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ABSTRACT OF DISSERTATION

MODELING AND QUANTITATIVE ANALYSIS OF WHITE MATTER FIBER
TRACTS IN DIFFUSION TENSOR IMAGING

Diffusion tensor imaging (DTI) is a structural magnetic resonance imaging (MRI) tech-
nique to record incoherent motion of water molecules and has been used to detect micro
structural white matter alterations in clinical studies to explore certain brain disorders. A
variety of DTI based techniques for detecting brain disorders and facilitating clinical group
analysis have been developed in the past few years. However, there are two crucial issues
that have great impacts on the performance of those algorithms. One is that brain neural
pathways appear in complicated 3D structures which are inappropriate and inaccurate to
be approximated by simple 2D structures, while the other involves the computational effi-
ciency in classifying white matter tracts.

The first key area that this dissertation focuses on is to implement a novel computing
scheme for estimating regional white matter alterations along neural pathways in 3D space.
The mechanism of the proposed method relies on white matter tractography and geodesic
distance mapping. We propose a mask scheme to overcome the difficulty to reconstruct
thin tract bundles. Real DTI data are employed to demonstrate the performance of the pro-
posed technique. Experimental results show that the proposed method bears great potential
to provide a sensitive approach for determining the white matter integrity in human brain.

Another core objective of this work is to develop a class of new modeling and clustering
techniques with improved performance and noise resistance for separating reconstructed
white matter tracts to facilitate clinical group analysis. Different strategies are presented to
handle different scenarios. For whole brain tractography reconstructed white matter tracts,
a Fourier descriptor model and a clustering algorithm based on multivariate Gaussian mix-
ture model and expectation maximization are proposed. Outliers are easily handled in this
framework. Real DTI data experimental results show that the proposed algorithm is rela-
tively effective and may offer an alternative for existing white matter fiber clustering meth-
ods. For a small amount of white matter fibers, a modeling and clustering algorithm with
the capability of handling white matter fibers with unequal length and sharing no common
starting region is also proposed and evaluated with real DTI data.
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1 Introduction

This dissertation presents algorithms to estimate regional white matter alterations in hu-

man brains along neural pathways in 3D space, relying on white matter tractography and

geodesic distance mapping. It also develops a new class of modeling and clustering tech-

niques for separating reconstructed white matter fibers.

1.1 Diffusion Tensor Imaging

The development of Magnetic Resonance Imaging (MRI) has led to the design of numerous

imaging techniques [1, 2, 3]. One of these technologies is Diffusion Tensor Imaging (DTI),

which measures the motion of hydrogen atoms within water molecules in all three dimen-

sions [4, 5]. In tissues containing a large number of fibers, like the white matter in human

brains, water tends to diffuse mainly along the direction of the fibers [6, 7, 8, 9, 10, 11].

DTI gives us such complex information about how water diffuses in tissues into intricate

three-dimensional representations of the tissues [12, 13]. This is particularly informative

when imaging fibrous tissues, such as tendons and ligaments [14, 15, 16]. The ability to

measure the different rates of diffusion along different directions is one of the features that

distinguish DTI from other imaging methods and makes it especially useful for studying

the directional qualities of brain tissue [5, 17].

DTI is the only means currently available for in vivo investigation of human brain con-

nectivity and one of a few available for studying brain functions [18]. It is emerging as an

important technology for elucidating the internal structure of the brain and for diagnosing

conditions affecting the integrity of neural tissues. DTI measurements of the brain exploit

the fact that the network of neural fibers has a characteristic microstructure that constrains

the diffusion of water molecules within it. The direction of the fastest diffusion is aligned

with fiber orientation in a pattern that can be numerically modeled by a diffusion tensor.

The DTI technique has raised hopes in the neuroscience community for a better understand-
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ing of the white matter tract anatomy of the human brain [19, 20]. Knowledge about fiber

tract connections within and across individual brains should enhance our understanding of

normal brain functions. Such knowledge should also help diagnose certain brain disorders

and abnormalities such as edema (swelling), ischemia (brain damage from restricted blood

flow), multiple sclerosis, schizophrenia, Alzheimer’s disease and certain types of brain tu-

mors [21, 22]. Furthermore, an understanding of white matter structure could help us to

avoid damaging important nerve pathways in surgeries. Various methods have been pro-

posed to use DTI data to track nerve fibers and derive connectivity between different parts

of the brain [23, 24, 25].

1.1.1 Basics of DTI

DTI is an extension of conventional MRI with signal intensities sensitized to the random

motion of water molecules. The phenomenon of water molecule diffusion is commonly

referred to as “Brownian motion”. In an isotropic liquid the probability that a molecule

covers the distance r during time t follows a Gaussian law with variance 6ct, where c is

the diffusion coefficient that characterizes the molecule mobility. In an anisotropic envi-

ronment, the mobility is different along different directions in space. Hence, diffusion is

a three dimensional process which can be modeled by a second order 3-by-3 tensor. This

tensor is an intrinsic property of the tissue and is represented by a matrix D, which is

symmetric, positive and real. The diffusion coefficient in any direction d is given by the

tensorial dot product [20]:

c(d) = dTDd = ddT ·D (1.1)

D =

 Dxx Dxy Dxz

Dyx Dyy Dyz

Dzx Dzy Dzz

 (1.2)

This second order diffusion tensor can be visualized as an ellipsoid as shown in Fig-

ure 1.1.

According to the tensor theory, if we measure the diffusion constant along at least six
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Figure 1.1: Illustration of a second order diffusion tensor represented as an ellipsoid.

independent axes, we can calculate the complete shape of the diffusion ellipsoid [42, 31,

43].

1.1.2 Diffusion Tensor Calculation

Tensors are usually categorized with respect to their order. A tensor of order 0 is simply

a scalar, a tensor of order 1 is a vector and a tensor of order 2 can be represented by an

n-by-n matrix. In DTI each voxel contains a 2nd order tensor representing the diffusion in

each voxel. The tensor is written as a 3-by-3 matrix as seen in Equation 1.2.

To determine the diffusion tensor completely, we must first collect diffusion-weighted

images along several gradient directions, using diffusion-sensitized MRI pulse sequences [41]

such as echoplanar imaging (EPI). As the diffusion tensor is symmetric, measurements

along only six directions are mandatory.

The MR signal is usually corrupted by water molecule diffusion, which disturbs the

spin technique described earlier, leading to a small decrease of the measured signal. In

diffusion imaging, this effect is magnified by making use of the strongest possible magnetic

field gradient applied in one direction d. For each slice, six images are separately collected

with different diffusion weightings and gradient pulses. Each gradient pulse is typically
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applied for duration of several tenths of a millisecond, during which time the average water

molecule in brain tissue may migrate 10 or more micrometers in a random direction. The

irregularity of the motion entails a signal loss that can be used to quantify the diffusion

constant. If S0 represents the signal intensity in the absence of a diffusion sensitizing

field gradient pulse and S, the signal intensity, in the presence of a gradient pulse g =

(gx, gy, gz)
T , the equation for the loss in signal intensity due to diffusion is given by the

Stejskal-Tanner formula [20, 19]:

ln(S) = ln(S0)− γ2δ2(∆− δ/3)gTDg (1.3)

where γ is the proton gyromagnetic ratio of (42MHz/Tesla), δ is the duration of the diffu-

sion sensitizing gradient pulse and ∆ is the time between the centers of the two gradient

pulses. The six separately acquired images provide six equations for S in each voxel. The

equations are solved in a least-squares sense for the six unknowns, which correspond to the

six independent components of the symmetric diffusion tensor in Equation 1.2.

Corresponding to the original signal intensity S0, the image collected in the absence

of gradient pulses is referred to as the base line image. These base line images are in-

herently acquired as part of the acquisition sequence. And they can be used to register

individual data into standard anatomical space. Figure 1.2 demonstrates the above men-

tioned six images plus the base line image generated in the process of diffusion imaging

acquisition. They are shown in axial, sagittal, and coronal views respectively. In this

example, the six gradient pulses applied in the image acquisition are (0.707, 0.707, 0.000),

(−0.707, 0.707, 0.000), (0.000, 0.707, 0.707), (0.000,−0.707, 0.707), (0.707, 0.000, 0.707),

and (−0.707, 0.000, 0.707).

One of the fundamental problems in understanding and working with diffusion tensor

data is its three dimensional and multi-variate nature. Each sample point in a DTI scan

can be represented by six inter-related values, and many features of interest are described

in terms of derived scalar and vector fields, which are logically overlayed on the original

tensor field.
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Figure 1.2: Illustration of the six gradient applied images and the base line image used to
estimate diffusion tensor. Images are shown in axial, sagittal, and coronal views respec-
tively.

After the complete determination of diffusion tensor D, a series of quantitative diffusion

indices can be derived from D.

1.1.3 Quantitative Diffusion Properties

The Eigensystem of The Diffusion Tensor

Since second order tensors can be represented by a matrix, they can also be decomposed

into eigenvalues and eigenvectors. An eigenvector x to diffusion tensor D and its corre-

sponding eigenvalue λ have the property that the inner product of the original tensor and the
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eigenvector result in a vector that is a scalar multiple of the original eigenvector [20, 19]:

Dx = λx, x ̸= 0 (1.4)

The solutions λi to Equation 1.4 are the eigenvalues of D. The vectors xi associated

with each eigenvalue are the eigenvectors of D. Since the null vector is omitted Equa-

tion 1.4 can be re-written as (D − λI)x = 0, where I represents the identity matrix. This

implies that the matrix D − λI is singular and its determinant is zero, which corresponds

to the eigenvalues being the solutions to the secular equation:

|D − λI| = 0 (1.5)

For each eigenvalue λ the corresponding eigenvector x can be found by solving

(D − λI)x = 0 (1.6)

The eigenvalue-eigenvector pairs together contain all of the information available in the

original tensor. The tensor can be written as a weighted sum of the outer products:

D =
3∑

i=1

λixix
T
i (1.7)

where λi and xi are the eigenvalue and eigenvector pair.

In general the eigenvalues may be real or complex. However, for a real symmetric

tensor, like the diffusion tensor, the eigenvalues are always real and the eigenvectors will

be orthogonal to each other.

Anisotropy Measures

There are three eigenvalues for the second order diffusion tensor D. They are sorted in de-

scending order in which λ1 has the largest value and λ3 has the smallest. The corresponding

eigenvectors can be used to represent the principal axes of an ellipsoid. The diffusion can

then be divided into three basic cases [20]:
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1. Linear case (λ1 ≫ λ2 ≈ λ3): diffusion is mainly in the direction corresponding to

the largest eigenvalue. The ellipsoid representation is similar to a cigar as shown in

subfigure 1.3(a). And the second order tensor can be approximated by

D ≈ λ1Dl = λ1x1x
T
1 (1.8)

where Dl represents the tensor D in the linear case.

2. Planar case (λ1 ≈ λ2 ≫ λ3): diffusion is restricted to a plane spanned by the two

eigenvectors corresponding to the two largest eigenvalues. The ellipsoid representa-

tion is illustrated in subfigure 1.3(b). The second order tensor can be approximated

by

D ≈ 2λ1Dp = λ1(x1x
T
1 + x2x

T
2 ) (1.9)

where Dp represents the tensor D in the planar case.

3. Spherical case (λ1 ≈ λ2 ≈ λ3): isotropic diffusion as illustrated in subfigure 1.3(c).

The second order tensor can be approximated by

D ≈ 3λ1Ds = λ1(x1x
T
1 + x2x

T
2 + x3x

T
3 ) (1.10)

where Ds represents the tensor D in the spherical case.

(a) Linear: λ1 ≫ λ2 ≈ λ3 (b) Planar: λ1 ≈ λ2 ≫ λ3 (c) Spherical: λ1 ≈ λ2 ≈ λ3

Figure 1.3: Illustration of anisotropy measures in the different shape of ellipsoid. Subfig-
ures (a), (b), and (c) represent the linear, planar, and spherical diffusion cases respectively.
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It is possible to write the general diffusion tensor D as a linear combination of these

three cases:

D = λ1x1x
T
1 + λ2x2x

T
2 + λ3x3x

T
3

= (λ1 − λ2)x1x
T
1 + (λ2 − λ3)(x1x

T
1 + x2x

T
2 ) + λ3(x1x

T
1 + x2x

T
2 + x3x

T
3 )

= (λ1 − λ2)Dl + (λ2 − λ3)Dp + λ3Ds (1.11)

where (λ1−λ2), (λ2−λ3), and λ3 can be viewed as the coordinates of D in the tensor basis

Dl, Dp, and Ds. By using the coordinates of the tensor in our new basis, measures can be

obtained of how close the diffusion tensor is to the generic cases of line, plane and sphere.

The generic shape of a tensor is obtained by normalization with a magnitude measure of

the diffusion. The magnitude is here defined as the trace of the tensor, normalizing the sum

of the measurements to 1. For the linear, planar and spherical measures this gives [20, 19]:

cl =
λ1 − λ2

λ1 + λ2 + λ3

(1.12)

cp =
2(λ2 − λ3)

λ1 + λ2 + λ3

(1.13)

cs =
3λ3

λ1 + λ2 + λ3

(1.14)

and

cl + cp + cs = 1 (1.15)

An anisotropy measure ca describing the deviation from the spherical case is achieved

as follows:

ca = cl + cp = 1− cs =
λ1 + λ2 − 2λ3

λ1 + λ2 + λ3

(1.16)

Figure 1.4 which is taken from [20] demonstrates the relationship between anisotropic

diffusion (upper row), diffusion ellipsoids (middle row), and diffusion tensor (bottom row).

Mean Diffusivity

Mean Diffusivity (MD) is designed as a scalar value for overall evaluation of the diffusion

in a voxel or region. For this purpose, we must avoid anisotropic diffusion effects and
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limit the result to an invariant. MD is such an invariant quantity that is independent of the

orientation of the reference frame [31]. MD measures the bulk mean motion of water and

can be used to study pathological changes in cerebral tissue [19].

After the diffusion tensor D is completely determined, the trace of D is available as

Tr(D) = Dxx +Dyy +Dzz (1.17)

MD is then given by Tr(D)/3. Dxx, Dyy, and Dzz are the three diagonal elements of

diffusion tensor D as shown in Equation 1.2. MD has been proved useful in assessing the

diffusion drop in brain ischemia [40].

Fractional Anisotropy

The general diffusion tensor was then diagonalized, yielding eigenvalues λ1, λ2, and λ3, as

well as eigenvectors x1, x2, and x3 that define the predominant diffusion direction. Eigen-

values λ1, λ2, and λ3 are combined differently to make a number of invariant diffusion

indices. Based on eigenvalues, the fractional anisotropy (FA) can be calculated on a voxel-

by-voxel basis. As a diffusion tensor-derived quantitative measure of white matter tissue

diffusion anisotropy in each voxel, FA characterizes the micro architecture of local brain

tissue, and is sensitive to the integrity and alterations of neuronal connectivity in white

matter [26]. FA summarizes the anisotropy of the ellipsoid representation for diffusion. Its

value varies between zero and one. An FA of zero indicates the spherical diffusion illus-

trated in subfigure 1.3(c), as is found in the brain gray matter. As FA increases, the diffusion

becomes more anisotropic. FA values near 0.5 indicate either linear (cigar shaped) or pla-

nar (pancake shaped) ellipsoids as shown in subfigures 1.3(a) and 1.3(b). They are typically

found in the brain white matter. As FA approaches 1, the diffusion becomes increasingly

linear, indicated by long and thin ellipsoids.

FA is one of most commonly used anisotropy index and is calculated by [5]

FA =

√
3

2

√
(λ1 − λ)2 + (λ2 − λ)2 + (λ3 − λ)2

λ2
1 + λ2

2 + λ2
3

(1.18)
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where λ is formed by

λ =
λ1 + λ2 + λ3

3
(1.19)

1.2 White Matter Tractography and Neuroscience Applications

Most developments in MRI since 1993 have been refinements and improvements on exist-

ing imaging technologies, but some have been spectacular, such as diffusion tensor trac-

tography. With DTI datasets, the white matter fibers can be reconstructed using a class of

techniques called tractography [27, 34, 35, 37, 38]. DTI and white matter tractography

play a crucial role in understanding anatomical connectivity and functional coupling be-

tween regions of the brain, and in clinical applications such as neurosurgery planning and

brain disorder diagnosis [30, 32, 33].

The invasive methods have been used in the connectivity studies in animal brains cannot

be used for humans. Post mortem studies of fiber bundles are possible for human brains,

for instance by observing passive diffusion using chemical dyes, but can take months to

perform and are often affected by cross fiber diffusion. Post mortem methods have revealed

that white matter in the human brain is highly structured, which can be seen in Figure 1.5.

However, using conventional MRI protocols, such as T1 and T2, white matter appears to

be homogeneous. Only recently, by the introduction of DTI, in vivo studies of the human

brain white matter tract anatomy have become possible.

In DTI the diffusion of water molecules is measured in different directions. This mea-

sure can be related to nerve fibers by the fact that water tends to diffuse only along the

fibers, because tightly packed myelin membranes restricts diffusion perpendicular to the

axons. Myelin is not essential for anisotropic diffusion in fiber tracts, as shown in studies

of nonmyelinated garfish olfactory nerves and neonates human brains, but is widely as-

sumed to be the main barrier for water diffusion [44]. The eigenvector corresponding to

the largest eigenvalue of the diffusion tensor often gives a good estimate of the local fiber

orientation inside a voxel. A simple but effective method for fiber tracking is to simply
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follow the direction of maximum diffusion, as seen in Figure 1.6.

DTI and white matter tractography techniques have raised hopes in the neuroscience

community for a better understanding of the fiber tract anatomy of the human brain. It is

known that anisotropic diffusion in white matter reveals micro structural properties of the

anatomy of neural pathways as water tends to diffuse along the axons [45, 46, 47, 48]. A

variety of methods have been proposed to use DTI data and white matter tractography to

track brain neural fibers [49, 50, 52] and detect a number of brain abnormalities [32, 33,

36, 51, 53, 60].

1.3 Tractography Algorithm and DTI Data Acquisition

1.3.1 Tractography Algorithm

A number of tractography algorithms have been proposed since the advent of DTI. The

common algorithms include Principal Diffusion Direction (PDD) Tracking [27, 38, 55,

57], Solving the Diffusion Equation [35, 37, 49], Fast Marching Tractography [59], and

Markov Random Field Regularization [47]. The tractography method employed in this

dissertation is streamline based tracking technique [56] and falls into the PDD category.

The reconstructed white matter tracts are streamlines.

DTI data calculations and experiments in this dissertation are performed using software

developed in our lab which is based on OpenGL [61], VTK [63], and MFC on the Windows

platform.

1.3.2 DTI Data Acquisition

The detailed description of the DTI data acquisition procedure can be found in Dr. Rose’s

work [23]. The following is the brief summary of the process.

All DTI data were collected with a 1.5T Siemens Sonata scanner using an optimized dif-

fusion tensor sequence [81].The imaging parameters were 48 axial slices, FOV = 230mm,

TR = 6000ms, TE = 106ms, 2.5mm slice thickness with 0.25mm gap, acquisition ma-

trix 128 × 128 and 60 images acquired at each location consisting of 16 low (b = 0) and
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44 high diffusion-weighted images in which the encoding gradient vectors are uniformly

distributed in space (b = 1100s/mm2) using the electrostatic approach described else-

where [81]. The reconstruction matrix was 256×256, resulting in an in-plane resolution of

0.898×0.898mm2. The total scan time was 8 minutes. The diffusion tensor was calculated

according to the Stejskal-Tanner equation. The resolution of the original calculated tensor

data volume was 256 × 256 × 48 with a voxel size of 0.898 × 0.898 × 2.75mm3 defined

on a Cartesian mesh.

