriptor. Secondly, discriminatory features are extracted from the segmented brains. Cortex shape variability is assessed using shape construction methods, and white matter integrity is further examined through connectivity analysis. Finally, the diagnostic capabilities of these extracted features are investigated. The accuracy of the presented CAD system has been tested on 25 infants with a high risk of developing ASDs. The preliminary diagnostic results are promising in identifying autistic from control patients

    Connectome-Based Neurosurgery in Primary Intra-Axial Neoplasms: Beyond the Traditional Modular Conception of Brain Architecture for the Preservation of Major Neurological Domains and Higher-Order Cognitive Functions.

    Get PDF
    Despite the therapeutical advancements in the surgical treatment of primary intra-axial neoplasms, which determined both a significative improvement in OS and QoL and a reduction in the incidence of surgery-induced major neurological deficits, nowadays patients continue to manifest subtle post-operative neurocognitive impairments, preventing them from a full reintegration back into social life and into the workforce. The birth of connectomics paved the way for a profound reappraisal of the traditional conception of brain architecture, in favour of a model based on large-scale structural and functional interactions of a complex mosaic of cortical areas organized in a fluid network interconnected by subcortical bundles. Thanks to these advancements, neurosurgery is facing a new era of connectome-based resections, in which the core principle is still represented by the achievement of an ideal onco-functional balance, but with a closer eye on whole-brain circuitry, which constitutes the foundations of both major neurological functions, to be intended as motricity; language and visuospatial function; and higher-order cognitive functions such as cognition, conation, emotion and adaptive behaviour. Indeed, the achievement of an ideal balance between the radicality of tumoral resection and the preservation, as far as possible, of the integrity of local and global brain networks stands as a mandatory goal to be fulfilled to allow patients to resume their previous life and to make neurosurgery tailored and gentler to their individual needs

    A CAD system for early diagnosis of autism using different imaging modalities.

    Get PDF
    The term “autism spectrum disorder” (ASD) refers to a collection of neuro-developmental disorders that affect linguistic, behavioral, and social skills. Autism has many symptoms, most prominently, social impairment and repetitive behaviors. It is crucial to diagnose autism at an early stage for better assessment and investigation of this complex syndrome. There have been a lot of efforts to diagnose ASD using different techniques, such as imaging modalities, genetic techniques, and behavior reports. Imaging modalities have been extensively exploited for ASD diagnosis, and one of the most successful ones is Magnetic resonance imaging(MRI),where it has shown promise for the early diagnosis of the ASD related abnormalities in particular. Magnetic resonance imaging (MRI) modalities have emerged as powerful means that facilitate non-invasive clinical diagnostics of various diseases and abnormalities since their inception in the 1980s. After the advent in the nineteen eighties, MRI soon became one of the most promising non- invasive modalities for visualization and diagnostics of ASD-related abnormalities. Along with its main advantage of no exposure to radiation, high contrast, and spatial resolution, the recent advances to MRI modalities have notably increased diagnostic certainty. Multiple MRI modalities, such as different types of structural MRI (sMRI) that examines anatomical changes, and functional MRI (fMRI) that examines brain activity by monitoring blood flow changes,have been employed to investigate facets of ASD in order to better understand this complex syndrome. This work aims at developing a new computer-aided diagnostic (CAD) system for autism diagnosis using different imaging modalities. It mainly relies on making use of structural magnetic resonance images for extracting notable shape features from parts of the brainthat proved to correlate with ASD from previous neuropathological studies. Shape features from both the cerebral cortex (Cx) and cerebral white matter(CWM)are extracted. Fusion of features from these two structures is conducted based on the recent findings suggesting that Cx changes in autism are related to CWM abnormalities. Also, when fusing features from more than one structure, this would increase the robustness of the CAD system. Moreover, fMRI experiments are done and analyzed to find areas of activation in the brains of autistic and typically developing individuals that are related to a specific task. All sMRI findings are fused with those of fMRI to better understand ASD in terms of both anatomy and functionality,and thus better classify the two groups. This is one aspect of the novelty of this CAD system, where sMRI and fMRI studies are both applied on subjects from different ages to diagnose ASD. In order to build such a CAD system, three main blocks are required. First, 3D brain segmentation is applied using a novel hybrid model that combines shape, intensity, and spatial information. Second, shape features from both Cx and CWM are extracted and anf MRI reward experiment is conducted from which areas of activation that are related to the task of this experiment are identified. Those features were extracted from local areas of the brain to provide an accurate analysis of ASD and correlate it with certain anatomical areas. Third and last, fusion of all the extracted features is done using a deep-fusion classification network to perform classification and obtain the diagnosis report. Fusing features from all modalities achieved a classification accuracy of 94.7%, which emphasizes the significance of combining structures/modalities for ASD diagnosis. To conclude, this work could pave the pathway for better understanding of the autism spectrum by finding local areas that correlate to the disease. The idea of personalized medicine is emphasized in this work, where the proposed CAD system holds the promise to resolve autism endophenotypes and help clinicians deliver personalized treatment to individuals affected with this complex syndrome