A rigorous non-linear registration was performed for all DTI data. They were regis-

tered into the same anatomical space by means of their base images. The reason to do this

is that the same DTI data were also used for studies conducting voxel-by-voxel statistical

comparisons. This process is unnecessary for DTI studies in this dissertation. In the regis-

tration, normalized base line images were non-linearly registered using mutual information

to the MNI (Montreal Neurological Institute) template known as the ICBM152 [83]. A hi-

erarchical fitting strategy with a minimum step size of 2mm was used for this registration

procedure [84]. A two-sample t-test was performed to determine significant difference be-

tween the two subject groups. Statistical significance, corrected for multiple comparisons,

was determined using Gaussian random field theory employing a blurring kernel of 5mm

(fwhm) [85]. A t-value greater than 4.095 was considered significant (p < 0.001). Voxels

from the MD and FA maps with a t-value greater than 4.096 were automatically extracted

and classified automatically as a ROI when 20 or more voxels were contiguous. Pearson

correlation coefficients calculated across both subject groups for each generated ROI were

used to determine the relationship between MD and FA measure and neuropsychological

assessment scores. Bonferroni correction for multiple comparisons was applied to maintain

the total Type 1 error rate at a sufficient level. In this case, only corrected correlations of

p < 0.01 were considered statistically significant. The mean diffusivity measure from each

ROI was used to derive the correlation coefficients.
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1.4 Organization of the Dissertation

Given this background, we now turn to our research, which focuses on several key areas

in making DTI based tractography a useful probe of neural connectivity. In doing so, it

provides new results relating to computing and clustering of white matter tracts in human

brain.

Specifically, the major contributions of this dissertation are:

• The implementation of a computational and visual analysis framework for examining

the micro structural white matter alterations along neural pathways in 3D space;

• The development of a Fourier descriptor model with improved noise resistance and

palliated computational load in clustering a large amount of reconstructed white mat-

ter tracts;

• The implementation of a clustering algorithm with enhanced robustness and im-

proved anatomical accuracy in grouping a large amount of reconstructed fiber tracts

to facilitate clinical group analysis;

• The implementation of a more practical and efficient modeling and clustering scheme

for separating a small amount of reconstructed white matter tracts;

• The evaluation of the performance of the nonnegative matrix factorization technique

in clustering reconstructed white matter tracts;

The dissertation is organized as follows. Chapter 2 introduces in detail a computing

framework for quantitative and visual analysis of micro structural white matter changes

along neural pathways in human brain. Real DTI data including normal controls and pa-

tients with amnestic mild cognitive impairment are used to evaluate the proposed methods.

We present the modeling and clustering scheme for separating a small amount of recon-

structed white matter fibers in Chapter 3. Chapter 4 focuses on the Fourier descriptor
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model for white matter tract representation which boosts the computation efficiency and

noise resistance in the context of whole brain white matter tractography. In Chapter 5, we

deliver a clustering algorithm with improved anatomical accuracy in dealing with a large

amount of white matter tracts to facilitate clinical group analysis. The evaluation on per-

formance of nonnegative matrix factorization technique in clustering reconstructed white

matter tracts is conducted in Chapter 6. A summary of this dissertation and some remarks

for the future work are given in Chapter 7.

Copyright c⃝ Xuwei Liang 2011
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(a)

Figure 1.4: Relationship between anisotropic diffusion (upper row), diffusion ellipsoids
(middle row), and diffusion tensor (bottom row). When environment is isotropic (a), water
diffuses equivalently in all directions. The diffusion ellipsoid of this system is spherical
and can be depicted by one diffusion constant, D. When the environment is anisotropic,
e.g. cylindrical (b,c), water diffusion has directionality. The diffusion ellipsoid of water in
a cylinder is elongated and has three principal axes, λ1, λ2, and λ3. To fully characterize
such a system, 3 by 3 tensor is needed and the values of the nine elements depend on the
orientation of the principal axes. (Taken from [20])
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(a)

Figure 1.5: A brain dissection showing the structure of white matter (Taken from the online
library of the Virtual Hospital, University of Iowa)
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Figure 1.6: An illustration of reconstructed white matter tracts by following the direction
of maximum diffusion.
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2 Quantitative and Visual Analysis of White Matter Integrity

2.1 Outline

In this chapter, we briefly introduce the background and challenges that motivate us to

develop the computing technique. Next, the detailed information about the implementation

of the framework is described. Real DTI data experimental results are also presented.

Finally, the advantage and limitation of the proposed approach are discussed.

2.2 Introduction

In recent years, developing analysis methods for extracting quantitative information from

DTI has received extensive attention. Previously, region-of-interest (ROI) [25] and voxel

based morphometry (VBM) [23, 24] techniques have been used in medical literatures

for DTI related white matter analysis. But there are known limitations with these ap-

proaches [65]. The ROI approach typically measures only one or more prior defined inter-

sections on a white matter fiber bundle and may have difficulty to reflect the white matter

changes in the entire volume of a neuronal pathway. It can be subjective and introduce in-

consistencies in the placement of ROI among individual studies. Poor reproducibility may

be a shortcoming of this method. VBM is a whole-brain, voxel-based automatic method.

Its analysis result is voxel-based as well and not directly associated with structural con-

nectivity. With this method, one may be unable to conclude if any explored abnormality

happens in a particular anatomical region of a neuronal path. Alternative strategies in-

volving the analysis of diffusivity measures along parts of the computed fiber tracts using

scale-invariant parameterizations were proposed [68].

Furthermore, structural and functional MRI studies have reported white and gray matter

alterations of a widespread network of regions in human brain [28, 29]. Some of these

alterations may be based, in part, on changes to white matter tracts that connect these

regions. To explain these regional alterations, neuroscientists are interested in quantitative
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evaluations along the specific neuronal network paths. This motivated the development

of the tract oriented measuring and analysis approaches. This class of guided analysis

techniques is based on DTI tractography and geodesic distance mapping and measures

diffusion properties along a reconstructed white matter fiber bundle [32, 33, 62].

The main goals of this study are twofold:

• to develop effective strategies to inspect possible tissue damages caused by regional

micro structural white matter changes along the major bundles for both strong and

hardly reconstructed fiber tract bundles;

• to interactively visualize hidden regional statistical features along neural pathways in

vivo for a better understanding of the progression of certain brain diseases;

Our approach is based on DTI white matter tractography and geodesic distance map-

ping, which establishes correspondences to allow direct cross-subject evaluation of diffu-

sion properties along the tractography-extracted fiber tracts by parameterizing the space of

the computed pathways as isonodes, a function of the geodesic distance. For fiber bundles

which are very thin, and it is difficult to reconstruct all their entire anatomically valid paths

for all subjects in group analysis, we propose the white matter tract mask scheme to over-

come this difficulty. The second objective is achieved by employing our proposed isonode

visualization scheme. Experiments are conducted to assess the performance of this frame-

work by investigating specific white matter diffusion property changes along three major

fiber bundles in patients with the amnestic mild cognitive impairment, compared with the

normal control subjects.

2.3 Methods

2.3.1 Fiber Tract Bundle Mask

We use our home-developed software package to process the DTI data and track fibers. The

tensor calculation is based on the Stejskal-Tanner equation. The diffusion properties, FA,

MD, and eigenvectors of the diffusion tensor, are calculated and saved as image files.
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Fiber tracts are reconstructed using the backward streamline tractography technique

[39]. This approach treats the entire brain as the tracking source region and only those re-

constructed fiber tracts which pass through the predefined ROI (target) are kept. Therefore,

one voxel may have more than one fiber tracts passing through and the tracking results are

significantly improved [39, 62]. A fixed size ROI, worked as the target region of the fiber

tracking, is manually placed in the center area of a fiber bundle to minimize the misregistra-

tion effect. As a result, voxels that are around the ventricles and at the edge of a fiber bundle

are then excluded. FA indexed color maps are employed to validate the reconstructed fiber

tracts.

Limited by the currently available imaging technology, the quality of the DTI data is

not sufficiently good for us to reconstruct the full path of certain fiber bundles from each

of the subjects. The reason lies in the fact that fiber tracking is susceptible to distortion

due to noise and partial volume effects. The volume loss and FA value degradation caused

by certain brain diseases, e.g., Alzheimer’s disease, contribute to this difficulty as well.

An example is the cingulum which is only about one voxel (less than 3mm) thick. To

overcome this difficulty and make the group analysis possible, we instead employ the idea

of a fiber tract bundle mask. We reconstruct a fiber tract bundle mask from a tensor averaged

image from all control subjects. This tensor averaged image has much less noise and is

used to reconstruct anatomically more representative fiber tracts than that of individual

subjects. By applying this pre-extracted tractography mask to subjects we evaluate the

regional micro white matter abnormalities along fiber bundles in group analysis. In this

study, the bilateral cingulum fiber masks are produced in this way and then applied to

each DTI data of individual subjects. Figure 2.1 illustrates the right cingulum bundle mask

overlapped on a tensor averaged FA indexed color map from all control subjects.

For strong fiber bundles, e.g., the genu of the corpus callosum (GCC) fiber bundle, we

perform the fiber tracking for all subjects one by one in their individual spaces.
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Figure 2.1: The right cingulum bundle mask (red) overlapped on an FA indexed color map.
The ROI is in blue and is the starting point of the geodesic distance mapping.

2.3.2 Geodesics and Geodesic Distance Mapping

Fiber tracts extracted from each individual subject are stored as sets of curvilinear polylines.

One fiber tract is a 3D curve r(s) on a Riemannian manifold Ω. The tangent space τ on

a Riemannian manifold is equivalent to the vector space of the primary eigenvectors −→e =

(e1, e2, e3)
T . To obtain a distance between two points of a connected Riemannian manifold,

we have to take the minimum length among the smooth curves joining these points. The

curves satisfying this minimum for any two points of the manifold are called geodesics.

Geodesic distance of two points c1 and c2 on a fiber r(s) is obtained by integrating −→e (s)

along r

Dist(c1, c2) =

∫ s2

s1

−→e (s)ds. (2.1)

Let I = [a, b] be an interval on a fiber curve r(s), which is defined as a natural sequence

of points r(s) = (x(s), y(s), z(s)) or a sequence of point vectors of a moving point on the

image set r(I) of curve r. With these definitions, we can now map a fiber r(s) : Ω 7→ [a, b]

by Equation 2.1. After this mapping, two distinct points on two distinct fibers my share

one common geodesic distance Dist(s).

In the implementation, for each fiber bundle (a set of fiber tracts), we set up common

starting point region and parameterize each fiber by a fixed geodesic arc-length. These

common starting point region and fixed arc-length geodesic path parameterizations estab-
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lish correspondences across subjects as well as individual fiber tracts.

2.3.3 Isonodes

To facilitate the use of visual analysis techniques in our research, here we define a new

concept, isonodes. Isonodes are a three-dimensional analog of a collection of nodes. They

are a group of points of a constant geodesic arc-length within a volume space of fiber tracts.

Similar to an isosurface, they form a level set of a continuous function of geodesic distance

whose domain is the three-dimensional space.

Isonodes are rendered quickly since they can be displayed as simple points or polygons.

They can be used in tractography related volume dataset visualization schemes in medical

imaging, allowing researchers to study inherently associated local features along major

fiber bundles.

2.3.4 Local Diffusion Property Calculation

Equipped with the above techniques, we model a set of fiber bundles from N subjects as

B = (F1, . . . , Fk, . . . , FN), with the k-th fiber bundle Fk = (f1, . . . , fi, . . . , fn) and the

i-th fiber fi = (d1, . . . , dj, . . . , dm), where dj is the j-th node’s geodesic distance on the

i-th fiber curve from its starting point. In our analysis, diffusion properties are carried

as attributes on each node [62]. Then the local diffusion property calculation becomes

straightforward by simply associating the isonodes. This is depicted in Figure 2.2 in which

isonodes are sparsely illustrated for clarity.

Let Ψi be attribute values on the i-th fiber pathway and dj the geodesic distance of the

j-th node in the curvilinear structure. Then the geodesic path for the k-th fiber bundle with

average attribute Φk is computed as

Φk(dj) =
1

n

n∑
i=1

Ψi(dj), j = 1, ...,m. (2.2)

We adopted the same scheme of coalescing fiber bundles among subjects for the pur-

pose of group comparisons. The mean attribute value Φ(dj) across N subjects at the j-th
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Figure 2.2: Isonode association. In the left-hand side subfigure, a group of isonodes are
assigned one distinct color and circled. The bottom starting point plane is blue. The right-
hand side subfigure depicts the parameterized GCC fiber bundle. Fiber tracts are in red and
a series of isonodes are in yellow. Isonodes are sparsely spread for illustration purpose. The
middle blue plane represents the common starting points. Geodesic distances are calculated
bi-directionally originating from the starting point plane.

node is

Φ(dj) =
1

N

N∑
k=1

Φk(dj), j = 1, ...,m. (2.3)

2.3.5 Isonode Visualization Scheme

Each group of isonodes can be associated with their distinct local statistical feature in ad-

dition to their inherent attribute, a unique geodesic arc-length. We render all the calculated

isonodes overlapped on the reconstructed fiber paths. In the process, each set of isonodes

are positioned by its geodesic distance along the fiber bundles and are color coded by their

discovered statistical features. Different color schemes and thresholds can be interactively

selected by a user depending on applications and confidence levels to obtain better under-

standing of the diffusion property changes along the neuronal path.

2.4 Experiments and Results

We illustrate group analysis results of three fiber bundles between amnestic mild cognitive

impairment (MCI) subjects and normal controls in this experiment. They are:
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• left major cingulum bundle;

• right major cingulum bundle;

• the genu of the corpus callosum (GCC) bundle

The left and right major cingulum bundles are used to show the use of the fiber bundle mask.

The two cingulum bundles are major neuronal white matter paths connecting the medial

temporal lobe, thalamus and posterior cingulate. It has been hypothesized that episodic

memory impairment in MCI most likely involves dysfunction of cingulum bundles. The

GCC bundle is a large and strong white matter fiber bundle and is employed here to assess

the performance of our approach in general cases. Among fiber bundles examined in this

study, GCC has the most potential to be used as bio-markers to distinguish MCI patients

from normal controls. For all of them, we measure regional micro structural white matter

changes along the major fiber bundles in MCI patients compared with normal controls.

To illustrate the advantage that reconstructed fiber bundles can be used to approximate

the volumetric white matter region efficiently, we also inspect the averaged FA and MD val-

ues of the entire 3D area. This entire volumetric white matter region may not be effectively

revealed by VBM or ROI methods.

2.4.1 Subjects

The DIT data used in this study is provided by Dr. Stephen E. Rose at the University of

Queensland, Australia [23]. In detail, seventeen healthy elderly adults (7F/10M, mean age

73.59 (SD 9.06), median Mini Mental State Examination score (MMSE) 28 (range 27−30)

and 17 MCI participants (7F/10M, mean age 73.58 (SD 8.96) years, median MMSE 26

(range 24 − 29)) took part in the study. The local ethics committee approved the study

and informed consent was obtained for each subject. In this study, participants were cat-

egorized on the combination of medical history, clinical and radiological examination and

neuropsychological assessment by consensus meeting of a neurologist and 2 neuropsy-

chologists. Participants were excluded from the study if there was evidence of prior head
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trauma, a primary psychiatric diagnosis, infectious or endocrine cause of cognitive dys-

function, a Geriatric Depression Scale score of ¿ 16, alcohol consumption greater than 30

grams per day in men and 20 grams per day in women, or a history of drug habituation to

drugs such as benzodiazepines or narcotics. Control and MCI participants were recruited

from newspaper advertisements and were all community dwelling. All underwent neu-

ropsychological testing using a battery of tests devised to detect cognitive impairment in

older adults, including a 7 subtest short form of the WAIS-III [69, 70] the Logical Memory,

Paired Associates and Face Recognition subtests of the WMS-III [71], Rey Auditory Verbal

Learning Test [72], Boston Naming Test [73], letter and category verbal fluency [72], Trail

Making Test forms A and B [74], the Number Location, Dot Counting and Cube Analysis

subtests of the Visual Object and Space Perception Battery [75], and Stroop Neuropsycho-

logical Screening test [72].

Amnestic MCI diagnosis was determined according to the Mayo Clinic Alzheimers

Disease Research Centre criteria [76, 77], and required the following (a) subjective memory

impairment according to the patient and/or an informant, (b) objective memory impairment

indicated by a delayed recall score on the WMS-III Logical Memory subtest and RAVLT of

at least 1.5 standard deviations from age and education adjusted norms [76], (3) relatively

normal performance on other tests measuring other cognitive domains, and (4) relatively

normal activities of daily living. Participants were excluded if they satisfied a diagnosis for

dementia as defined by either NINCDS-ADRDA criteria [78] and/or DSM-IV criteria [79].

Hachinski scores, in addition to Wahlund age related white matter changes (ARWMC)

scores, were recorded for all participants [80]. Wahlund scores were obtained from high

resolution T2-weighted FLAIR scans. The mean (standard deviation) duration between

neuropsychological testing and DTI acquisition was 57(24) and 84(61) days for the MCI

and control participants, respectively. MCI subjects were not administered any cognitive

enhancing agents during the course of the study.

Examinations were implemented on the correlation of DTI with three tasks known to
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be sensitive to MCI. They are the Rey Auditory Verval Learning Test (RAVLT) [72], the

Boston Naming Test (BNT) [73], and a category fluency test [82].

2.4.2 Quantitative Analysis

A non-paired student t-test was employed to evaluate the group difference in MD and

FA values between MCI participants and controls for the entire region along the computed

white matter pathways. The integrity of these white matter fiber tracts was further evaluated

by performing non-paired student t-tests on isonodes across subjects along the geodesic

paths. p values ≤ 0.05 were considered as statistically significant in this study.

2.4.3 The Cingulum Bundles

For averaged FA and MD values of the entire volumetric region of the computed bilateral

cingulum fiber bundles for the amnestic MCI and control subjects, we found no significant

difference between the two groups. The only regional structural white matter alteration that

we found is the significantly decreased FA value along the left cingulum.

Regional Structural White Matter Changes along Bilateral Cingula

Figure 2.3 and Figure 2.4 illustrate statistical analysis results of the FA value degradations

along the left cingulum occurred at the location shown in yellow color. This degradation

area is about 3.83mm long along the left cingulum bundle. The ROI size is 1.81 × 0.9 ×

1.65mm3. Due to the small volumetric size of the degradation region, we show it in an

uniform color instead of p value coded colors for clarity.

Effect of ROI Size

To assess the possible effect caused by the size of the seed region ROI in the reconstruction

of the left cingulum bundle, we used two different size ROIs, one small ROI with dimension

1.81 × 0.9 × 1.65mm3 and one large ROI with dimension 5.4 × 0.9 × 4.13mm3. By

comparison, we found that ROIs of different size generate similar but not identical results.

The FA degradation area is about 3.83mm with the smaller ROI and 2.67mm long with the
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Figure 2.3: The left cingulum bundle mask overlapped on the FA value indexed color map.
The ROI is in blue and is the starting point of the geodesic path mapping. The yellow color
illustrates the region which shows significant FA value reduction in MCIs compared with
the control subjects.

larger ROI in arc-length along the left cingulum fiber bundle. Significantly elevated MD

region was not found with either the larger ROI or the smaller ROI.

For a better understanding on why the above two FA degradation areas are not identi-

cal in arc-length and their relations with the size of the ROIs, we investigated the voxels

covered by the left cingulum bundle mask and compared their FA values based on the cor-

respondence of global voxel indices in the two ROI cases. A group of 17 connected vox-

els were explored with significant differences in FA in both cases (shown in Figure 2.5).

The two groups contained the same set of voxels. They were located in the same region

where the aforementioned significant FA value reductions were found. Furthermore, since

the smaller ROI generated a thinner fiber bundle than that generated by the larger ROI,

fewer number of fiber covered voxels were averaged within each geodesic arc length in the

smaller ROI than that in the larger ROI case. With the same number of voxels having sig-

nificant FA value differences, the larger ROI, subsequently the thicker fiber bundle, would
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Figure 2.4: Regional FA distribution along the left cingulum bundle in MCIs. The left
subfigure illustrates the regional FA value distributions of the control and MCI groups
along the geodesic path. The right subfigure gives the p values of the student t-test along
the geodesic path.

blur the averaged FA value reduction to some degree. This explains the observation that

the smaller ROI demonstrates a relatively longer FA value degradation region along the

left cingulum geodesic path than that of the larger ROI. Figure 2.6 illustrates the FA value

degradation and the computed p values of these 17 voxels.

2.4.4 The GCC Bundle

Four control and two MCI subjects were removed from the experiment since their recon-

structed GCC bundles were not long enough to reach the GCC forceps. Figure 2.7 shows

the GCC fiber tracts based on a tensor averaged image from all subjects.

Averaged FA and MD Values of the Entire Volumetric GCC Bundle

Averaged FA and MD values for the entire volumetric GCC bundle between the MCI and

control subject groups are listed in Table 2.1. It shows that the averaged FA is significantly

reduced while the averaged MD value is significantly elevated in the MCI subjects.

The scatter plots in Figure 2.8 depict the distributions of the FA and MD values of the
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Figure 2.5: Left cingulum fiber bundle covered voxels overlapped on an FA indexed color
map. Voxels are rendered in wireframe and their colors ranging from blue to red are in
accordance with FA values from 0 to 1. Voxels with significant FA degradation are in
yellow.

Table 2.1: Mean (±SD) values for the FA and MD measures for the entire volumetric GCC
bundle for MCI and normal control groups. The unit of MD is (10−6mm2/sec).

GCC Bundle Normal Control MCI p value df
FA 0.56± 0.05 0.51± 0.05 0.005 26
MD 844± 62 921± 88 0.007 26

entire volumetric region of the GCC paths in normal control and amnestic MCI subjects

separately.

Regional Structural White Matter Changes along GCC Bundle

Specific anatomical locations along the GCC bundle with significantly reduced FA and el-

evated MD measures were effectively discovered in MCI patients. The regional FA and

MD value differences along the GCC tract bundle between the normal control and MCI

groups are plotted in Figure 2.9 respectively. It shows that the most severe FA degradation

and MD elevation in MCI subjects mainly happen within the area close to the mid-sagittal

plane. The explored white matter alteration in this midregion is consistent with previous

literature findings using the ROI approach [25]. Figure 2.10 visualizes the revealed local

statistical features with isonodes color indexed by their p values overlapped on the recon-

structed GCC bundle.
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Figure 2.6: The left subfigure shows the FA value distribution of the 17 connected voxels
for both the control and MCI groups. The right subfigure depicts the p values after the
student t-test along the geodesic path.

2.5 Discussion and Conclusion

We have presented a novel framework to measure white matter alterations along fiber tract

bundles. Strategies have been developed for thin and large white matter fiber tract bundles

separately. We represented the curved cingulum bundles using a DTI tractography pro-

duced fiber bundle mask. This method can also be applied to other thin fiber bundles which

are hard to reconstruct their full paths for all subjects in group analysis. Our method makes

it possible to examine the micro structural changes along the left and right cingula for all

subjects in the comparison. We also illustrated the advantage of our approach to measure

large and strong fiber bundles by performing fiber tracking in each subject’s individual

space. The use of the isonode visualization scheme to help us understand any white matter

alterations along fiber bundles is illustrated as well. Experimental results of this study are

in agreement with previous amnestic MCI findings [23, 25]. This shows that this analysis

method is promising and may provide a sensitive approach to determining the integrity of

neuronal pathways in human brain.
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(a) GCC bundle in sagittal view (b) GCC bundle in coronal view

Figure 2.7: The reconstructed GCC fiber tracts overlapped on a tensor averaged FA map
of all subjects. Subfigures (a) and (b) show the GCC bundle in sagittal and axial views
respectively.

Previous DTI studies in amnestic MCI have found significantly reduced measures of

FA value within posterior dorsal regions of the left cingulum bundles [23, 24, 64]. These

studies employed either ROI or automated VBM analysis method. Although ROI approach

is robust in large white matter tracts, with thin white matter pathways it may be less reliable

due to confounding partial volume effects, exacerbating the difficulty associated with the

accurate and consistent placement of ROIs within target tracts across all subjects [65]. The

VBM analysis method reduces this problem, although issues concerning image registration,

segmentation and the choice of smoothing kernels prior to statistical analysis of grouped

data are still to be resolved [65]. The presence of unrelated fibers may also result in the

contamination of targeted fiber pathways using this approach. In contrast, DTI tractography

enables robust generation of fiber trajectories across subject groups with less off-target

fiber contamination. In addition, the integrity of the computed tracts can be analyzed by

evaluating diffusivity indices either averaged for the entire tract or along the length of the

white matter pathway in a spatially continuous fashion.

Non-invasive neuroimaging techniques, which can investigate the integrity of the cin-

gulum fasciculi, are extremely important in understanding the progression of some brain

diseases such as Alzheimer’s disease (AD). There is converging agreement based upon
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Figure 2.8: Scatter plots of the averaged FA (left) and MD (right) values of the entire
volumetric region of GCC bundle in normal control and amnestic MCI subjects. The unit
of MD is (mm2/sec).

structural and metabolic studies of the importance of the involvement of the posterior cin-

gulate gyrus in AD [23, 24, 64, 66]. It is important to study the link between white matter

pathways of the cingulate gyrus and the cholinergic system [67]. With the proposed tech-

nique, the entire curvilinear left and right cingulum regions can be defined and evaluated.

The findings of this study reaffirm the importance of being able to spatially define a com-

plex 3D region of interest in DTI tractography and to study the diffusion measures along

the length of the white matter pathways.

There are a number of limitations with this study. Due to the signal-to-noise limitations

at the resolution of our DTI data, even with the use of an optimized DTI acquisition scheme,

we could not robustly compute white matter trajectories for the more ventral pathway of the

cingulum bundles. Analysis of geodesic paths of the white matter tracts that project from

the hippocampus to the posterior cingulate gyrus would be extremely useful and provides

a challenge for high field (>3T) DTI studies in AD. Although DTI-based tractography

method is automated, tractography algorithms normally rely on the manual placement of

ROI to compute target white matter trajectories. In this study, we carefully placed the ROI

within the cingulum with the help of an FA indexed color map. Alternative methods of
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Figure 2.9: Statistical analysis of regional micro structural FA and MD alterations along
the GCC paths. Negative and positive geodesic indices are in accordance with the left
and right parts of the starting point plane (indexed by 0) in Figure 2.2’s right-hand side
subfigure. The geodesic distance unit is 0.5mm. The unit of MD is mm2/sec.

analyzing diffusivity measures along target white matter trajectories that do not require

accurate within subject registration would be of considerable benefit [68]. Inclusion of a

reference AD subject group would have been of interest to explore the full potential of this

new fiber tract analysis technique.

Significant reduction in the FA value within specific anatomical regions was only de-

tected by evaluating diffusivity measures mapped as geodesic paths. Our analysis technique

is able to pinpoint the exact fiber locations with altered diffusion properties and may pro-

vide a more sensitive technique for determining the integrity of white matter tracts in the
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Figure 2.10: Visualizations of regional micro structural FA (left) and MD (right) alterations
along the GCC bundle. Revealed regions with significant FA degradation and MD elevation
in MCI subjects are rendered in their according p value indexed colors. p values greater
than 0.06 were rendered as 0.06 for simplicity.

brain.

Copyright c⃝ Xuwei Liang 2011
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3 A Unified Framework for Modeling and Clustering a Small Number of White
Matter Tracts

3.1 Outline

In this chapter, recent developments in white matter tract clustering techniques are first

surveyed at the beginning. We then present in detail the proposed framework which aims

to classify a small number of reconstructed white matter fiber tracts which may not have

common starting region and/or equal length. Experimental results with real DTI data are

used to demonstrate the performance of the method. A discussion about the advantage and

limitations of the presented technique is included at the end.

3.2 Introduction

DTI based tractography enables selective reconstruction of specific neural pathways [27,

35, 37] and has been used to visualize brain white matter fiber tracts to facilitate our un-

derstanding of brain structural connections in clinical applications such as neurosurgery

planning. In recent years, developing analysis methods for extracting quantitative informa-

tion from DTI and classifying white matter fiber bundles has received extensive attentions.

Such information is helpful in understanding human brain connectivity and in tackling a

variety of brain diseases and disorders, such as Alzheimer’s disease, multiple sclerosis, and

schizophrenia.

To achieve meaningful and reproducible results for techniques based on quantitative

analysis of reconstructed white matter tracts, accurate and efficient tools are necessary

to group the trajectories into anatomically meaningful clusters or bundles. A variety of

white matter tract segmentation schemes have been proposed in recent years. Most of these

techniques set unlabeled tracts (or streamlines) extracted from DTI tractography as input.

Methods able to remove outliers will output part of the labeled inputs.

Based on their fundamental mechanisms, these methods can be divided into three cate-

gories, i.e., visual dissection, automatic clustering, and atlas based segmentation. Conturo
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et al. [52] and Mori et al. [93] proposed a visual dissection method by manually selecting

tracts passing through one or more user defined ROIs in the process of DTI tractography.

This approach can be used to remove anatomically plausible tracts and is commonly used

in practice. One limitation of this method is that it is time consuming to segment a large

amount of spatially closed fibers which demonstrate complex structures in general. Good

knowledge of brain white matter anatomy is necessary for this method to work well. Most

published literatures on white matter tract segmentation so far fall into the second category,

i.e., the automatic clustering. In this class of methods, a set of features of a fiber tract and a

pairwise similarity (or affinity) measure are mathematically defined in advance. A number

of supervised or unsupervised clustering algorithms in this category have been published.

Ding et al. [94] bundled reconstructed white matter tracts by finding the corresponding

portion of two tracts that have point-wise correspondence between them. The similarity

between two tracts was formed by calculating the point-wise Euclidean distance. For do-

ing so, these two compared tracts need to have the same starting region. This restriction

may limit the application of this method. Burn et al. [95] described a tract representation

which is a 9-dimensional feature vector representing the mean and the lower triangular

part of the covariance matrix of step points on a tract. A Gaussian kernel of Euclidean

distance between two feature vectors was employed as the similarity measure. The clus-

tering algorithm used is called normalized cuts which first appeared in the computer vision

community. Gerig et al. [97] and Corouge et al. [96] introduced Hausdorff and similar dis-

tance metrics when compare a pair of tracts point-wisely and kept individual local shape

characterization of each tract within the associated bundle. Equal tract length was assumed

following the assumption that tracts under consideration were from a common starting area

which is not the general case. Xia et al. [98] reported a similar method with the extension

that the spatial organization of gray matter was employed as a reference for identifying

white matter tracts. With this strategy, two tracts do not have to have a common starting

region. The trade-off is that some gray matter areas have to be precisely located in advance
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of the tract segmentation. Jonasson et al. [99] employed the spectral clustering technique

to segment white matter tracts reconstructed from high angular resolution DTI data. The

classification is performed by counting the number of shared voxels as the affinity metric

between a pair of tracts. In the work of El Kouby et al. [100], the clustering is not per-

formed directly on the fascicles but on a number of ROIs by splitting the Talairach grid

into small cubes. These cubic ROIs need to be transformed back to the individual subject

space. Batchelor et al. [101] compared several quantitative metrics including link and the

Euclidean distance of Fourier descriptors to study the relative spatial configurations of tra-

jectory pairs and indicated that these measures could be used in classifying and clustering

the reconstructed white matter tracts. They made the assumption that the point-wise corre-

spondence between a pair of tracts could be established by the selection of a seed point and

regular re-parameterizations. O’Donnell et al. [102, 103] proposed a framework to label

new coming fiber bundles based on an atlas which is built in advance. In the intra subject

clustering process to construct the atlas, a symmetric affinity matrix needs to be maintained

and handled to compute eigenvalues and eigenvectors for the tract spectral embedding. This

matrix may be very large if a huge set of white matter tracts are reconstructed by applying

some common tractography techniques such as the backward streamline tractography algo-

rithm introduced by Mori and van Zijl [39] in the case of whole brain tractography. Klein

et al. [104] described a multiple eigenvector fiber tract clustering method by using singu-

lar value decomposition (SVD) to factorize the similarity matrix to determine the possible

number of clusters. They reduced the computational complexity from O(n2), which is a

typical cost of spectral clustering, to O(n). This is achieved by assuming that a single cell

does not contain more than a fixed number of tracts in the average situation. This method

could be very sensitive to the noise which is inherent to the DTI data. And it is still an open

issue if the proposed approach is practical for estimating the number of clusters . Maddah

et al. [105] introduced a atlas-based framework for white matter tract clustering and quan-

titative analysis. They employed the expectation-maximization (EM) algorithm to partition
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the trajectories into the context of a Gamma mixture statistical model of distances. This

approach needs the a priori knowledge of each target fiber bundle. The anatomical atlas

is obtained by user-drawn curves or manually selected trajectories. Features used in the

clustering are mutual features which are extracted by calculating distances between corre-

sponding step points along two tracts. One of the two tracts may be a user-drawn reference

curve. This method is helpful for clustering a large amount of white matter tracts.

These existing methods have their advantages and disadvantages as discussed above.

There is no universal measure to assess which clustering algorithm and parameter settings

give the best results. Moberts et al. [106] evaluated some clustering methods and compared

them with a manual classification. They found that the use of hierarchical clustering with

a single-link and a tract similarity measure based on the mean distance between tracts gave

the best results. In general, performances of existing tract clustering algorithms is very

dependent on how well they tackle the random configuration of tracts, e.g., unequal tract

length and different starting regions. Challenges in the development of clustering tech-

niques with consistent performance include (1) objective representations of reconstructed

white matter tracts, (2) quantitative affinity measurements with enough differentiation ca-

pability, (3) matching correspondences to calculate similarity metrics between two random

tracts, and (4) a robust clustering algorithm.

In this work, we propose a novel framework to address these challenges. Particularly,

the objective representation is achieved by incorporating the information of diffusion ori-

entation, tract length and geometric center into the mathematical model. The quantitative

measurements are implemented by calculating the pairwise affinity score which is sensitive

to tract shape, location, and length. A matching method is developed to establish piece-wise

correspondences between two randomly located tracts. The clustering algorithm we em-

ploy is the well known K-mean algorithm. Experiments with real DTI data are conducted

to assess the performance of our approach.

For the sake of simplicity, we refer to reconstructed white matter tracts as streamlines
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in the following discussion.

3.3 Theory

3.3.1 Streamline Representation

To take the advantage of the diffusion orientation information carried in DTI and incor-

porate this information into the streamline representation, we introduce the substreamline

and linear segment concepts by a review of the tract reconstruction procedure. Since dif-

ferent tractography algorithms produce different forms of output, we take as the example

streamlines being reconstructed from the popular streamline based DTI tractography algo-

rithm [5, 38] to demonstrate our streamline representation.

The streamline based tractography algorithm takes as input a set of seed points and

produces numbers of voxelized outputs, the fiber tract streamlines. The process to generate

streamlines is typically to choose a local diffusion orientation in a specific voxel starting

at a seed point, moves a small distance in one of the two directions parallel to the local

voxel’s diffusion orientation (i.e., the principal/primary eigenvector derived from diffusion

tensor calculation), and repeats until some termination criteria are met. The moving dis-

tance at each step may or may not be equal. This process has to be performed for the second

time to reconstruct a complete streamline by reversing the moving directions (the principal

eigenvectors). This is because water diffusion is directionally nonspecific or bidirectionally

symmetric and in turn the same for the diffusion orientation in DTI data. A streamline is

saved as a sequence of step points. Each step point is associated with a primary eigenvector

indicating the local diffusion orientation of a specific voxel it lies in. A pair of adjacent step

points and their in-between connection, the two directionally symmetric major eigenvec-

tors, define a linear segment of a streamline. As a result, a streamline s is sets of connected

straight line segments with equal or unequal length. A single linear segment is parallel to

the local diffusion orientation in a particular voxel. We will refer this voxelized parallelism

feature to be a streamline’s “local diffusion orientation”. And a streamline’s length L is
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defined as the number of segments it has.

This local diffusion orientation is inferred from the local primary eigenvector and its

reversed direction. A principal eigenvector indicates one of the two directions referenced

by a diffusion orientation. The second direction can be easily obtained by reversing a prin-

cipal eigenvector. In the following, we represent local diffusion orientations by principal

eigenvectors and use the two terms interchangeably for convenience. But we should note

that they are not equivalent.

As a result of the above two step reconstruction strategy, a streamline can thus be con-

ceptually split into two substreamlines at its seed point, indicating what we will refer to as

the “forward” and “backward” substreamlines in this study. Subsequently, a streamline’s

length equals to the summation of its two substreamline’s length, i.e. L = Lf + Lb. Lf

and Lb are lengths of the forward and backward substreamline respectively. It is worth

mentioning that the terms forward and backward we used here have no strict significance.

They are for convenience only. Figure 3.1 graphically depicts the rationale we describe

in this paragraph. Arrows in the forward substreamline in subfigure 3.1(a) represent the

primary eigenvector directions in the first reconstruction step. The backward substreamline

is reconstructed in the second step. Arrows in the backward substreamline thus reflects the

reversed major eigenvectors. Subfigure 3.1(b) shows an implementation example.

The local orientation feature gives us only the shape information of a streamline. In

order to distinguish a streamline from others as distinct as possible, we still need more

features. Natural choices would be its global measures such as its geometric center and the

global diffusion orientation which we will describe. The geometric center of a streamline

indicates its mean spatial position and can be used to assess the global geometric relation-

ship between two streamlines. But multiple streamlines may share one common geometric

center. For instance, different half arc partitions of a circle have their geometric center over-

lapped though they do occupy different spatial positions. To differentiate this type distinct

curves, we associate a streamline’s geometric center with a direction feature, the global
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forward substreamline

start point

backward substreamline

(a) Two step reconstruction of a complete stream-
line and its two subparts

(b) Implementation of the two step reconstruction
method

Figure 3.1: Graphical illustrations of the two step reconstruction scheme resulted in for-
ward and backward subpartitions. Arrows in in the two substreamlines in (a) represent
local primary eigenvectors in the two reconstruction steps respectively. The backward sub-
streamline is reconstructed by reversing all principal eigenvectors. In (b), the starting points
to reconstruct the tract bundle are in blue. The two fiber bundles in distinct colors represent
the forward and backward substreamlines respectively.

diffusion orientation. A streamline’s global diffusion orientation is the accumulation of its

all local diffusion orientations, the simple summation of all voxel’s principal eigenvectors

along this streamline. It is parallel to the virtual straight line directly connecting a stream-

line’s two end points. It is also bidirectionally symmetric, the same as the local diffusion

orientation. It gives us the directional knowledge about the connectivity between the two

end points of a streamline. With the help of this new feature, we are now able to distinguish

streamlines of equal length and same geometric center such as the aforementioned different

half arc parts of a circle. This is demonstrated in Figure 3.2, which shows two curves, s1

and s2, sharing one common geometric center.

It should be noticed that this global diffusion orientation concept does not make sense

if a streamline’s two end points are overlapped (e.g., a closed curve), such as a circle. It

is of no help if two streamlines share both of their two end points and geometric centers.

Fortunately, such situations are rarely encountered in streamlines reconstructed from most

existing DTI tractography algorithms.
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c1/c2

p22

p12

s2

s1

p11

p21

α = ∠((p11 − p12), (p21 − p22))

Figure 3.2: Illustration of the global diffusion orientation used to distinguish two curves
sharing a common geometric center. The black solid and red dotted curves, s1 and s2,
share a common geometric center c1 or c2. The two black dotted lines represent the two
global diffusion orientations of s1 and s2 respectively. s1 and s2 can be identified with the
help of their global diffusion orientations if α ̸= 0.

Hence, we can model a streamline s as

s = {e, c, v}, (3.1)

where e = {e1, e2, ..., eL} is sets of local diffusion orientations of a streamline. L is the

streamline length, i.e., the number of linear segments. c is the geometric center. And v is

the global diffusion orientation and is formulated as

v =
L∑
i=1

ei. (3.2)

Two streamlines, s1 and s2, their geometric centers, local and global diffusion orienta-

tions are illustrated in Figure 3.3. Arrows of straight line segments in Figure 3.3 demon-

strate one of the two local possible diffusion directions. Reversed arrows are another sets of
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local diffusion directions. Two geometric centers, c1 and c2, are marked as solid circles. βi

is the angle between the i-th corresponding segment pair of two matched streamlines. α is

the angle between the two global diffusion orientations. Each streamline’s global diffusion

orientation is parallel to the straight line directly connecting its two end points. The length

of both s1 and s2 are 4 (4 straight line segments) in this example. We use principal eigen-

vectors along a streamline to represent local diffusion orientations, i.e., βi = ∠(e1i , e2i)

and

α = ∠(v1, v2) = ∠(
L∑
i=1

e1i ,

L∑
i=1

e2i), (3.3)

where L equals 4 in this instance.