    Characterising population variability in brain structure through models of whole-brain structural connectivity

    No full text
    Models of whole-brain connectivity are valuable for understanding neurological function. This thesis seeks to develop an optimal framework for extracting models of whole-brain connectivity from clinically acquired diffusion data. We propose new approaches for studying these models. The aim is to develop techniques which can take models of brain connectivity and use them to identify biomarkers or phenotypes of disease. The models of connectivity are extracted using a standard probabilistic tractography algorithm, modified to assess the structural integrity of tracts, through estimates of white matter anisotropy. Connections are traced between 77 regions of interest, automatically extracted by label propagation from multiple brain atlases followed by classifier fusion. The estimates of tissue integrity for each tract are input as indices in 77x77 ”connectivity” matrices, extracted for large populations of clinical data. These are compared in subsequent studies. To date, most whole-brain connectivity studies have characterised population differences using graph theory techniques. However these can be limited in their ability to pinpoint the locations of differences in the underlying neural anatomy. Therefore, this thesis proposes new techniques. These include a spectral clustering approach for comparing population differences in the clustering properties of weighted brain networks. In addition, machine learning approaches are suggested for the first time. These are particularly advantageous as they allow classification of subjects and extraction of features which best represent the differences between groups. One limitation of the proposed approach is that errors propagate from segmentation and registration steps prior to tractography. This can cumulate in the assignment of false positive connections, where the contribution of these factors may vary across populations, causing the appearance of population differences where there are none. The final contribution of this thesis is therefore to develop a common co-ordinate space approach. This combines probabilistic models of voxel-wise diffusion for each subject into a single probabilistic model of diffusion for the population. This allows tractography to be performed only once, ensuring that there is one model of connectivity. Cross-subject differences can then be identified by mapping individual subjects’ anisotropy data to this model. The approach is used to compare populations separated by age and gender

    Geodesic tractography segmentation for directional medical image analysis

    Get PDF
    Acknowledgements page removed per author's request, 01/06/2014.Geodesic Tractography Segmentation is the two component approach presented in this thesis for the analysis of imagery in oriented domains, with emphasis on the application to diffusion-weighted magnetic resonance imagery (DW-MRI). The computeraided analysis of DW-MRI data presents a new set of problems and opportunities for the application of mathematical and computer vision techniques. The goal is to develop a set of tools that enable clinicians to better understand DW-MRI data and ultimately shed new light on biological processes. This thesis presents a few techniques and tools which may be used to automatically find and segment major neural fiber bundles from DW-MRI data. For each technique, we provide a brief overview of the advantages and limitations of our approach relative to other available approaches.Ph.D.Committee Chair: Tannenbaum, Allen; Committee Member: Barnes, Christopher F.; Committee Member: Niethammer, Marc; Committee Member: Shamma, Jeff; Committee Member: Vela, Patrici

    Mapping Topographic Structure in White Matter Pathways with Level Set Trees

    Full text link
    Fiber tractography on diffusion imaging data offers rich potential for describing white matter pathways in the human brain, but characterizing the spatial organization in these large and complex data sets remains a challenge. We show that level set trees---which provide a concise representation of the hierarchical mode structure of probability density functions---offer a statistically-principled framework for visualizing and analyzing topography in fiber streamlines. Using diffusion spectrum imaging data collected on neurologically healthy controls (N=30), we mapped white matter pathways from the cortex into the striatum using a deterministic tractography algorithm that estimates fiber bundles as dimensionless streamlines. Level set trees were used for interactive exploration of patterns in the endpoint distributions of the mapped fiber tracks and an efficient segmentation of the tracks that has empirical accuracy comparable to standard nonparametric clustering methods. We show that level set trees can also be generalized to model pseudo-density functions in order to analyze a broader array of data types, including entire fiber streamlines. Finally, resampling methods show the reliability of the level set tree as a descriptive measure of topographic structure, illustrating its potential as a statistical descriptor in brain imaging analysis. These results highlight the broad applicability of level set trees for visualizing and analyzing high-dimensional data like fiber tractography output

    Fast and robust hybrid framework for infant brain classification from structural MRI : a case study for early diagnosis of autism.