3.3.2 Streamline Similarity Metrics

The reason that we employ in clustering is that two streamlines should be in the same

cluster when they (1) connect the same two anatomical regions; (2) have similar shape;

and (3) are separated by a short distance. The first characteristic requires that they have

comparable length in addition that the two virtual lines directly connecting their respective

end points be parallel and spatially close. Similar shape means that most corresponding

straight line segments of the two streamlines should be as parallel as possible. The last

property is related to the distance between the two geometric centers. These goals can

be achieved by using the appropriately formed affinity measures based on the previously

defined streamline model.

In our implementation, we consider that two streamlines belong to one cluster if they

satisfy four criteria: (1) comparable length, i.e., the number of segments L1 ≈ L2; (2)

short geometric center distance dc; (3) close to 1 the absolute cosine value of their global

diffusion orientations | cosα|; (4) close to 1 the cosine value cos βi for most corresponding

local diffusion orientation pairs. We here use the accumulated cosine value
∑n

i=1 cos βi of

all segments to assess the fourth criterion. This is much like a voting scheme for curve
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matching in the field of computer vision [86]. Each pair of segments vote to the final score

with a weight equal to their cosine value and in turn their shape similarity. Highly matched

streamlines will receive votes of large (close to 1) weight. The cosine value is given by the

normalized inner product of two vectors

eT1 · e2
∥e1∥∥e2∥

. (3.4)

To compute the local shape similarity, we first define the relative length difference, δ,

between a pair of streamlines as

δ = ∥L1 − L2

n
∥, (3.5)

where L1 and L2 are lengths of the two streamlines respectively and n = min(L1, L2). δ has

the value zero if L1 = L2, and unity if either L1 or L2 is zero. A longer streamline pair has a

smaller δ value than that of a shorter streamline pair with a fixed absolute length difference.

The length difference between a very long and a fairly short streamline is magnified by this

definition.

Gaussian kernel is employed to assess the relative length difference. The local simi-

larity score between two streamlines under the current principal eigenvector setting, Sl1 , is

formed by the summation of segment cosine values together with the length factor.

Sl1 =
1

n

n∑
i=1

cos βi exp (−
δ

2σ2
). (3.6)

This means that the cosine value computation depends on the length of the shorter one

of the two streamlines. Since the current principal eigenvectors are in one of the two diffu-

sion directions, we then reverse all primary eigenvectors of any one of the two streamlines

and repeat the calculation in Equation 3.6 to obtain Sl2 . Sl1 and Sl2 both have values in the

interval of [−1, 1]. The first component of pairwise overall similarity score (PWOSS), the

local similarity measure, is finally established as

Sl = max (Sl1 , Sl2). (3.7)
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The values of Sl range from −1 to 1.

A natural question arises here is that why we do not calculate the absolute value of

cos βi, instead, we compute Sl1 and Sl2 , the signed cosine values separately. The reason

is that the signed cosine values of all corresponding segments between a streamline pair

can give their relative global as well as local shape information without additional compu-

tational cost. On the other hand, the absolute cosine values carry only their relative local

shape information. This property is especially useful when we compare two spatially close

streamlines belonging to two fiber bundles. It is also computationally efficient in removing

outliers within a tract cluster. Figure 3.4 illustrates the advantage of the signed cosine value

over the absolute cosine value. In Figure 3.4, there are three streamlines, s1, s2 and s3, each

has a length of 7. The segment signed cosine values cos(e7, e7′) = 1, cos(e7, e7′′) = −1

and cos(e7′ , e7′′) = −1. While cos(e1, e1′) = 1, cos(e1, e1′′) = 1 and cos(e1′ , e1′′) = 1.

These signed values reveal useful information that the end partitions of s1 and s3, s2 and

s3 terminate in two opposite directions while they start in the same direction. On the other

hand, s1 and s2 end in the same direction. The same conclusion can also be drawn with

all reversed principal eigenvectors. By contrast, the absolute cosine value carries no such

information.

The second constituent of PWOSS, the global affinity metric, is given by

Sg = | cosα| exp (−
dc
2σ2

), (3.8)

where dc = ∥c1 − c2∥ is the Euclidean distance between the two geometric centers. cosα

represents the cosine value of two global diffusion orientations. Sg thus quantifies both

global geometry and global shape relationships between a pair of streamlines. Its value

lies in the interval of [0, 1]. Sg equals zero when global diffusion orientations of two

streamlines are perpendicular to each other. It is unity if the two global orientations are

parallel as well as the two geometric centers are overlapped.

Using our developed global and local affinity measures, we here combine them together
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to form the PWOSS between two streamlines as

S(s1, s2) = ωSl + (1− ω)Sg, (3.9)

where ω is the weight of the local affinity scores and takes values from 0 to 1. It can be

simply set to 0.5 in most cases. The bounds of the PWOSS are −1 and 1. A higher value

of PWOSS indicates a stronger match, and a lower value reflects a weaker match. The

PWOSS value equals one if and only if a streamline is matched with itself.

Figure 3.5 shows examples of different spatial organizations of streamline pairs and

their corresponding similarity scores. The subfigures depict how the similarity measures

depend on different relationships between a pair of streamlines. Streamlines are drawn in

continuous, smooth curves instead of a sequence of linear segments for simplicity. They

demonstrate how the two components of the PWOSS value are scored under different sce-

narios. In subfigure 3.5(a), the pair of streamlines have equal length and are parallel to

each other. As a result, they get a full score in Sl. Sg < 1 since the two geometric center

are not identical. They are likely to be identified as being in one cluster if their geometric

centers are close enough. Two streamlines in subfigure 3.5(b) share both a common geo-

metric center and global diffusion orientation. Subsequently their Sg = 1. Here Sl < 1

since they have unequal length. This pair of streamlines may be classified into one bundle

if their relative length difference is small. Subfigure 3.5(c) shows the general relationship

between two random streamlines.

3.4 Methods

3.4.1 Streamline Parameter Fitting

The backward streamline based DTI tractography technique proposed by Mori and van

Zijl [39] is employed in this analysis to generate input streamlines for tract partition pur-

pose. The tractography output is a set of streamlines with unequal separation distances

between successive step points. To obtain comparable length unit among tracts for cluster-

ing, all streamlines are first fitted using a fixed geodesic arc length. After this parameter
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fitting, all streamlines have the same length unit. This makes it possible to evaluate the

length difference between two streamlines. But it should be noticed that each segment of

a streamline may no longer be strictly parallel to the voxel’s diffusion orientation it falls

in. Another situation may arise is that a single linear segment lies in two or more voxels.

In this scenario, we take the summation of the related multiple diffusion orientations as a

segment’s local orientation. To reduce these side effects we employ an arc length which is

shorter than the voxel size in the fitting process.

3.4.2 Matching Starting Point Correspondence

To compare two arbitrary located streamlines, we need first to determine the matching

starting points to begin our affinity calculation. There are mainly two scenarios depending

on the spatial organization of tracts under consideration. The first is that a streamline

pair share a common ROI which is usually a cutting plane perpendicular to both of them.

This ROI can be a seed point region in tractography or a manually placed reference plane

afterwards. One obvious example is the corpus callosum tracts for which the mid-sagittal

plane is usually set as their common ROI. In this situation, all streamlines can be matched

by starting from this ROI and moving towards along certain directions.

The second case occurs when tracts share no such common ROI. One example is shown

in Figure 3.6. It is also difficult to manually place a common ROI, a cutting plane, perpen-

dicular to all of them. This is more general than the first case especially when we isolate

tracts stemmed from the whole brain tracing. To find matching starting points for a pair of

streamlines in this situation is challenging. Our solution is to find the two closest step points

such that each of them is located on a distinct streamline and their in-between distance is

the minimum among all point-to-point distances between the two streamlines. Each of the

two closest points is set as the matching starting point of the streamline to which it belongs.

The pair of the closest points (p1, p2) can be computed as

(p1, p2) = arg min
p1i∈s1,p2j∈s2

∥p1i − p2j∥, (3.10)
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where p1i is any step point on the streamline s1, p2i is any step point on the streamline s2,

∥p1i−p2j∥ is the Euclidean norm, i ∈ [1, L1+1], j ∈ [1, L2+1]. L1 and L2 are the lengths

of s1 and s2 respectively. This is a variation of the Hausdorff distance measure.

Note that it is possible to obtain multiple closest point pairs. In this case, any pair can

be chosen without apparent difference in the clustering results. Another issue needs to be

addressed is that a streamline’s starting point depends on other streamlines with which it

is matched. In general, it may have several matching starting points when compared with

different streamlines.

With the common ROI or matching starting points outlined in above two cases, we can

continue to conceptually treat a streamline s as two subpartitions, forward and backward

substreamlines sf and sb. The splitting point of a streamline here is its matching starting

point instead of the seed point in tractography. And this splitting point may vary when this

streamline is compared with others.

3.4.3 Segment Correspondences and Bilateral Matching

As above described, the local similarity score Sl is calculated segment-wisely. Since a

streamline is split into forward and backward partitions, with the matching starting points

determined, we still need to find the correct moving directions, i.e. the substreamline cor-

respondences to obtain segment-to-segment correspondences to compute Sl between two

streamlines. Similarly, the substreamline correspondences are easily achieved for tracts

sharing a common ROI. However, for tracts sharing no such common ROI it is not obvious.

There are two possible such correspondences between two streamlines s1 and s2 shar-

ing no common ROI. They are either (s1f ↔ s2f , s1b ↔ s2b) or (s1f ↔ s2b, s1b ↔ s2f ).

(s1f ↔ s2f ) here means the forward substreamline of s1, s1f , is corresponding to the

forward section of s2, s2f . Each configuration generates different segment-to-segment cor-

respondences. As a result, different local affinity measures, Sl, may be obtained.

We solve this directional uncertainty by inspecting the four end point distances between
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a pair of streamlines. The underline rationale is that the pair of substreamlines from two

distinct streamlines are in accordance with each other if their end points are close. Let

(p11, p12) and (p21, p22) be the two end points of the streamlines s1 and s2 respectively.

p10 and p20 are the starting points of s1 and s2. p11 and p12 are the end points of s1f

and s1b respectively. Similarly, p21 and p22 are the end points for s2f and s2b. Assume

d11 = ∥p11 − p21∥, d12 = ∥p11 − p22∥, d21 = ∥p12 − p21∥ and d22 = ∥p12 − p22∥ as

depicted in Figure 3.7. The procedure to determine the substreamline correspondence can

be described as

1. Calculate d11, d12, d21 and d22.

2. If d11 ≤ d12 and d22 ≤ d21, the substreamline correspondence is (s1f ↔ s2f , s1b ↔

s2b) and vise-versa. This means each of the two ends of a streamline s1 are close to

a different end point of another streamline s2 as illustrated in subfigure 3.7(a).

3. If d11 ≤ d12 and d22 > d21, compare the two shorter distances d11 and d21. If

d11 ≤ d21, the substreamline correspondence is (s1f ↔ s2f , s1b ↔ s2b). Else if

d11 > d21, the substreamline correspondence is (s1f ↔ s2b, s1b ↔ s2f ). It is similar

when d11 > d12 and d22 > d21. This case indicates that both of the two end points

of a streamline s1 are close to a common end point of another streamline s2. This

scenario is demonstrated in subfigure 3.7(b).

Once the substreamline correspondence is fixed, to figure out the segment-to-segment cor-

respondences becomes trivial.

Figure 3.7 graphically illustrates the determination of substreamline correspondences

under two possible scenarios. In subfigure 3.7(a), the two end points of streamline s1, are

close to two different end points of streamline s2. In detail, p11 is close to p21 and p12 is

close to p22. The substreamline correspondence is established by the above procedure 2.

In subfigure 3.7(b), both of the two end points of s1 are close to a common end point
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of s2, i.e., p21. This configuration falls in the category described in procedure 3 above.

(s1f ↔ s2f , s1b ↔ s2b) is the resulting substreamline correspondence for both cases.

After the segment-to-segment correspondences are formed, the calculation of local

shape affinity measure Sl is performed bidirectionally, once in a direction. It begins at

the starting points or a common ROI and moves towards the two end points of one pair

of corresponding substreamlines, e.g., s1f and s2f , simultaneously, segment by segment.

Then the calculation is repeated for another pair of corresponding substreamlines, e.g., s1b

and s2b, in a similar manner. Sl is thus composed of two components to which we will

refer as Slf and Slb. Slf and Slb are local affinity measures for the two pairs of corre-

sponding substreamlines respectively. In general, Sl = Slf + Slb. However, in cases of the

bilaterally symmetric tracts, such as the corpus callosum, Sl can be formed differently as

Sl = max{Slf , Slb} or Sl = min{Slf , Slb} to emphasize more on the bilateral symmetry

feature of fibers dependent on different applications.

3.5 Experimental Results

Two tract sets, the CST-MCP and CST-CPT-PTR (the posterior thalamic radiations) col-

lective trajectories, were employed to assess our proposed approach in this study. Neither

tract collection has a common ROI. And their length is unequal.

3.5.1 DTI Data

The DTI data used in this study are from health controls which are described in sec-

tions 1.3.2 and 2.4.1.

3.5.2 CST-MCP Tracts

The first tract collection is the CST-MCP data set as shown in subfigure 6.1(a). Its calcu-

lated PWOSS histogram is shown in subfigure 3.9(a). This PWOSS histogram reveals that

the proposed similarity metrics characterize streamlines successfully with the fact that the

number of peaks in the histogram suggests the number of possible subclusters. Further-
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more, the height of a peak reflects the number of streamlines in one subbundle (subcluster

size). For example, there are three relatively high peaks in subfigure 3.9(a). One is widely

separated from the other two which are close to each other. As a result, the CST-MCP bun-

dle may be partitioned into two subclusters with large intra cluster similarities. It may also

be differentiated into three subbundles and two of the three subclusters are expected to have

relatively large inter cluster similarities. However, this may cause some clustering errors

since the height of the midpoint between the two right adjacent high peaks is not close to

zero. We thus prefer to first classify this CST-MCP tract set into two subclusters. Another

merit of this type of histogram is that it can be used to probe the PWOSS threshold to obtain

the desired number of subbundles in advance of the clustering. The PWOSS threshold can

be any similarity value in the interval between the two adjacent peaks. The wide interval

between the left two peaks in subfigure 3.9(a) means a wide selection range of the PWOSS

threshold and subsequently a robust clustering result. We set 0.5 as our PWOSS threshold

in this example.

Subfigure 4.1 demonstrates the two successfully separated subbundles, CST and MCP,

in two distinct colors. To investigate the quality of the clustering result, we compute one

inter cluster (CST-MCP) and two intra cluster (CST-CST and MCP-MCP) PWOSS his-

tograms illustrated in subfigure 3.9(b). It shows that the developed clustering algorithm

classify the streamlines quite reliably, with the maximum inter cluster affinity being smaller

than the minimum intra cluster affinity.

Further inspecting the CST-CST intra cluster histogram reveals two high peaks whose

the midpoint is closer to zero than that in the previous CST-MCP histogram. We further

group the CST tracts into two subbundles with a PWOSS threshold 0.95 which is suggested

by the separation point between the two peaks. Figure 3.10 illustrated the two subbundles of

the CST and the final three subclusters of the original CST-MCP composite tracts in subfig-

ure 6.1(a). Subfigure 3.11(a) illustrates the inter and intra cluster PWOSS histograms of the

generated two CST subbundles. It can be seen that the two peaks in the intra cluster CST-
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CST histogram in subfigure 3.9(b) have been removed. This subpartition further reduces

the variance of intra cluster affinity as well as making the maximum inter cluster similarity

being smaller than the minimum intra cluster similarity. The two CST subbundles, which

we will refer as short and long CST subbundles respectively, have almost equal intra but

obviously distinct inter cluster lengths while sharing similar shapes and occupying close

spatial positions. This suggests that our defined streamline length difference feature and

subsequently the local similarity score play a major role in this subpartition. Histograms in

subfigure 3.11(b) confirms this argument with the local similarity score contributing more

than that of the global affinity score to classify these two subbundles. This information

suggests that we can get a better PWOSS histogram if we assign more weight to the local

similarity score than that to the global affinity measure, i.e., ω ≈ 1. This subbundling can

hardly be done by measuring only the streamline pairwise distance [96] or using the visual

dissection method [52]. The hierarchical clustering strategy is employed in this example

using the intra bundle similarity histogram. We point out that the same subgrouping process

can be applied to the MCP tracts as well. Since the most left peak in the MCP-MCP intra

cluster PWOSS histogram is relatively low, one of the further clustered MCP subbundles is

expected to have low cardinality.

3.5.3 CST-CPT-PTR Tracts

The second data set used in the experiment is composed with three types of projecting

fiber tracts, CST, CPT and PTR. They all penetrate the internal capsule either between the

thalamus and the putamen or between the caudate and the putamen. When approaching the

cortex, they fan out to form the corona radiate.

As previously, we first calculate its PWOSS, local and global similarity scores and gen-

erate the their histograms in Figure 3.12. The information that three potential subbundles

form this collective trajectories can be revealed from the the three obvious peaks in the

PWOSS histogram. With any values in the two intervals between each two of the three
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peaks, e.g., 0.6 and 0.9, being set as the PWOSS thresholds in clustering, we obtain two

and three subbundles respectively. The results are shown in Figure 3.13. We directly get

three subbundles here instead of using the hierarchical method in the previous CST-MCP

example by exploiting the fact that both heights of the two midpoints belonging to different

intervals are zero in the PWOSS histogram. Note that the same reliable clustering results

can be achieved as well by using only the local similarity score in this case.

3.6 Discussion and Conclusion

In this work, we have developed a diffusion orientation based approach to segment a small

number of reconstructed white matter tracts. We have modeled a streamline based on diffu-

sion orientations, streamline length and geometric center. This objective representation has

no specific dependence on a particular tratography algorithm. We have formed the pairwise

tract similarity metric and its two constituents, the local and global affinity scores to quan-

tify shape and spatial position relationships between two streamlines. Furthermore, we

have described a novel scheme to find the matching starting points to compare two stream-

lines sharing no common ROI. Strategies have been developed to establish segment-wise

correspondences between two streamlines under two different scenarios. The proposed ap-

proach is thus independent of user’s placement of ROI(s), in addition to be able to handle

tracts of unequal length. Experimental results show that this method is apt for cluster-

ing two or more fascicles of similar as well as different shapes. And it may provide an

alternative to existing algorithms.

Compared to other methods, the success of our approach benefits from several factors.

The first desirable feature is that this methodology shows the capability to segment both

equal and unequal length tracts. The second attractive property is that our method han-

dles streamlines sharing a specified ROI(s) [96] or none with different strategies because

the similarity measures are independent of user’s placement of selected ROI(s). Thirdly,

the representation of a streamline as sets of straight line segments together with their lo-

53



cal diffusion orientations gives a streamline’s both topological (connection between a pair

of step points) and geometrical information (positions of step points) as shown in the ex-

periments. Taking the advantage of the local diffusion orientation property, local shape

similarities of two streamlines are evaluated by simply investigating the cosine values of

the principal eigenvector pairs along the streamlines. Since these primary eigenvectors are

already available before a tractography algorithm applied, the use of them does not incur

extra computation loads. Next is that in the definition of PWOSS, the isolation of the local

and global similarities gives us the flexibility to emphasize on either tract shape or position

information, or both. With the geodesic parameter fitting, it may be possible to apply this

methodology to across subject studies by normalizing the fitting arc length. Furthermore,

our computed pairwise similarity score histogram has the potential to determine a reason-

able number of clusters for a small number of streamlines. The reason is that it accounts

for both inter and intra cluster affinities. Inner clusters within a coarse structure can be

identified using the similarity score histogram as shown in the CPT-MCP example. This

should produce a more consistent and meaningful clustering result than the methods that

determine the number of clusters automatically. The similarity score histograms facilitates

the choice of an appropriate PWOSS threshold for tracts isolation. The only parameter

needs to be estimated in advance is the σ value in the utilized Gaussian kernel. This param-

eter can be determined by visually checking several PWOSS histograms in correspondence

with different σ values. For instance, Figure 3.14 illustrated the effect of different σ values

on PWOSS for the CST-CPT-PTR compound tracts. This example shows that the PWOSS

histograms become stable when σ ≥ 20. The σ value which can separate the PWOSS his-

togram peaks furthest would be the best one. ω value in Equation 4.12 can be inferred by

probing the local and global similarity score histograms as demonstrated in the CST-MCP

example.

For streamline segmentation purpose, a concern is the noise in the DTI data. Large arc

unit in the fitting procedure can filter out the high frequencies in some extent. However,
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this is achieved at the expense of loss of information regarding local properties of the

tracts. We also can manually remove suspicious clusters, e.g., the short CST sub-bundle in

Figure 3.10(a), by visual assessment.

Our method does have limitations, however. Low spatial resolution of DTI data and the

limited robustness of currently used tractography algorithms at fiber junctions and in noisy

regions may produce trajectories that are locally consistent but incorrectly connected. Our

method is not capable to handle this situation. Even though no a priori anatomic knowledge

about the entire tracts under consideration is required which is a prerequisite in some other

publications [105], our technique does not guarantee that the isolated sub-bundles all have

anatomical meanings. Thus, the quality of the clustering results depends on the validity of

the input streamlines. The quality of the inputs is in turn determined by the quality of the

DTI data and the tractography algorithm. The a priori anatomic knowledge of the whiter

matter in question, e.g., the geometrical information of connected regions or a prototype of

tracts, may be of great help in such situations.

The second shortcoming of this method is that the best σ, ω values, and the PWOSS

threshold need to be interactively selected in advance by visually inspecting several simi-

larity score histograms. This means that the PWOSS threshold and in turn the number of

sub-bundles we expect to find have to be predefined. Though the approach we have taken is

straightforward and generates robust streamline segmentation, it does cost more time than

the automatic cluster number determination methods which is still a research problem in

the field of tract segmentation. Another disadvantage to probe the number of clusters using

the similarity score histogram is that we have to calculate all pairwise affinities though the

all-or-zero clustering algorithm does not require it. This would cause some storage costs

for large amounts of tracts. Of course, we can avoid the extra time and storage expenses by

blindly setting the clustering parameters without the concern of achieving reasonable and

meaningful results.

In future work, alternative tract representations could be considered in order to handle
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branched streamlines. An appropriate rich representation of relationships between the topo-

logical and geometrical properties of matched neuronal paths across individual subjects is

informative in its own right. It may alleviate the difficulty in tract group analysis.

In summary, the work presented here provides a tool to group white matter trajectories

into sub-bundles using the diffusion orientation information carried in DTI data. With

further development, it may ultimately be possible to produce a standard atlas as tract

architecture references, similar to the currently used brain image templates. It thus has

potentials to quantify the deformation of white matter fibers under certain pathologies and

brain diseases, e.g., tumor, or for clinical group analysis. In group studies, fiber tracts from

a new individual could be matched to an atlas or a prototype. The methodology could thus

be applied to in vivo data with the aim of classifying patients from normal controls by

differentiating statistically normal and abnormal tract shapes and configurations.

Copyright c⃝ Xuwei Liang 2011
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Figure 3.3: Illustration of two streamlines s1 and s2, their geometric centers, local and
global diffusion orientations. Two geometric centers, c1 and c2, are marked as solid circles.
Arrows of straight line segments indicate one of the two possible diffusion directions. βi is
the angle between the i-th pair of corresponding segments of the two compared streamlines.
α is the angle between the two global diffusion orientations. Each streamline’s global
diffusion orientation is parallel to the linear line directly connecting its two end points.
Lengths of s1 and s2 are both 4 (4 linear segments).
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Figure 3.4: Demonstration of the advantage of the signed cosine value over the absolute
cosine value. Three streamlines, s1, s2 and s3, all have a length of 7. The numbers represent
the indices of streamline segments. Arrows represent local primary eigenvectors. s1, s2 and
s3 move in the same direction at the beginning. s1 and s2 terminate in the same direction
while s3 turns into the opposite direction.

(a) Sl = 1, Sg < 1 (b) Sl < 1, Sg = 1 (c) Sl < 1, Sg < 1

Figure 3.5: Demonstration of the affinity scores of the two components, Sl and Sg, of
PWOSS affected by different relationships between a streamline pair. In subfigure (b), the
solid circle is the geometric center of both streamlines. The dotted line represents their
global diffusion orientations.
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Figure 3.6: Illustration of multiple streamline bundles sharing no common ROI.
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Figure 3.7: Graphical illustration of substreamline correspondences. In (a), the two end
points of streamline s1, (p11, p12), are close to two different end points of streamline s2.
In (b), both of the two end points of s1 are close to a common end point of s2, i.e., p21.
(s1f ↔ s2f , s1b ↔ s2b) is the substreamline correspondence for both (a) and (b).
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(a) CST and MCP (b) CST and MCP in two clusters

Figure 3.8: The CST-MCP compound trajectories and two clustered sub-bundles. (a) is the
original tracts before clustering. (b) shows the separated two subgroups, CST and MCP, in
two different colors. σ = 100 and the PWOSS threshold is 0.5. ω = 0.5.
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(a) PWOSS of CST-MCP tracts
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(b) Inter and intra cluster PWOSS of CST-MCP
tracts

Figure 3.9: Histograms of the calculated PWOSSs for the CST-MCP tracts bundling.
σ = 100 and the PWOSS threshold is 0.5. ω = 0.5. (a) shows the calculated PWOSS
histogram based on Equation 4.12 for the CST-MCP tracts. The inter and intra cluster
PWOSS histograms after clustering are illustrated in (b)
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(a) CST and MCP (b) CST and MCP in three clusters

Figure 3.10: Classification of the CST into two subbundles. (a) shows the two CST sub-
bundles, short and long CST, in two different colors. σ = 100 and the PWOSS threshold is
0.95. ω = 0.5. (b) is the clustered 3 bundles from the original tracts in subfigure (a).
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(a) The intra and inter cluster histograms of
PWOSSs of the short and long CST subbundles
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(b) PWOSS, local, and global similarity score his-
tograms of the CST bundle.

Figure 3.11: σ = 100 and ω = 0.5. (b) shows that the local similarity score contributes
more than that of the global affinity score in the classification.
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Figure 3.12: PWOSS, local and global similarity histograms of the CST-CPT-PTR com-
pound tracts. The PWOSS score suggests the similarity thresholds to classify the tracts
into two or three sub-bundles. σ = 30 and ω = 0.5.

(a) Tracts in two subbundles. The PWOSS thresh-
old is 0.6.

(b) Tracts in three subbundles. The PWOSS
threshold is 0.9.

Figure 3.13: Partitions of the CST-CPT-PTR compound tracts into two and three sub-
bundles. σ = 30 and ω = 0.5 for both (a) and (b).
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Figure 3.14: Effects of different σ values on the PWOSS for the CST-CPT-PTR composite
tracts. The PWOSS histograms keep almost unchanged for σ ≥ 20.
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4 Modeling White Matter Tract Shape Patterns using Fourier Descriptors

4.1 Outline

In this chapter, we first briefly give an introduction of the Fourier transform and its shape

representation applications in other research areas. To apply the Fourier transform tech-

nique in the representation of reconstructed white matter tracts, we then present and eval-

uate several tract shape signatures. The performance of Fourier descriptors with different

tract signatures are assessed with white matter tracts reconstructed from real DTI data. In

the end, we give discussions and concluding remarks of this chapter.

4.2 Introduction

For visual and quantitative analysis of complicated three dimensional (3D) white matter

tracts, efficient computational tools are essential to model and segment reconstructed white

matter trajectories into specific clusters or bundles to gain clinical insight. Over the past

few years, a number of white matter tract segmentation schemes have been published.

However, in the literature, there appears to be disproportionately more effort and emphasis

placed on the development of better clustering algorithms and less on better representations

of reconstructed white matter tracts, even though the latter is more critical in determining

the success of a tract clustering strategy. The popular distance measures capture the local

relationship but tends to lack the ability to capture the global configuration of fiber tracts.

The same applies to other proposed shape signatures such as curvature and torsion. They

are essentially local representations of tract shape features and are thus sensitive to noise

which is an inherent problem in DTI. Secondly, distance measures are tract pair-wise met-

rics. If any one tract has been replaced or removed, then the distance measures have to

be recalculated. Thus they are mutual and temporal. Another property of the tract local

representation is that it is subject dependent. This characterization makes it difficult to be

applied to the clinical practice of group analysis.
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The challenge that we face is to model a fiber tract with a representation method to

separate white matter tracts belonging to distinct clusters while keeping tracts of the same

cluster close by. The tract representation should eliminate the need to establish matching

correspondences between randomly configured tracts generated from whole brain tracking.

Since the procedure to establish intra and inter subject tract correspondences incurs huge

even formidable computational cost when we segment a large amount of tracts such as the

scenario in whole brain tractography. It would be especially desirable if this representation

can be normalized and easily extended to inter subject clustering for group analysis which

is more important than the intra subject clustering in clinical studies.

In this work, we aim to find an effective white matter tract and tract representation

which has enhanced noise resistance and potential to facilitate clinical group analysis of

DTI data. To achieve these goals and to overcome drawbacks of local shape signatures,

unlike traditional techniques, we introduce a technique to model and segment fiber tracts

by using Fourier descriptors derived from different shape signatures. We split a tract repre-

sentation into two separate parts, shape and position characteristics. Especially, we employ

Fourier descriptors to quantify a fiber tract’s shape signatures. Fourier descriptors have

been widely used in shape coding [107], shape analysis [108] and shape retrieval [109] in

computer vision community since they render well both representation and normalization

of a shape. The first few low frequency terms of Fourier series capture the more general

shape properties while the higher frequency terms capture finer shape details. As an inte-

gral, Fourier descriptors not only preserve the tract shape information but also overcome

the noise sensitivity in shape signature representations. Another advantage of Fourier de-

scriptors is that features extracted from Fourier approach can be normalized so that we can

easily handle the effect of rotation, translation and scaling. They thus bear the potential to

be extended into fiber tract recognition and detection across subjects for group analysis.

Next, we present the modeling scheme to quantify the shape of white matter tracts re-

constructed from DTI data and cluster them into bundles using Fourier descriptors. We
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characterize a tract’s shape by using Fourier descriptors which are effective in capturing

shape properties of fiber tracts. Fourier descriptors derived from different shape signatures

are analyzed. Clustering is then performed on these multi-dimensional features in conjunc-

tion with geometric centers using a k-means like threshold based approach.

4.3 Methods

4.3.1 White Matter Tract Parameter Fitting

The backward streamline based DTI tractography technique proposed by Mori and van

Zijl [39] is employed in this analysis to reconstruct white matter fiber tracts. This tractog-

raphy technique produces fiber tracts as spatial curves in the three dimensional space with

unequal separation distances between successive step points. Fourier transform approach

is dependent on the parameterization of the curves. This requires the parameterization to

be standardized. For this reason, all reconstructed tracts are fitted using a fixed geodesic

arc length. Distinct fiber tracts have equal length unit but usually different numbers of step

points.

4.3.2 Shape Signatures

Each step point on a fiber tract has its three dimensional coordinates representing its spatial

position and a principal eigenvector indicating the local diffusion orientation in a specific

voxel it falls in. Based on the spatial position and orientation properties, three shape signa-

tures are considered in this paper. They are center shifted coordinates, central distance and

central angle dot product.

Center Shifted Coordinates

A tract’s center shifted coordinates are its three dimensional coordinates shifted according

to its geometric center to eliminate the effect of bias [110]. Assume (x, y, z) are the three

dimensional coordinates of a step point on a fiber tract. The corresponding center shifted

coordinates are (x− xc, y − yc, z − zc), where (xc, yc, zc) is the geometric center of the
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fiber tract which is the average of coordinates of the tract step points

xc =
1

n

n−1∑
i=0

xi, yc =
1

n

n−1∑
i=0

yi, zc =
1

n

n−1∑
i=0

zi. (4.1)

where n is the number of step points of a fiber tract. This shift makes the coordinates

invariant under translations.

Central Distance

The central distance is the distance of the tract step points from the geometric center

(xc, yc, zc) of the tract

dc =
√
(x− xc)2 + (y − yc)2 + (z − zc)2. (4.2)

The subtraction of the geometric center, which reflects a tract’s spatial position, from step

points makes the central distance invariant under translations as well.

Central Angle Dot Product

A fiber tract’s shape can also be represented by its local diffusion orientations. But these

orientations are not invariant to either translations or rotations. To overcome this downside,

we first define a fiber tract’s global diffusion orientation concept as the accumulation of

local diffusion orientations intrinsic to step points along a fiber tract. This global diffusion

orientation is similar to the cumulative angular function defined by Zahn and Roskies [111]

for closed planar curves. It is the net amount of diffusion orientation difference between the

two end points of a fiber tract. Assume e = {e0, e1, . . . , en−1} is the set of local diffusion

orientations of a fiber tract, then the global diffusion orientation eg is given by

eg =
n−1∑
i=0

ei. (4.3)

A voxel’s diffusion orientation ei is defined as its associated principal eigenvector. How-

ever, they are not equivalent in the sense that a diffusion orientation is symmetrically bi-

directional while a principal eigenvector is directional. In order to get the correct global
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orientation eg, we need to check the directional consistency of the principal eigenvectors.

The strategy is similar to that finding the local tracing direction in streamline based DTI

tractography [27, 39]. In detail, we start from any one of the two end points of a fiber

tract and move along its successive step points. If the dot product between the principal

eigenvectors of the starting point and the next point is negative, we reverse the principal

eigenvector of the next point. Then we move forward following the direction of the prin-

cipal eigenvector to the next point and repeat the process, until reach the last step point of

the tract.

The central angle dot product is the absolute value of the dot product between a step

point’s local diffusion orientation and the global diffusion orientation of the tract

|eTi · eg|
∥ei∥∥eg∥

.

This 1D shape signature is invariant under translations and rotations.

Discrete Fourier Transform

We compute the discrete Fourier transform of a tract for each of the shape signatures de-

scribed above as

FD(k) =
1

n

n−1∑
i=0

s(i) exp(
−j2πki

n
), k = 0, 1, . . . , n− 1 (4.4)

where s(i), i = 0, 1, . . . , n − 1, is a shape signature at the ith point, and j =
√
−1. The

coefficients FD(k), k = 0, 1, . . . , n − 1, are called Fourier descriptors of the shape of

a fiber tract. Since the shape signatures that we introduced are all real values, there are

only n/2 different frequencies in the discrete Fourier transform. If n is an odd number, the

number of different frequencies is (n + 1)/2. In the following discussion, we assume that

n is even for convenience. Therefore, only a half of the Fourier descriptors in Equation 6.1

are needed to describe the shape pattern of a fiber tract.

Fourier descriptors transform the fiber tract shape from the spatial domain into a fre-

quency domain. This eliminates the difficulty to establish the matching correspondence
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between two randomly organized fiber tracts in spatial domain. The number of coefficients

from Fourier transform is usually large, but a small subset of these coefficients is sufficient

to capture the general shape features of a fiber tract. We show in later that this small sub-

set of coefficients is also adequate to identify one fiber tract from others. The coefficients

corresponding to very high frequencies are not so helpful in fiber tract shape differentiation

and subsequently for fiber tract clustering. The reason is that fiber tracts are usually smooth

since sharp turns are avoided in their reconstruction process [27, 39]. These high frequency

components can be ignored without significant accuracy loss for fiber tract clustering. The

lower order components also help filter out noise dependent perturbations. As a result, the

dimension of Fourier descriptors used for fiber tract clustering are significantly reduced. In

addition, two fiber tracts compared based on the Fourier descriptors do not have to have

the same numbers of step points.Consequently, Fourier descriptors can be employed in

matching of fiber tracts with unequal length.

Invariance Normalization

In order to easily extend our method to fiber tract matching across subjects, the shape rep-

resentations should be invariant to translation, rotation and scaling. Shape representation

invariance is difficult to achieve in spatial domain. Especially the rotation invariance needs

large amounts of computation. On the other hand, Fourier descriptors significantly reduce

the difficulty to achieve invariance [112]. If a fiber tract is linearly transformed, Fourier

transform keeps the same linearity of the transformation. All the three shape signatures

introduced above are invariant under translation. Their corresponding Fourier descriptors

are also translation invariant. Rotation invariance of the Fourier descriptors is achieved by

discarding their phase information and keeping only their magnitude components [112].

We represent a Fourier descriptor’s magnitude as |FD| in the following.

For the center shifted coordinates, we treat each of the three coordinate components of

the parameterized fiber tract, x− xc, y − yc, and z − zc, as three one dimensional signals.
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After applying discrete Fourier transform on each of them individually, we get three sets of

Fourier descriptors, FDx(k), FDy(k) and FDz(k). We use the Euclidean norm as the one

dimensional descriptor as [101]

|FD(k)| =
√
|FDx(k)|2 + |FDy(k)|2 + |FDz(k)|2, (4.5)

where k = 0, 1, . . . , (n/2 − 1). FD(0) is the direct current (DC) component which is a

real value and represents the mean position [112]. It is not useful for shape representation

and is thus ignored. FD(1) indicates a fiber tract’s scale information. To achieve scaling

invariance, we divide all other Fourier descriptors by FD(1). Finally, Fourier descriptors

derived from center shifted coordinates are

|FD(2)|
|FD(1)|

,
|FD(3)|
|FD(1)|

, . . . ,
|FD(n/2− 1)|
|FD(1)|

. (4.6)

For central distance and central angle dot product, scaling invariance is achieved by

dividing all other Fourier descriptors by FD(0), the DC component. Their Fourier de-

scriptors are given by

|FD(1)|
|FD(0)|

,
|FD(2)|
|FD(0)|

, . . . ,
|FD(n/2− 1)|
|FD(0)|

. (4.7)

In the following discussion, we represent a normalized descriptor as f(k) for convenience.

In detail, f(k) = |FD(k)|/|FD(1)| and k = 2, 3, . . . , (n/2 − 1) for the center shifted

coordinates. f(k) = |FD(k)|/|FD(0)| and k = 1, 2, . . . , (n/2 − 1) for the other two

shape signatures.

Now, the normalized Fourier descriptors generated from all the three shape signatures

are invariant under translation, rotation and scaling. Each tract’s shape is featured by a

shape vector, f , composed of a set of normalized Fourier descriptors

f = [f(m), f(m+ 1), . . . , f(n/2)]. (4.8)

where n is the number of points of a fiber tract. This number may not be equal among

tracts. m is the starting index of the descriptors. In particular, m = 2 for the center shifted

coordinates and m = 1 for the other two shape signatures.
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4.3.3 Tract Similarity and Clustering

For a reference fiber tract indexed by a shape vector fr = [fr(m), fr(m + 1), . . . , fr(L)]

and a candidate fiber tract indexed by a shape vector fc = [fc(m), fc(m+ 1), . . . , fc(L)],

the shape similarity Ss is calculated by Gaussian kernel of the Euclidean distance as

Ss = exp (− df
2σ2

), (4.9)

and

df =

√√√√ L∑
i=m

|fr(i)− fc(i)|2, (4.10)

where L is the truncated number of the Fourier descriptors used and m is the starting index

of descriptors.

For intra subject clustering, we calculate the spatial position similarity between two

fiber tracts as

Sp = exp (− dm
2σ2

), (4.11)

where dm = ∥c1− c2∥ is the Euclidean distance between the two geometric centers, c1 and

c2, of the two fiber tracts.

Finally, we combine them together to define the overall similarity score S between two

fiber tracts as

S = ωSs + (1− ω)Sp, (4.12)

where ω is a weight factor and takes values between 0 to 1. For S, Ss and Sp, a higher

value indicates a stronger match, and a lower value reflects a weaker match. We then apply

a k-means like threshold based approach to perform tract clustering.