    Get PDF
    The ultimate goal of this work is to develop a computer-aided diagnosis (CAD) system for early autism diagnosis from infant structural magnetic resonance imaging (MRI). The vital step to achieve this goal is to get accurate segmentation of the different brain structures: whitematter, graymatter, and cerebrospinal fluid, which will be the main focus of this thesis. The proposed brain classification approach consists of two major steps. First, the brain is extracted based on the integration of a stochastic model that serves to learn the visual appearance of the brain texture, and a geometric model that preserves the brain geometry during the extraction process. Secondly, the brain tissues are segmented based on shape priors, built using a subset of co-aligned training images, that is adapted during the segmentation process using first- and second-order visual appearance features of infant MRIs. The accuracy of the presented segmentation approach has been tested on 300 infant subjects and evaluated blindly on 15 adult subjects. The experimental results have been evaluated by the MICCAI MR Brain Image Segmentation (MRBrainS13) challenge organizers using three metrics: Dice coefficient, 95-percentile Hausdorff distance, and absolute volume difference. The proposed method has been ranked the first in terms of performance and speed

    MODELING AND QUANTITATIVE ANALYSIS OF WHITE MATTER FIBER TRACTS IN DIFFUSION TENSOR IMAGING

    Get PDF
    Diffusion tensor imaging (DTI) is a structural magnetic resonance imaging (MRI) technique to record incoherent motion of water molecules and has been used to detect micro structural white matter alterations in clinical studies to explore certain brain disorders. A variety of DTI based techniques for detecting brain disorders and facilitating clinical group analysis have been developed in the past few years. However, there are two crucial issues that have great impacts on the performance of those algorithms. One is that brain neural pathways appear in complicated 3D structures which are inappropriate and inaccurate to be approximated by simple 2D structures, while the other involves the computational efficiency in classifying white matter tracts. The first key area that this dissertation focuses on is to implement a novel computing scheme for estimating regional white matter alterations along neural pathways in 3D space. The mechanism of the proposed method relies on white matter tractography and geodesic distance mapping. We propose a mask scheme to overcome the difficulty to reconstruct thin tract bundles. Real DTI data are employed to demonstrate the performance of the pro- posed technique. Experimental results show that the proposed method bears great potential to provide a sensitive approach for determining the white matter integrity in human brain. Another core objective of this work is to develop a class of new modeling and clustering techniques with improved performance and noise resistance for separating reconstructed white matter tracts to facilitate clinical group analysis. Different strategies are presented to handle different scenarios. For whole brain tractography reconstructed white matter tracts, a Fourier descriptor model and a clustering algorithm based on multivariate Gaussian mixture model and expectation maximization are proposed. Outliers are easily handled in this framework. Real DTI data experimental results show that the proposed algorithm is relatively effective and may offer an alternative for existing white matter fiber clustering methods. For a small amount of white matter fibers, a modeling and clustering algorithm with the capability of handling white matter fibers with unequal length and sharing no common starting region is also proposed and evaluated with real DTI data

    An experimental study of the feasibility of phase‐based video magnification for damage detection and localisation in operational deflection shapes

    Get PDF
    Optical measurements from high‐speed, high‐definition video recordings can be used to define the full‐field dynamics of a structure. By comparing the dynamic responses resulting from both damaged and undamaged elements, structural health monitoring can be carried out, similarly as with mounted transducers. Unlike the physical sensors, which provide point‐wise measurements and a limited number of output channels, high‐quality video recording allows very spatially dense information. Moreover, video acquisition is a noncontact technique. This guarantees that any anomaly in the dynamic behaviour can be more easily correlated to damage and not to added mass or stiffness due to the installed sensors. However, in real‐life scenarios, the vibrations due to environmental input are often so small that they are indistinguishable from measurement noise if conventional image‐based techniques are applied. In order to improve the signal‐to‐noise ratio in low‐amplitude measurements, phase‐based motion magnification has been recently proposed. This study intends to show that model‐based structural health monitoring can be performed on modal data and time histories processed with phase‐based motion magnification, whereas unamplified vibrations would be too small for being successfully exploited. All the experiments were performed on a multidamaged box beam with different damage sizes and angles
    corecore