4.4 Experiments and Results

4.4.1 DTI Data

The DTI data used in this study are from health controls which are described in sec-

tions 1.3.2 and 2.4.1.
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4.4.2 Experiments

We first evaluated the capability of the Fourier descriptors to distinguish different shapes

by using a fiber tract collection composed of the corticospinal tract (CST) bundle and the

medial cerebellar peduncle (MCP) bundle. f(2) to f(29) were used for the center shifted

coordinates. f(1) to f(29) were used for the other two shape signatures. In this experiment,

we only applied the Fourier descriptors to differentiate these two fiber bundles, and we set

ω = 1.0 and σ = 1. The clustering result shows that the tracts were grouped into two

plausible bundles, CST and MCP. Figure 4.1 illustrates the segmented tracts in different

colors in a sagittal view.

Figure 4.1: Illustration of the clustering result of CST-MCP tract collection in a sagittal
view. ω = 1.0 and σ = 1. The number of the input fiber tracts is 307. The resulting CST
and MCP bundles have 199 and 108 tracts each.

However, shape discrimination of these Fourier descriptors may be different. Fig-

ures 4.2, 4.3, and 4.4 show the calculated Fourier descriptors for all fiber tracts in this

collection. They reveal that Fourier descriptors derived from the center shifted coordinates
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have the highest discrimination ability among the three shape signatures in this specific

test while the others remain almost the same. Furthermore, with ω = 1.0 and σ = 1, the

only parameter needed to be adjusted in clustering is the similarity threshold. Similarity

threshold intervals to get reasonable partitions are [0.89, 0.96] for the center shifted coordi-

nates, [0.89, 0.92] for the central angle dot product and [0.93, 0.97] for the central distance.

Fourier descriptors transformed from the center shifted coordinates also have the widest

value range.

Figure 4.2: Fourier descriptors derived from the center shifted coordinates. f(2) to f(29)
are used in clustering.

We further apply these Fourier descriptors to segment a more complicated fiber tract

collection and the clustering result is shown in Figure 4.5. Fourier descriptors fail to distin-

guish this set of tracts into plausible bundles without the help of the spatial position feature

(ω = 1.0). With ω = 0.5 and σ = 20, Fourier descriptors stemmed from all the three

shape signatures performed successfully with minor differences on the number of output
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Figure 4.3: Fourier descriptors derived from the central distance. f(1) to f(29) are used in
clustering.
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Figure 4.4: Fourier descriptors derived from the central angle dot product. f(1) to f(29)
are used in clustering.
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fiber tracts. In this test, f(2) to f(29) were used for the center shifted coordinates. f(1) to

f(29) were used for the other two shape signatures.

Figure 4.5: Illustration of the clustering result of tracts composed of total 13 clusters in
different colors. Fourier descriptors are derived from the center shifted coordinates shape
signature. ω = 0.5 and σ = 20. f(2) to f(29) were used for clustering. The number of
input tracts is 1379 and 1341 of them are grouped into 13 clusters. Clusters with less than
10 fiber tracts are ignored.

4.5 Discussion and Conclusion

In this chapter, we have successfully modeled the shape of white matter fiber tracts using

Fourier descriptors derived from three different shape signatures. Their performance in

fiber tract shape differentiation and clustering were analyzed. Our preliminary results show

that they are all adequate to capture shape features for fiber tract identification. Among

them, the center shifted coordinate signature is the best in our test. Our experimental
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results show that Fourier descriptors generated from different shape signatures can play

an important role in fiber tract shape recognition and clustering.

One important clinical application of DTI tractography is the identification of fiber

tracts across subjects for group analysis. Being invariant under translations, rotations and

scaling, the Fourier descriptors can be a good candidate for clustering fiber tracts across

subjects.

Our method does have limitations, however. Low spatial resolution of DTI data and the

limited robustness of currently used tractography algorithms at fiber junctions and in noisy

regions may produce trajectories that are locally consistent but incorrectly connected. Our

method cannot distinguish these fibers at this time. The a priori anatomic knowledge of

the whiter matter in question, e.g., the geometrical information of connected regions or a

prototype of tracts, may be of great help in such situations.

In summary, the work presented in this study provides an approach to quantify the shape

of white matter fiber tracts without the difficulties, i.e., spatial normalization, happened in

spatial domain. The technique has potentials to quantify the deformation of white matter

fibers under certain pathologies and brain diseases, e.g., tumor, or for clinical group anal-

ysis. In group studies, fiber tracts from a new individual could be matched to an atlas or a

prototype. The methodology could thus be applied to in vivo data with the aim of classify-

ing patients from normal controls by differentiating statistically normal and abnormal tract

shapes and configurations.

Copyright c⃝ Xuwei Liang 2011
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5 White Matter Tracts Clustering using Bayesian Inference to Facilitate Group
Analysis

5.1 Introduction

In recent years, analysis of quantitative information extracted from DTI and white mat-

ter has received extensive attentions in order to understand a variety of brain diseases and

disorders such as Alzheimer’s disease, multiple sclerosis and schizophrenia. DTI based

tractography enables selective reconstruction of specific neuronal pathways [27, 35, 37]

and has been used to visualize brain white matter fiber tracts to facilitate our understanding

of brain structural connections in clinical studies such as neurosurgery planning. However,

to reconstruct several tens of fiber bundles for each of the several tens of subjects in group

analysis is tedious, time consuming, subjective and sometimes impractical. In this scenario,

it is desirable to perform the whole brain fiber tracking first for all subjects under study. Af-

terwards, we group the reconstructed fiber tracts into anatomically meaningful bundles and

simultaneously remove the anatomically incorrect tracts, i.e., outliers. Nevertheless, in the

design of the algorithm to perform this task, there are two major challenges we need to

overcome. The first is the computation cost. In the whole brain fiber tracking, the amount

of reconstructed fiber tracts is generally very large, i.e., in the order of several tens of thou-

sands. Though there exist techniques to reduce the amount of reconstructed fibers, the

tradeoff is that some fiber bundles will not be able to be reconstructed. Furthermore, each

fiber tract may consist of several hundreds of step points. If we conduct the clustering by

computing the step point-wise similarity or distance between all possible trajectory pairs,

the computation complexity may be prohibitive in this case. The second challenge is that

the tractography algorithm is usually inaccurate and thus generates a large amount of out-

liers. We would like the clustering algorithm to be able to handle the outliers effectively.

Except that, we hope the clustering accuracy will not be affected by the existence of the

outliers. But the practical situation is that most of the proposed fiber clustering methods

to date, as we have described in previous chapters, are based on the correspondence and
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comparison of the the step points along fibers and lack the desirable capability of handling

outliers. This motivates us to find a practical and efficient way instead.

In this work, we aim to develop a clustering framework to facilitate the single subject

or group quantitative analysis of the reconstructed white matter fiber bundles in the DTI

data based on a certain level of a priori knowledge. The goal is to cluster fiber tracts into a

number of interested target fiber bundles instead of random groups. The above mentioned

two major challenges are addressed in the framework. Different strategies are presented

to handle the scenarios dependent on more or less the a priori knowledge contained in

the target fiber bundles. In both of the two cases, the heavy computing burden is largely

reduced by eliminating the need either to establish the point-wise correspondence between

trajectory pairs or to perform the calculation at the level of the step points along fiber

tracts. We achieve this goal by introducing the fiber tract representation in the format of a

number of Fourier shape descriptors and geometric features. This representation provides

the framework the theoretical ground to reduce the noise effect inherent to the DTI data

and the desired differentiating ability. In the framework, the distribution of fiber tracts

is described by a multivariate Gaussian mixture model. This statistical parametric model

makes it feasible to exploit the a priori knowledge in the format of mean and covariance

of fiber bundles. Fiber tracts do not fit into any of the target bundles are labeled as outliers.

Anatomically meaningless fiber bundles are mostly avoided since the involvement of the a

priori knowledge. In the case that we have little a priori knowledge, we use the expectation-

maximization (EM) algorithm to perform the maximum likelihood estimation (MLE) to

approximate the class parameters and label fiber tracts. On the other hand, if a set of

fiber bundle atlas are given, i.e., the class parameters are known, we directly label each

trajectory by finding its maximum of the a posterior Bayesian probabilities among all the

target classes. The method has the potential to incorporate new found fiber bundle patterns

into the existing atlas. It as well has the flexibility to conduct the grouping on a portion

or all of the fiber tract set one time to accommodate different situations. In both cases,
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outliers are handled by easily setting a probability threshold. Experiment in real DTI data

set is conducted to evaluate the performance of the proposed approach.

In this chapter, we first go over the mathematical basics and the proposed methodology.

Then we present the experimental results obtained. At the end, we give discussions and

conclusion remarks of this work.

5.2 Methods

5.2.1 The Statistical Model

Suppose we have a finite data set of observations D of N fiber tracts D = {x1, . . . ,xN}T.

Each fiber tract is denoted by a D-dimensional feature vector xn = [xn1, . . . , xnD]. Here,

n = 1, . . . , N . Then we can mathematically form the data set D as an N × D matrix

X ≡ {x1, . . . ,xN}T. Each row of X represents one single fiber tract. And its nth row is

given by xn. We further assume that we have a finite target fiber bundle set C of K fiber

bundles C = {C1, . . . , CK}. Each fiber tract is to be labeled into one of the K target fiber

bundles or labeled as an outlier.

Without loss of generality, we assume that the N fiber tracts are drawn independently

from the distribution. In other words, they are statistically independent and identically dis-

tributed (i.i.d.). And fiber tracts in each of the K bundles follow the Gaussian distribution

of positions. That is, the distribution of the fiber tracts in the kth target fiber bundle takes

the form of the multivariate Gaussian

N (xn|µk,Σk) =
1

(2π)D/2

1

|Σk|1/2
exp

{
−1

2
(xn − µk)

TΣ−1
k (xn − µk)

}
(5.1)

where k = 1, . . . , K, µk is a D-dimensional feature mean vector, Σk is the D ×D feature

covariance matrix, and |Σk| represents the determinant of Σk. For our convenience, we rep-

resent the feature mean of all the K target clusters as a K ×D matrix µ ≡ {µ1, . . . ,µK}
T

with rows µT
k . For the covariance matrix, we use the notation Σ ≡ {Σ1, . . . ,ΣK}.

The observed distribution of the date set D is represented by a Gaussian mixture model

which is a simple linear superposition of the K single Gaussian components [113, 114].
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Thus, the Gaussian mixture distribution is written in the form

p(xn) =
K∑
k=1

πkN (xn|µk,Σk) (5.2)

where πk, the mixing coefficient, represents the contribution of the kth bundle to the overall

observed distribution. The values of πk satisfy πk ∈ {0, 1} and
∑K

k=1 πk = 1. Similarly,

we denote the mixing coefficients of the K target fiber bundles as a K-dimensional variable

π ≡ {π1, . . . , πK}.

For the purpose of fiber clustering, we now introduce a K-dimensional binary indicator

variable c = [c1, . . . , cK ] to denote the latent variable, i.e., the class label of fiber tracts. c

has a 1-of-K representation in which a particular element ck equals 1 and all other elements

equal to 0. Therefore, ck ∈ {0, 1} and
∑K

k=1 ck = 1. Every fiber tract in the clustering has

a corresponding latent variable ck. If a fiber track is assigned to cluster k then its ck = 1.

With the help of the latent variable c we are now able to estimate the joint distribu-

tion p (x, c) by means of the marginal and conditional distribution p (c) and p (x|c). The

marginal distribution

p(ck) ≡ p(ck = 1) = πk (5.3)

Note that we denote the priori probability of p(ck = 1) as πk, i.e., the mixture proportion

of each single Gaussian component. Thus

p(c) =
K∏
k=1

πck
k (5.4)

The marginal distribution follows a Gaussian and is formed as

p(xn|ck) ≡ p(xn|ck = 1) = N (xn|µk,Σk) (5.5)

and

p(xn|c) =
K∏
k=1

N (xn|µk,Σk)
ck (5.6)

Then we get the joint distribution from Equations 5.4 and 5.6

p (xn, c) = p(c)p(xn|c) (5.7)
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Summing over all the target classes gives the marginal distribution of xn

p(xn) =
∑
c

p (xn, c) =
∑
c

p (c)p(xn|c) =
K∑
k=1

πkN (xn|µk,Σk) (5.8)

It shows that the marginal distribution p(xn) is also a Gaussian mixture and its formulation

is equivalent to Equation 5.2. But it explicitly contains the latent variable, i.e., the class

labels c which are of our interests in the context of fiber clustering. This desirable char-

acteristic makes it possible for us to estimate the joint distribution p(xn, c) instead of the

marginal distribution p(xn). Thus it leads us further to calculate the following Bayesian

posterior probability pnk and finally to estimate the class labels of fiber tracts.

Based on Equations 5.3, 5.5, and 5.8, the posterior probability of ck given the fiber tract

xn is available by using the Bayesian theorem

pnk = p(ck|xn) =
p(ck)p(xn|ck)

p(xn)

=
πkN (xn|µk,Σk)
K∑
i=1

πiN (xn|µi,Σi)

(5.9)

For handling outliers, We set up one threshold for posterior probability pnk. That is, if pnk

is less than a certain value, xn will be labeled as outlier.

5.2.2 Feature Selection

To reduce the heavy computing cost and the noise impact on the clustering accuracy, both

of which are inherent to the traditional step point comparison techniques, we instead select

features limited at the fiber tract level. We split the representation of a fiber tract into three

separate parts, the shape, length, and spatial position characteristics. Specifically, we model

the shape of a fiber tract using Fourier descriptors derived from its shape signatures, i.e., the

Euclidean coordinates of the step points. And the spatial position used is a relative position

described by the distance from a reference point instead of an absolute distance.

We have first introduced the Fourier descriptor tract model in Chapter 4. In this work,

we make two major modifications based on the performance of the clustering algorithm
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we develop in this chapter. The first modification is that we use the step points along a

white matter tract as our shape signature. Secondly, we do not simply sum over the three

components as what is introduced in Eqauition 5.23. Instead, we take each individual

component’s real part as one single feature. The following describes the details. For the

sake of clarity, we briefly repeat the Fourier transform definition here.

Fourier Descriptors

In the streamline tractography techniques, a single fiber tract consists of a sequence of step

points in the number of several tens to several hundreds. Assume the i-th step point has the

three dimensional coordinates (xi, yi, zi). (xi, yi, zi) are the shifted coordinates according

to the mid-sagittal plan of the brain we will show later. We compute the discrete Fourier

transform of a fiber tract for each of the components of the three dimensional coordinates

(xi, yi, zi) individually [101]

Fl(s) =
1

L

L−1∑
i=0

si exp

(
−2πj

L
li

)
, l = 0, 1, . . . , L− 1 (5.10)

where L is the number of step points along a fiber tract, s represents x or y or z, si is xi or

yi or zi at the ith point, i = 0, 1, . . . , L− 1, and j is the imaginary unit, i.e., j =
√
−1.

Fl(s) is a complex describing the magnitude and phase of the input as a function of

frequency. In our application, the phase information is not important and thus discarded.

We keep only the magnitude information defined as

FDl(s) = |Fl(s)| =
√

Re (Fl(s))
2 + Im (Fl(s))

2 (5.11)

where Re (Fl(s)) and Im (Fl(s)) are the real and imaginary parts of Fl(s) respectively.

The coefficient FDl(s) is called the Fourier shape descriptor of a fiber tract in our con-

text. Sometimes it is referred as the frequency spectrum or spectral density in the signal

processing feild. Since the coordinates xi, yi, and zi are all real values, there are only L/2

different frequencies in the discrete Fourier transform. If L is an odd number, the number

of different frequencies is (L + 1)/2. In the following discussion, we assume that L is
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even for convenience. Therefore, only a half of the Fourier descriptors in Equation 5.10 are

needed to describe the shape pattern of a fiber tract.

Fourier descriptors transform the fiber tract shape description from the spatial domain,

i.e., the three dimensional Euclidean space, into a frequency domain. This transformation

eliminates the difficulty and cost to find the step point-wise correspondence between two

randomly organized fiber tracts in the spatial domain at all. The number of coefficients

from Fourier transform is usually large, but a small subset of these coefficients is suffi-

cient to capture the general shape features of a fiber tract. Furthermore, it provides us the

flexibility to use more or less features in clustering according to the closeness in the shape

measurement of fiber tracts. We show in Section 5.3 that this small subset of coefficients

together with a few geometric features is adequate to identify one fiber tract from others.

Geometric Features

Besides the above mentioned Fourier descriptors to characterize a fiber’s shape pattern,

we also employ a few geometric features at the fiber tract level to characterize a fiber tract.

They are the length, the shifted coordinates of the centroid or the geometric center of a fiber

tract, and the distance between a fiber’s centroid and a user defined reference point. We use

the shifted coordinates and the distance based on the fact that the human brain is left and

right sphere symmetric. The reference point used in this study is the centroid of bounding

box of the mid-sagittal corpus callosum. We choose it as the reference point based on two

observations. First, our common sense of the brain symmetry means that the left and right

brain sphere are symmetric according to the mid-sagittal plan. The second observation is

that the size of the bounding box of the corpus callosum on the mid-sagittal plan are similar,

though not identical, across populations. And the averaging effect in obtaining the centroid

of the bounding box reduces the difference. In fact, other reference points can certainly be

employed as long as the difference of the relative distance between a spatial location and

the reference point among subjects is small.
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Figure 5.1: Two angle’s views of the symmetric property of tract bundles. The mid sagit-
tal corpus callosum plan is covered by a mask. The symmetric fiber bundles are colored
by the overlapped FA values at step points along tracts. The bottom color bars indicate
correspondences between colors and FA values.

The length is defined as the number of step points along a fiber tract. The centroid of

a fiber tract (xc, yc, zc) is the geometric center of the fiber tract which is the average of

coordinates of all the step points along a fiber tract

xc =
1

L

L−1∑
i=0

xi, yc =
1

L

L−1∑
i=0

yi, zc =
1

L

L−1∑
i=0

zi. (5.12)

Here L is the number of step points of a fiber tract.

Due to the symmetry of the brain, we use the shifted coordinates to represent a step

point of a fiber tract. Assume that the coordinates of the ith step points is (xi, yi, zi) and

the mid sagittal plan is located at xm, then the shifted coordinates of the ith step point is

(|xi − xm|, yi, zi). In this way, the two symmetric positions in the symmetric left and right

half brain spheres have the same positive x coordinates. Figure 5.1 depicts the symmetric

property of fiber bundles.

Figures 5.2 and 5.3 demonstrate the calculation of the shifted coordinates. The geomet-

ric center of the bounding box of the mid-sagittal corpus callosum plan is shown as a large

purple ball in Figures 5.2 and 5.3. The small purple ball in the right subfigure of Figure 5.3

represents the geometric center of the fiber tract shown in the graph. The distance between

the geometric center of the reconstructed white matter tract and the geometric center of
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(a) The mid-sagittal corpus callosm plan. (b) The mid-sagittal corpus callosm plan mask.

Figure 5.2: Sagittal view of the mid-sagittal corpus callosum plan and the geometric center
of its bounding box. In the right subfigure, the purple ball represents the the geometric
center of the bounding box of the mid-sagittal corpus callosum plan. A mask is placed on
the mid-sagittal corpus callosum in the right subfigure.

the bounding box of the mid-sagittal corpus callosum plan is depicted by a double arrowed

yellow straight line.

Formation of the Features Vector

Combine the above introduced features together, the nth fiber tract xn
T then is depicted by

the following D−dimensional feature vector

xn
T = [FD1(x), . . . , FDDx(x),

FD1(y), . . . , FDDy(y),

FD1(z), . . . , FDDz(z),

Ln, xnc, ync, znc] (5.13)

where Ln is the length of this tract, i.e., the number of step points it has. Dx, Dy, and Dz are

the numbers of Fourier descriptors of the coordinate x, y, and y respectively. (xnc, ync, znc)

is the coordinate of the geometric center of the tract. We let Dx = Dy = Dz for simplicity.
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Figure 5.3: Illustration of the distance between two geometric centers. The left subfigure
is the coronal view of the mid-sagittal corpus callosum plan mask and the geometric center
of its bounding box. The small purple ball in the right subfigure represents the geometric
center of the fiber tract shown in the graph. The distance between the geometric center of
the reconstructed white matter tract and the geometric center of the bounding box of the
mid-sagittal corpus callosum plan is depicted by the double arrowed yellow straight line.

5.2.3 Unsupervised Clustering

In general, parameters, πk, µk and Σk, in the Gaussian mixture model of Equation 5.2 are

unknown. To achieve our goal, we need first to estimate these unknown parameters of the

distribution of the target bundles from the data set D, i.e., the N fiber tracts need to be

labeled. We can do this by using MLE [113, 114]. From Equation 5.2 the logarithm of the

likelihood is

ln p
(
X
∣∣π,µ,Σ)

=
N∑

n=1

ln

{
K∑
k=1

πkN
(
xn

∣∣µk,Σk

)}
(5.14)

We denote the parameter set, π, µ and Σ, as Θ for our convenience. Then the estimated

parameter set Θ̂ is

Θ̂ = argmax
Θ

{
ln p

(
X
∣∣Θ)}

(5.15)

Equation 5.14 shows that the maximum likelihood solution for the unknown parameters

does not have a closed analytical form under the mixture model context. We employ

the well-known framework which is called the EM algorithm to approximate the maxi-

mum likelihood solutions [115, 116]. After appropriate initializations, the EM algorithm

finds the optimal solution by iteratively performing the expectation (E-step) and maximiza-
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tion (M-step) until it reaches convergence. We summarize it as below

1). E-step. Evaluate the the posterior probability of ck given the fiber tract xn, i.e., pnk.

pnk depicts the probability, or the level of the certainty, that fiber tract xn belongs to the

k-th target bundle. Suppose we are at the i-th iteration and the current parameter set is Θ̂i-1,

then we have

pink =
πi−1
k N

(
xn

∣∣µi−1
k ,Σi−1

k

)
K∑
j=1

πi−1
j N

(
xn

∣∣µi−1
j ,Σi−1

j

) (5.16)

2). M-step. Update the parameter set Θ̂i using the current posterior probability pink

obtained at the E-step, i.e.,

N i
k =

N∑
n=1

pink (5.17)

µi
k =

1

N i
k

N∑
n=1

pinkxn (5.18)

Σi
k =

1

N i
k

N∑
n=1

pink
(
xn − µi

k

) (
xn − µi

k

)T (5.19)

πi
k =

N i
k

N
(5.20)

Once the EM algorithm reaches its convergence, the estimated parameters πk,µk,Σk

in current feature set become available.

In a complicated situation, the above EM procedure with a fixed small set of features

does not guarantee that it will generate the desirable results for all clusters. In our study, it

happens when some of the fiber bundles are very similar in both the shape and positional

measures. We overcome this difficulty by employing more Fourier descriptors in cluster-

ing. To automate this procedure, we simply add one out layer loop outside the EM iteration.

In the out layer loop, we increase the number of Fourier descriptors by one at each itera-

tion until a predefined threshold is reached. The structure of the algorithm is depicted in

Algorithm 1. In Algorithm 1, e is the predefined threshold which measures the differences
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of all the three unknowns between two iterations. That is, we check if the stop condition

||µknew − µkold||+ |πknew − πkold|+ |trace(Σknew)− trace(Σkold)| < e (5.21)

holds at each iteration.

The cluster label k̂ according to the largest pnk is assigned to the nth fiber tract if pnk is

greater than a user defined threshold for handling outliers. That is

k̂ = argmax
k
{pnk} , k = 1, . . . , K (5.22)

If pnk is less than the outlier threshold, a label of outlier is assigned to this tract.

5.2.4 Supervised Clustering

In the case that parameters, πk, µk and Σk, in the Gaussian mixture model of Equation 5.2

are known, we can directly calculate the a posterior Bayesian probabilities based on Equa-

tion 5.9 and thus omit the EM procedure. The algorithm is a simplified version of the

Algorithm 1 and is illustrated in the Algorithm 2. In Algorithm 2, definitions of param-

eters and the stop criterion are the same as that in Algorithm 1 and FD refers to Fourier

descriptor.

5.3 Experiments and Results

Fourier descriptors and some spatial features are used to form the feature vector. For con-

venience, we use following conventions in our discussion:

FD - Fourier descriptor;

FDx - Fourier descriptor of the x component of the coordinate (x, y, z);

FDy - Fourier descriptor of the y component of the coordinate (x, y, z);

FDy - Fourier descriptor of the z component of the coordinate (x, y, z);

L - Tract length which is the number of step points on it;

(cx, cy, cz) - Coordinates of the geometric center of a tract;

cdist - The distance between the geometric center of a tract and the geometric center of the
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Algorithm 1 Algorithm with additive Fourier descriptors and EM
Ensure: Nold = Nnew = # of fibers;

Kold = Knew = # of target bundles;
Dmax = maximum # of Fourier descriptors;
D = # of Fourier descriptors; e = Predefined stop criterion; µold;Σold;πold

1: while Kold > 0 ∨D < Dmax do
2: n = 0
3: while n < Nold do
4: construct the feature vector xn

T

5: n← n+ 1
6: end while
7: initialize the EM algorithm with µold,Σold, and πold

8: run the EM with Nold and Kold and obtain µnew,Σnew, and πnew

9: k = 0
10: while k < Kold do
11: Nk = 0
12: k ← k + 1
13: end while
14: n = 0
15: while n < Nold do
16: k = 0
17: while k < Kold do
18: if xn is labeled as k then
19: Nk ← Nk + 1
20: end if
21: k ← k + 1
22: end while
23: n← n+ 1
24: end while
25: k = 0
26: while k < Kold do
27: if ||µknew − µkold||+ |πknew − πkold|+ |trace(Σknew)− trace(Σkold)| < e then
28: Knew ← Kold − 1
29: Nnew ← Nold −Nk

30: k ← k + 1
31: end if
32: end while
33: Kold ← Knew

34: Nold ← Nnew

35: k = 0
36: while k < Kold do
37: πkold = πknew

38: µkold = µknew

39: Σkold = Σknew

40: k ← k + 1
41: end while
42: end while

90



Algorithm 2 Clustering algorithm with the atlas
Ensure: Nold = Nnew = # of tracts; Kold = Knew = # of target bundles; Dmax = max

# of FDs; D = # of FDs; e = Stop criterion; µold;Σold;πold

1: while Kold > 0 ∨D < Dmax do
2: n = 0
3: while n < Nold do
4: construct the feature vector xn

T

5: n← n+ 1
6: end while
7: n = 0
8: while n < Nold do
9: calculate pnk using Equation 5.9 with µold,Σold, and πold

10: label this fiber tract according to its maximum pnk
11: n← n+ 1
12: end while
13: calculate µnew,Σnew, and πnew from the labeled fiber tracts
14: k = 0
15: while k < Kold do
16: Nk = 0
17: k ← k + 1
18: end while
19: n = 0
20: while n < Nold do
21: k = 0
22: while k < Kold do
23: if xn is labeled as k then
24: Nk ← Nk + 1
25: end if
26: k ← k + 1
27: end while
28: n← n+ 1
29: end while
30: k = 0
31: while k < Kold do
32: if ||µknew − µkold||+ |πknew − πkold|+ |trace(Σknew)− trace(Σkold)| < e then
33: Knew ← Kold − 1
34: Nnew ← Nold −Nk

35: k ← k + 1
36: end if
37: end while
38: Kold ← Knew

39: Nold ← Nnew

40: k = 0
41: while k < Kold do
42: πkold = πknew

43: µkold = µknew

44: Σkold = Σknew

45: k ← k + 1
46: end while
47: end while
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mid sagittal corpus callosum plan;

e - The predefined stop criterion of EM algorithm;

po - The user defined outlier threshold for labeling with a default value 0.5;

K - Number of tract bundles;

N - Number of reconstructed white matter tracts;

D - The dimension of the feature vector;

DFDx - The number of FDx;

DFDy - The number of FDy;

DFDz - The number of FDz;

DFD - The total number of Fourier descriptors, i.e. the summation of DFDx , DFDy , and

DFDz ;

In default, FDx starts from its first term. Priori probabilities π of all K target bundles are

set as 1/K.

5.3.1 DTI Data

The DTI data used in this study are from health controls which are described in sec-

tions 1.3.2 and 2.4.1.

5.3.2 Without Outliers

First, we test the performance of our technique with reconstructed white matter tracts in-

cluding no outliers. We would like to find if the algorithm can correctly segment these well

formed tract bundles.

Before the clustering, we manually reconstruct seven separated tract bundles. All these

bundles have been carefully trimmed and validated. There are totally 2, 498 tracts included

in the seven bundles. After visual checking, we found no outlier. The seven bundles are

shown in Subfigure 5.4(b). We then mix the seven bundles together and form the unlabeled

inputs for the clustering algorithm. The mixed tracts are illustrated in Subfigure5.4(a).

The experimental results show that the 2, 498 tracts are all correctly labeled into the seven
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bundles and no tract is labeled as outlier. Here, D = 20, DFDx = 5, DFDy = 5, and

DFDz = 5. The 5 spatial features include L, cx, cy, cz, and cdist. e = 1.00e − 006 and

po = 0.50. The number of EM iterations is 3.

(a) Unclassified 2498 tracts (b) Classified seven tract bundles

Figure 5.4: Illustration of the clustering results with well defined input tracts. Subfiger (a)
shows the input reconstructed white matter tracts. Subfiger (b) demonstrates the clustering
results which are seven separated tract bundles colored differently.

5.3.3 With Outliers

Figure 5.5 demonstrates the clustering result on totally 23, 770 reconstructed white matter

tracts. Among the 23, 770 tracts, 14, 550 are grouped into 18 target bundles and 9, 220 are

labeled as outliers. Here, D = 50, DFDx = 15, DFDy = 15, and DFDz = 15. The 5 spatial

features include L, cx, cy, cz, and cdist. e = 1.00e − 012 and po = 0.50. The number of

EM iterations is 57. With visual validation, the clustering result is quit reasonable.

5.4 Discussion

5.4.1 Evaluation of the Proposed Fourier Descriptor Formation

We have previously mentioned the modification of Fourier descriptor representation for

reconstructed white matter tracts in 5.2.2. Take the three dimensional coordinates (x, y, z)

of tract step points as shape signatures, we have to apply the Fourier transform on each of
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(a) Unclassified 23, 770 tracts (b) Classified 18 bundles and outliers

(c) Classified 18 bundles (d) Classified 18 bundles

(e) Classified 18 bundles (f) Outliers after clustering

Figure 5.5: Illustration of the clustering result on totally 23, 770 reconstructed white matter
tracts. Subfigure (a) shows the tracts before clustering. Subfigure (b) gives the clustered
tracts including 18 tract bundles and 9, 220 outliers. Subfigures (c), (d), and (e) demon-
strates the 18 tract bundles viewed in three different angles. Subfigure (f) illustrates the
9, 220 tracts labeled as outliers.
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the components x, y, and z respectively. Then three sets of Fourier descriptors FDx(k),

FDy(k) and FDz(k) are obtained. To get the one dimensional Fourier descriptor, the

traditional approach is to combine these three sets of descriptors into one set of descriptors.

For example [101]

|FD(k)| =
√
|FDx(k)|2 + |FDy(k)|2 + |FDz(k)|2, (5.23)

This combination does work well in the context of our proposed method. We find it

reduces much differentiation power when a large number of outliers are included in the

clustering input. In this work, we have developed a new scheme which is described in

Subsection 5.2.2. By comparing these two approaches on the same set of reconstructed

white matter tracts, we conclude that our scheme performs much better in the context of

this work.

In the following, we refer to the traditional approach and our developed scheme as

combined FD and uncombined FD respectively.

In this comparison, N = 23, 770, K = 18, e = 1.00e − 012 and po = 0.80. No

any geometric feature is used. For the combined FD method, D = DFD = 27. For the

uncombined FD approach, DFDx = 9, DFDy = 9, and DFDz = 9. So D = DFD =

DFDx +DFDy +DFDz = 27 and the two kinds of feature vectors have the same dimension.

After clustering, 21,608 tracts are grouped into the 18 target bundles and 2,162 tracts

are labeled as outliers with the combined FD method. With the uncombined FD method,

these two numbers are 17,606 and 6,164 separately.

Figure 5.6 gives the visual comparisons of 3 tract bundles among the 18 target bundles

after clustering. After visual check, we find that our developed uncombined approach

performs better than the traditional combined method on all the 18 bundles.

With a fixed arc length as we fit the tract parameter, our presented scheme can deal

with shorter tracts than that in the traditional method. Since we need fewer step points

along the tract to achieve the same dimension of feature vectors. In the above comparison,

our approach needs only 9 step points to make D = 27. On the other hand, the traditional
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(a) Result of the uncombined FD method (b) Result of the combined FD method

(c) Result of the uncombined FD method (d) Result of the combined FD method

(e) Result of the uncombined FD method (f) Result of the combined FD method

Figure 5.6: Visual comparisons of the performance of combined and uncombined FD meth-
ods in reconstructed white matter tract clustering. Subfigures (a), (c), and (e) are the cluster-
ing results with the uncombined FD approach. Subfigures (b), (d), and (f) are the clustering
results of the same tract bundles using the combined FD method.
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approach needs 27 step points. The fitting arc length matters respect to noise resistance

and computational efficiency. Shorter fitting arc length can worsen the noise resistance and

computational efficiency of an approach.

5.4.2 Comparison with K-means

As a robust and popular clustering algorithm, K-means is widely used in a variety of ar-

eas [113, 114]. Here, we compare the clustering result of our presented method with that

of the K-means algorithm on a same set of reconstructed white matter tracts.

In this experiment, N = 4, 733, K = 5, e = 1.00e − 012 and po = 0.50. DFDx = 5,

DFDy = 5, and DFDz = 5. The 5 spatial features include L, cx, cy, cz, and cdist. So

DFD = DFDx +DFDy +DFDz = 15 and D = 20. The iteration number of our algorithm

is 5.

Since no any covariance matrix information can be adopted into the K-means algorithm,

we provide only the same set of mean vectors as that of our proposed method for the

initialization of K-means. The cluster number for K-means is set as 5.

The experimental results show that both of the two algorithms take a very short time to

finish the clustering. And all the 4,733 tracts are labeled into the target 5 bundles. There is

no outlier is labeled. The major difference between them appears in the accuracy of some

result tract bundles. Figure 5.7 illustrates the comparisons of the two clustering algorithms.

5.4.3 Impacts of the Number of Fourier Descriptors

Figure 5.8 shows the effect of the number of the Fourier descriptors included in the feature

vector on clustering.

Subfigure 5.8(a) show 1,216 tracts are grouped into one single bundle after the cluster-

ing on 23,770 tracts with 9 Fourier descriptors. In detail, the parameters for the clustering

are N = 23, 770, K = 18, e = 1.00e − 09 and po = 0.50. DFDx = 9, DFDy = 9,

and DFDz = 9. The 5 spatial features include L, cx, cy, cz, and cdist. So DFD =

DFDx +DFDy +DFDz = 27 and D = 32.
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(a) Result of this study (b) Result of K-means

(c) Result of this study (d) Result of K-means

Figure 5.7: Comparisons with the K-means clustering algorithm on a same set of recon-
structed white matter. Subfigures (a) and (b) are all the clustered tract bundles by the
proposed method and K-means respectively. Subfigures (c) and (c) show the specific tract
bundle which has the biggest difference between these two algorithm. The four subfigures
in the second last row are the clustering results using K-means. The bottom row are the
corresponding results of the proposed method.
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(a) Result with less Fourier descriptors (b) Result with more Fourier descriptors

Figure 5.8: Illustration of the impact of the number of Fourier descriptors on tract clus-
tering. Subfigure (a) demonstrates the clustering result including 1216 tracts which are
segmented into one single bundle with 9 Fourier descriptors. Subfigure (b) is the separated
tracts after using 12 Fourier descriptors. The red color 983 tracts are labeled into one tract
bundle. The rest 233 tracts in another color are labeled as outliers

We then further cluster these 1,216 tracts using the same set of parameters except that

DFDx = 12, DFDy = 12, and DFDz = 12. This makes DFD = DFDx+DFDy+DFDz = 36

and D = 41.

Subfigure 5.8(b) demonstrates that after the second clustering process, outliers are iden-

tified successfully. This experiment is in the agreement with our intuition such that in a

certain limit, more features are supposed to have more differentiating capability.

This example also indicates that the proposed method has the flexibility to perform

hierarchical clustering in necessary.

5.4.4 Sensitivity of π Values

We have afore mentioned that values of priori probabilities π of all K target bundles are set

as 1/K in default. An alternative is to set each single bundle’s π value differently based on

our a priori knowledge. For example, suppose Nk tracts among the totally N tracts belong

to a single tract bundle, we may set its π = Nk/N . But our experiments show that π values

are not sensitive to the the final clustering result. The major difference appears in the aspect

of time cost.
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Figure 5.9 graphically depicts the time cost difference. The details of this experiment

is N = 23, 770, K = 18, po = 0.50, and e = 1.00e − 09. The geometric feature used are

L, cx, cy, cz, and cdist. All the above parameters are fixed for all tests. The only variant

parameter is the number Fourier descriptors which is increased by 1 each time. This makes

the dimension of the feature vector to increase by 1 accordingly.

(a)

Figure 5.9: Graphical illustration of the time cost with different setting of π values. The
graph indicates that the time cost of unequal values of π is higher than that of equal values
of π.

5.4.5 Initialization of the EM Algorithm

The initialization of EM seems somewhat arbitrary. But in fact it requires a special atten-

tion, since the solution of the algorithm and the time it takes are highly dependent upon its

starting points. Suggestions to handle the EM initialization include the approach to run the

K-means algorithm first on the data set in order to find a suitable initialization [114, 113].

This becomes even critical under the context of clustering a large amount of fiber tracts as

well as handling a large number of outliers. As we have mentioned, outliers in our context

include suspicious fiber tracts obtained due to the inaccuracy of the tractography algorithms
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Figure 5.10: Illustration of some initial target fiber bundles used to initialize the EM algo-
rithm.

and fiber tracts which cannot be labeled into any of the target classes. In this work, we first

manually track a small number of fiber tracts for each target fiber bundle and then calcu-

late the µ̂k and Σ̂k. These estimated µ̂k and Σ̂k are used to initialize the EM algorithm.

Manually tracking a small number of tracts for each bundle is relatively easy and accurate.

Since we need only put a small region of interest (ROI) at the center area of a target fiber

bundle. Furthermore, we can take the advantage of the symmetry of the left and right brain

half spheres. That is, for the fiber bundles appear in both of the left and right half brains,

e.g., the cortical spinal tracts, both of their shapes and geometrical positions are symmetric.

Thus we only need to track part of the left or right bundles.

Figure 5.10 illustrates some of the initial target bundles we use.

It is worth mentioning that the results discovered by the EM algorithm may be incon-

sistent among multiple runs if the initializations are different enough. This is because there

are generally multiple local maxima of the log likelihood function, and it is not guaranteed

for the EM algorithm to reach the global maximum.

Another consequence the inappropriate initialization may incur is the presence of sin-

gularities in the Gaussian mixture model context with the maximum likelihood approach.
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If the determinant |Σk| of the covariance matrix Σk of one or more of the Gaussian compo-

nent becomes close to zero, then its according probability densityN in Equation 5.1 goes to

infinity and so does the log likelihood function in Equation 5.14. To reduce the singularity

effect on the convergence, we treat the EM as having converged if some parameters instead

of the likelihood function fall below some threshold. The parameters we used include the

Frobenius norm of Σk, the maximum eigenvalue of Σk, and the norm of the mean vector

µk.

subsectionComputation Complexity and Errors The computation complexity is O(ND2),

where N and D are the number of fiber tracts under clustering and the dimension of fea-

tures. The computation space cost can be accommodated by performing the clustering on

a part set of the fiber tracts once a time. The errors are mainly the model error plus the

Bayesian error.

5.5 Conclusion

To summarize, we have presented a new clustering framework that aims to facilitate the

single subject or group quantitative analysis of the reconstructed white matter tract bundles

in DTI data based on certain a priori anatomical knowledge. Strategies have developed to

handle different situations. The heavy computing burden is largely reduced by eliminat-

ing both of the requirements to establish the point-wise correspondence between trajectory

pairs and to perform the calculation at the level of the step points along white matter tracts.

We achieve this goal by introducing the white matter tract representation in the format of a

number of Fourier shape descriptors and geometric features. This representation provides

the framework and the theoretical ground to reduce the noise effect inherent to the DTI data

and the desired differentiating ability. In the framework, the distribution of fiber tracts is de-

scribed by a multivariate Gaussian mixture model. This statistical model makes it feasible

to exploit the fiber bundle’s a priori knowledge in the format of the mean and covariance

of fiber bundles. Anatomically meaningless white matter tracts are thus mostly avoided.
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In the case that we have little a priori knowledge, we use the expectation-maximization

algorithm to perform the maximum likelihood estimation to label white matter tracts. On

the other hand, if a set of white matter tract bundle atlas are given, we can directly label

each trajectory by finding its maximum of the a posterior Bayesian probabilities among

all the target classes. The method has the flexibility to conduct the grouping on a portion

or all of the fiber tract set one time to accommodate different situations. In both cases,

outliers are handled by easily setting a posterior probability threshold. Real DTI data have

been employed to evaluate the method. The experimental results show that the proposed

technique is relatively effective and may offer an alternative for existing white matter fiber

clustering methods.

Copyright c⃝ Xuwei Liang 2011
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6 Evaluation of the Nonnegative Matrix Factorization Technique in White Matter
Tract Segmentation

6.1 Outline

In this chapter, we first briefly go over the background and the fundamentals of Nonneg-

ative Matrix Factorization (NMF). Then we present methods to tailor and apply this new

classification technique which is widely used in the context of document clustering into the

area of white matter tract segmentation. Details about how to construct the nonnegative

feature matrix based white matter tract characterizations are described. The performance

of NMF clustering technique is evaluated by real DTI data. In the end, the advantages and

limitations of NMF in white matter tract segmentation are discussed.

6.2 Introduction

The most popular tractography techniques construct white matter fiber tracts as stream-

lines [27, 39]. A group of fiber tracts form a white matter fiber bundle that interconnects

gray matter regions. Due to the spatial resolution of the currently available DTI datasets,

the reconstructed fiber tract streamlines do not correspond to individual axons. Thus, indi-

vidual streamlines are of no anatomical significance, unless they form a bundle that con-

nects gray matter regions. Clustering reconstructed fiber tract streamlines into meaningful

bundles has been an important step in DTI-based white matter fiber analysis.

Over the past few years, a number of white matter tract segmentation schemes have been

published. These existing methods have their advantages and disadvantages and generate

different clustering results of fiber tracts. The challenge that we face is to model a fiber

tract with a representation method to separate fiber tracts belonging to distinct bundles

while grouping tracts of the same bundle.

The main purpose of this work is evaluate a computationally efficient and intuitive

post processing technique for clustering DTI tractography reconstructed white matter fiber

tracts. Especially, we assess approaches to quantify a white matter tract’s characterization
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and perform segmentation using NMF.

NMF has been widely used in many applications, including document clustering con-

text. It has been shown that NMF surpasses singular value decomposition (SVD) and the

eigenvector based clustering methods in the sense that NMF produces both reliable and

accurate document clustering results [117].

In this work, we employ Fourier descriptors to provide quantitative and individual rep-

resentation and normalization of white matter fiber tracts. We then tailor and apply the

NMF technique into the context of tract segmentation. Since each basis vector of NMF

has a straightforward correspondence with each fiber tract bundle in the frequency do-

main and thereby fiber tract cluster label can be directly inferred without further clustering

operations. In detail, we construct the nonnegative frequency-tract matrix using Fourier

descriptors derived from one of the tract shape characterizations, i.e., the central angle dot

product. This frequency-tract matrix is analogous to the term-document matrix in the doc-

ument clustering context. In the NMF derived feature space, each basis vector captures the

base characterization of a particular tract bundle. These basis vectors do not need to be

orthogonal. This is different from the clustering methods based on SVD and the related

spectral clustering methods. In this approach, each fiber tract is represented as an additive

combination of the base shapes. The cluster label of each fiber tract is easily determined

by finding the basis vector with which a fiber tract has the largest projection value.

6.3 Methods

6.3.1 Fiber Tract Parameter Fitting

The backward streamline based DTI tractography technique proposed by Mori and van

Zijl [39] is employed in this analysis to reconstruct white matter fiber tracts. This tractog-

raphy technique produces fiber tracts as spatial curves in the three dimensional space with

unequal separation distances between successive step points. Fourier transform approach

is dependent on the parameterization of the curves. This requires the parameterization to
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be standardized. For this reason, all reconstructed tracts are fitted using a fixed geodesic

arc length. Distinct fiber tracts have equal length unit but usually different numbers of step

points.

6.3.2 Tract Characterization

Each step point on a fiber tract has its three dimensional coordinates representing its spatial

position and a principal eigenvector indicating the local diffusion orientation in a specific

voxel it falls in. We define a fiber tract’s global diffusion orientation as the accumulation of

local diffusion orientations. Assume e = {e1, e2, . . . , el} is the set of local diffusion ori-

entations of a fiber tract, then the global diffusion orientation eg is given by eg =
∑l

i=1 ei.

A voxel’s diffusion orientation ei is not equivalent to its associated principal eigenvector

in the sense that a diffusion orientation is symmetrically bi-directional while a principal

eigenvector is directional. In order to get the correct global orientation eg, we need to

check the directional consistency of the principal eigenvectors. In detail, we start from

any one of the two end points of a fiber tract and move towards its unique successive step

point. If the dot product between the principal eigenvector and this initial moving direction

is negative, we reverse the the principal eigenvector of that point. Then we move forward

following the direction of this checked principal eigenvector. At each intermediate step

point, if the dot product of the two principal eigenvectors belonging to this step point and

its previous neighbor are negative, we reverse the one belonging to this step point and repeat

this procedure until reach the other end of this fiber tract.

The central angle dot product (CADP) is defined as the absolute value of the dot product

between a step point’s local diffusion orientation and the global diffusion orientation of the

tract
|eTi · eg|
∥ei∥∥eg∥

.
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6.3.3 Transformation of Tract Characterizations into Frequency Space

We compute the discrete Fourier transform of a tract as

FD(i) =
1

l

l∑
k=1

s(k) exp(
−j2πik

l
), i = 1, 2, . . . , l, (6.1)

where s(k), k = 1, 2, . . . , l, is the CADP shape characterization at the kth point, and

j =
√
−1. The coefficients FD(i), i = 1, 2, . . . , l, are called Fourier descriptors of the

characterization of a fiber tract. Since the shape characterization that we introduced are

all real values, there are only l/2 different frequencies in the discrete Fourier transform.

If l is an odd number, the number of different frequencies is (l + 1)/2. In the following

discussion, we assume that l is even for convenience. Therefore, only a half of the Fourier

descriptors are needed.

Fourier descriptors transform the fiber tract characterization from the spatial domain

into a frequency domain. This eliminates the difficulty to establish matching correspon-

dence between two randomly organized fiber tracts in the spatial domain. The number of

coefficients from Fourier transform is usually large, but a small subset of these coefficients

is sufficient to capture the general characterization features of a fiber tract. The coefficients

corresponding to very high frequencies are not helpful in fiber tract characterization differ-

entiation. These high frequency components can be ignored without significant accuracy

loss for fiber tract clustering. The lower order components also help filter out noise de-

pendent perturbations. As a result, the dimension of Fourier descriptors used for fiber tract

clustering are significantly reduced. In addition, two fiber tracts compared based on the

Fourier descriptors do not have to have the same numbers of step points. Consequently,

Fourier descriptors can be employed in matching of fiber tracts with unequal length.

To encode a fiber tract with nonnegative values, we discard Fourier descriptors’ phase

information and keep only their magnitudes. These magnitudes are all nonnegative. This

also makes Fourier descriptors rotation invariant without any loss of encoding accuracy in

the context of this study. In the following discussion, we use f(i) to represent a Fourier
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descriptor’s magnitude, i.e., f(i) = |FD(i)| ≥ 0. We also refer f(i) as a Fourier descriptor

for simplicity though it is actually a Fourier descriptor’s magnitude. Now, each fiber tract

can be encoded by a encoding vector, f , composed of a set of Fourier descriptors f =

[f(1), . . . , f(i), . . . , f(m)] with all f(i) ≥ 0 for i = 1, 2, . . . ,m, where m (≤ l/2) is the

number of truncated Fourier descriptors.

6.3.4 Clustering based on Nonnegative Matrix Factorization

To construct the nonnegative frequency-tract matrix, we put each fiber tract’s encoding

vector, e.g., for the jth tract, fj = [fj(1), . . . , fj(i), . . . , fj(m)] into the jth column of a two

dimensional (2D) matrix V . Assume n is the number of fiber tracts under consideration,

the constructed nonnegative matrix V thus has the dimension m× n.

We have expressed a set of fiber tracts as an m× n nonnegative frequency-tract matrix

V . Each column Vj of V is an encoding of a fiber tract in the frequency domain and

each entry vij of vector Vj is the significance of frequency i with respect to the fiber tract

representation of Vj .

The NMF is defined as finding two low rank nonnegative matrix factors W and H of a

given nonnegative matrix V such that V ≈ WH [118]. Each column of W is a basis vector

and each column of H contains an encoding of the linear combination of the basis vectors

that approximates the corresponding column of V . W and H each has the dimension m×r

and r × n respectively. r is the number of clusters selected. Usually, r ≪ min(m,n).

Finding or estimating the approximate value of r depends on applications.

The approach using NMF to obtain factor matrices W and H in this study is to minimize

the Frobenius norm of the difference V −WH , i.e., minimize ∥V −WH∥2 with respect

to W and H with Wij ≥ 0 and Hij ≥ 0 for each i and j [118]. The updating rule to

produce W and H is based on the multiplicative method proposed by Lee and Seung [118].

In the multiplicative method, we first initialize W and H with nonnegative values and then
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perform iterations for each α, i, and j until convergence. The updating formulas are

Hαj ← Hαj
(W TV )αj

(W TWH)αj
(6.2)

Wiα ← Wiα
(V HT )iα

(WHHT )iα
(6.3)

At each iteration, W and H remain nonnegative and the columns of W or the basis vectors

are normalized to unity. Updating W and H simultaneously generally yields better results

than updating each matrix factor individually.

This multiplicative method is related to the expectation maximization (EM) technique

used in image processing context and can be classified as a diagonally scaled gradient

descent method. It is proved that the Euclidean distance ∥V −WH∥ is monotonically non-

increasing under the above multiplicative method updating rules, and that the convergence

of the iteration is guaranteed [118].

We then use matrix H to identify the cluster membership of a fiber tract. In detail, for

the jth fiber tract, we compare entries across rows on the jth column of H . Its cluster label

is x if x = argmax
i
{Hij}.

6.4 Experiments and Results

6.4.1 Data Acquisition

The DTI data used in this study are from health controls which are described in Sec-

tions 1.3.2 and 2.4.1.

6.4.2 Experiments and Results

The real dataset used to assess the performance of this method is a fiber tract collection con-

sisting of the corticospinal tract (CST) bundle and the medial cerebellar peduncle (MCP)

bundle. It is denoted as CST-MCP dataset and shown in Figure 6.1(a). This data set has

totally 310 fiber tracts. Figure 6.1(b) illustrates the segmented two sub-bundles, CST and

MCP. Among the 310 fiber tracts, 199 and 111 of them are grouped into CST and MCP

respectively.

109



(a) Unclassified Tract Bundles (b) Classified CST and MCP bundles

Figure 6.1: Illustration of the clustering result using NMF technique. Subfigure (a) shows
the reconstructed white matter tracts before clustering. Subfigure (b) demonstrates the two
labeled bundles. The separated CST and MCP bundles are colored in red and light blue
respectively.

In this test, the first 30 Fourier descriptors derived from the CADP shape signature of

each fiber tract are used to form the nonnegative frequency-tract matrix V which thus has

the dimension 30 × 310. The cluster number r is selected as 2. After applying NMF,

the dimensions of the yielded nonnegative matrices W and H are 30 × 2 and 2 × 310

respectively. For the jth (j = 1, 2, . . . , 310) fiber tract, we then compare the values of the

two rows on the jth column of matrix H . Its cluster label is identified as the row index

i (i = 1, 2) if this row has the larger value than that of another row.

Figure 6.2 graphically demonstrates the entry value comparisons between each two

rows of the first 10 columns of the matrix H . Among these 10 fiber tracts, the first and last

3 (colored in red) are identified as CST. For each of them, the entry value on the first row

(marked as +) is greater than that of the second row (marked as o), and vice versa for the

middle four fiber tracts (colored in blue).

Figure 6.3 shows the corresponding first 10 fiber tracts colored according to their cluster

labels.
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Figure 6.2: Value comparisons of elements in the first 10 columns of matrix H . Red:
labeled as CST; Blue: labeled as MCP; +: first row; o: second row. Elements in the first
and last three columns of the first row, which are colored in red, have larger values than
that of the elements in the second row. The six tracts corresponding to these six matrix
elements are labeled as CST. On the other hand, the four elements of the mid four columns
of the second row which are colored in blue, have larger values than that of the elements in
the first row. The four tracts corresponding to these four matrix elements are labeled into
MCP bundle

6.5 Discussion and Conclusion

In this work, we presented a novel technique to group white matter fiber tracts reconstructed

from DTI into bundles. This approach is based on NMF. The construction of the nonneg-

ative frequency-tract matrix and the encoding of fiber tracts were described. Preliminary

experimental results have been obtained and show that this technique can efficiently sepa-

rate fascicles into plausible bundles.

In summary, NMF has mostly been applied to text mining and image analysis. Medical

imaging, especially the white matter fiber tract analysis, may benefit from this technique

as well. Problems such as identifying significant features in the encoded fiber tracts are

natural candidates for applications of NMF. In such contexts, fiber tracts can be treated as

analogous to text documents and the quantified weights of features to term frequencies.

The basis feature vectors can be viewed as analogous to the base topics. With further
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Figure 6.3: Illustration of the classified first 10 fiber tracts rendered in different colors.The
red color six tracts are in correspondence with the six first row matrix entries of the first and
last three columns in Figure 6.2. The four light blue colored tracts are in correspondence
with the four second row matrix elements of the mid four columns in Figure 6.2.

development, it may be possible to apply NMF in quantifications of the deformation of

white matter fibers under certain pathologies and brain diseases, e.g., tumor, or for clinical

studies.

Copyright c⃝ Xuwei Liang 2011
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7 Summary and Outlook

7.1 Summary

In this dissertation, we have implemented a novel computing scheme to be able to estimate

regional white matter alterations along neural pathways in 3D space. The mechanism of

the proposed method relies on white matter tractography and geodesic distance mapping

which establishes correspondences to allow direct cross-subject evaluations. For fibre bun-

dles which are very thin and difficult to reconstruct their entire anatomically valid paths

for all subjects in group analysis, we have proposed the white matter tract mask scheme

to overcome this difficulty. Real DTI data have been employed to demonstrate the per-

formance of the proposed technique. Experimental results have shown that regional white

matter changes are accurately located and are in agreement with previous DTI studies. The

proposed method bears great potential to provide a sensitive approach to determine the

white matter integrity in human brain.

In order to quantify the individual characterization of white matter fiber tracts with-

out the difficulties such as the spatial normalization which happens in spatial domain, we

have presented a technique to transform the tract characterizations into the frequency do-

main. This technique has potentials to quantify the deformation of white matter fibers

under certain pathologies and brain diseases, e.g., tumor, or for clinical group analysis.

It also bears the potential to represent invariant tract patterns under translations, rotations

and scaling. The Fourier descriptors can be a good candidate for clustering fiber tracts

across subjects. With the help of this modeling technique, fiber tracts from a new individ-

ual could be matched to an atlas or a prototype in group studies. The methodology could

thus be applied to in vivo data with the aim of classifying patients from normal controls by

differentiating statistically normal and abnormal tract shapes and configurations.

To facilitate the single subject or group quantitative analysis, we have presented a new

framework for clustering the reconstructed white matter tract bundles in DTI data based on
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certain a priori anatomical knowledge. Strategies have developed to handle different situ-

ations. The heavy computing burden is largely reduced by eliminating both of the require-

ments to establish the point-wise correspondence between trajectory pairs and to perform

the calculation at the level of the step points along white matter tracts. We have described

the white matter tract representation in the format of a number of Fourier shape descriptors

and geometric features. This representation provides the framework and the theoretical

ground to reduce the noise effect inherent to the DTI data and the desired differentiating

ability. In the framework, the distribution of fiber tracts is described by a multivariate Gaus-

sian mixture model. This statistical model makes it feasible to exploit the fiber bundle’s a

priori knowledge in the format of the mean and covariance of fiber bundles. Anatomically

meaningless white matter tracts are thus mostly avoided. In the case that we have little

a priori knowledge, we use the expectation-maximization algorithm to perform the maxi-

mum likelihood estimation to label white matter tracts. On the other hand, if a set of white

matter tract bundle atlas are given, we can directly label each trajectory by finding its max-

imum of the a posterior Bayesian probabilities among all the target classes. The method

has the flexibility to conduct the grouping on a portion or all of the fiber tract set one time

to accommodate different situations. In both cases, outliers have been handled by easily

setting a posterior probability threshold. Real DTI data have been employed to evaluate the

method. The experimental results show that the proposed technique is relatively effective

and may offer an alternative for existing white matter tract clustering methods.

For a small amount of white matter tracts, a modeling and clustering algorithm with

the capability of handling white matter tracts with unequal length and sharing no common

starting region has been proposed and evaluated with real DTI data. Particularly, the ob-

jective representation of white matter tracts is achieved by incorporating the information

of diffusion orientation, tract length and geometric center into the mathematical model.

The quantitative measurements are implemented by calculating the pairwise affinity score

which is sensitive to tract shape, location, and length. A matching method has been im-
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plemented to establish piece-wise correspondences between two randomly located tracts.

With further development, it may ultimately be possible to produce a standard atlas as tract

architecture references, similar to the currently used brain image templates.

NMF has mostly been applied to text mining and image analysis. Medical imaging,

especially the white matter fiber tract analysis, may benefit from this technique as well. We

have described the construction of the nonnegative frequency-tract matrix and the encod-

ing of fiber tracts in detail. Problems such as identifying significant features in the encoded

fiber tracts are natural candidates for applications of NMF. In such contexts, fiber tracts can

be treated as analogous to text documents and the quantified weights of features to term

frequencies. The basis feature vectors can be viewed as analogous to the base topics. With

further development, it may be possible to apply NMF in quantifications of the deforma-

tion of white matter fibers under certain pathologies and brain diseases, e.g., tumor, or for

clinical studies.

7.2 Future Research Outlook

In addition to what we have described in our studies, there are several directions that we

will be pursuing in the future research work.

1. Improve our fiber modeling. Although we have presented one comprehensive and

efficient tract model, the effectiveness of the model will be tested with more DTI data

and refined as needed. We will explore means to make our model to be learnable of

new found bundle patterns. In the end, we will make our tract representation to be

less dependent on the a priori anatomical knowledge.

2. Build a computational model for inter subject group fiber classification. We may tai-

lor our model to represent tracts across subjects with appropriate normalization. To

accurately represent tracts from different unregistered brains, the tract representation

should be invariant to translation, scaling and rotation. We will improve our tract

model to meet these needs, i.e., to be independent of individual brains so we can
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quantitatively compare tracts across subjects. To achieve this goal, we will use the

collection of anatomical knowledge of known tract bundles to normalize and gener-

alize our tract bundle representation.

3. We will also make serious effort to develop a class of more efficient and robust clus-

tering algorithm than that reported previously. We will improve our developed mul-

tidimensional features to work with clustering algorithms directly and consider hi-

erarchical and spectral clustering approaches In the group or atlas based clustering,

existing knowledge of fiber tract bundles can be used to train classifiers such as the

Support Vector Machines to get better classification of fiber tracts coming from the

unclassified brains. With further development, it may ultimately be possible to pro-

duce a standard fiber atlas as tract architecture references, similar to the currently

used brain image templates. It thus has the potential to quantify the deformation of

white matter fibers under certain pathologies and brain diseases, e.g., tumor, or for

clinical group analysis. In group studies, fiber tracts from a new individual can be

matched to an atlas or a prototype. The methodology could be applied to in vivo

data with the aim of distinguishing patients from normal controls by differentiating

statistically normal and abnormal tract shapes and configurations.

Copyright c⃝ Xuwei Liang 2011
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