422 research outputs found

    Adaptive Predictive Control Using Neural Network for a Class of Pure-feedback Systems in Discrete-time

    Get PDF
    10.1109/TNN.2008.2000446IEEE Transactions on Neural Networks1991599-1614ITNN

    Nonlinear self-tuning control for power oscillation damping

    No full text
    Power systems exhibit nonlinear behavior especially during disturbances, necessitating the application of appropriate nonlinear control techniques. Lack of availability of accurate and updated models for the whole power system adds to the challenge. Conventional damping control design approaches consider a single operating condition of the system, which are obviously simple but tend to lack performance robustness. Objective of this research work is to design a measurement based self-tuning controller, which does not rely on accurate models and deals with nonlinearities in system response. Designed controller is required to ensure settling of inter-area oscillations within 10−12s, following disturbance such as a line outage. The neural network (NN) model is illustrated for the representation of nonlinear power systems. An optimization based algorithm, Levenberg-Marquardt (LM), for online estimation of power system dynamic behavior is proposed in batch mode to improve the model estimation. Careful study shows that the LM algorithm yields better closed loop performance, compared to conventional recursive least square (RLS) approach with the pole-shifting controller (PSC) in linear framework. Exploiting the capability of LM, a special form of neural network compatible with feedback linearization technique, is applied. Validation of the performance of proposed algorithm is done through the modeling and simulating heavy loading of transmission lines, when the nonlinearities are pronounced. Nonlinear NN model in the Feedback Linearization (FLNN) form gives better estimation than the autoregressive with an external input (ARX) form. The proposed identifier (FLNN with LM algorithm) is then tested on a 4−machine, 2−area power system in conjunction with the feedback linearization controller (FBLC) under varying operating conditions. This case study indicates that the developed closed loop strategy performs better than the linear NN with PSC. Extension of FLNN with FBLC structure in a multi-variable setup is also done. LM algorithm is successfully employed with the multi-input multi-output FLNN structure in a sliding window batch mode, and FBLC controller generates multiple control signals for FACTS. Case studies on a large scale 16−machine, 5−area power system are reported for different power flow scenarios, to prove the superiority of proposed schemes: both MIMO and MISO against a conventional model based controller. A coefficient vector for FBLC is derived, and utilized online at each time instant, to enhance the damping performance of controller, transforming into a time varying controller

    Intelligent control of nonlinear systems with actuator saturation using neural networks

    Get PDF
    Common actuator nonlinearities such as saturation, deadzone, backlash, and hysteresis are unavoidable in practical industrial control systems, such as computer numerical control (CNC) machines, xy-positioning tables, robot manipulators, overhead crane mechanisms, and more. When the actuator nonlinearities exist in control systems, they may exhibit relatively large steady-state tracking error or even oscillations, cause the closed-loop system instability, and degrade the overall system performance. Proportional-derivative (PD) controller has observed limit cycles if the actuator nonlinearity is not compensated well. The problems are particularly exacerbated when the required accuracy is high, as in micropositioning devices. Due to the non-analytic nature of the actuator nonlinear dynamics and the fact that the exact actuator nonlinear functions, namely operation uncertainty, are unknown, the saturation compensation research is a challenging and important topic with both theoretical and practical significance. Adaptive control can accommodate the system modeling, parametric, and environmental structural uncertainties. With the universal approximating property and learning capability of neural network (NN), it is appealing to develop adaptive NN-based saturation compensation scheme without explicit knowledge of actuator saturation nonlinearity. In this dissertation, intelligent anti-windup saturation compensation schemes in several scenarios of nonlinear systems are investigated. The nonlinear systems studied within this dissertation include the general nonlinear system in Brunovsky canonical form, a second order multi-input multi-output (MIMO) nonlinear system such as a robot manipulator, and an underactuated system-flexible robot system. The abovementioned methods assume the full states information is measurable and completely known. During the NN-based control law development, the imposed actuator saturation is assumed to be unknown and treated as the system input disturbance. The schemes that lead to stability, command following and disturbance rejection is rigorously proved, and verified using the nonlinear system models. On-line NN weights tuning law, the overall closed-loop performance, and the boundedness of the NN weights are rigorously derived and guaranteed based on Lyapunov approach. The NN saturation compensator is inserted into a feedforward path. The simulation conducted indicates that the proposed schemes can effectively compensate for the saturation nonlinearity in the presence of system uncertainty

    Enhancing the performance of intelligent control systems in the face of higher levels of complexity and uncertainty

    Get PDF
    Modern advances in technology have led to more complex manufacturing processes whose success centres on the ability to control these processes with a very high level of accuracy. Plant complexity inevitably leads to poor models that exhibit a high degree of parametric or functional uncertainty. The situation becomes even more complex if the plant to be controlled is characterised by a multivalued function or even if it exhibits a number of modes of behaviour during its operation. Since an intelligent controller is expected to operate and guarantee the best performance where complexity and uncertainty coexist and interact, control engineers and theorists have recently developed new control techniques under the framework of intelligent control to enhance the performance of the controller for more complex and uncertain plants. These techniques are based on incorporating model uncertainty. The newly developed control algorithms for incorporating model uncertainty are proven to give more accurate control results under uncertain conditions. In this paper, we survey some approaches that appear to be promising for enhancing the performance of intelligent control systems in the face of higher levels of complexity and uncertainty

    Adaptive Robust Control of Biomass Fuel Co-Combustion Process

    Get PDF
    The share of biomass in energy production is constantly growing. This is caused by environmental and industry standards and EU guidelines. Biomass is used in the process of co-firing in large power plants and industrial installations. In the existing power stations, biomass is milled and burned simultaneously with coal. However, low-emission combustion techniques, including biomass co-combustion, have some negative side effects that can be split into two categories. The direct effects influence the process control stability, whereas the indirect ones on combustion installations via increased corrosion or boiler slagging. The effects can be minimised using additional information about the process. The proper combustion diagnosis as well as an appropriate, robust control system ought to be applied. The chapter is devoted to the analysis of modern, robust control techniques for complex power engineering applications

    Descriptive And Review Study Adaptive Control Of Nonlinear Systems In Discrete Time

    Get PDF
    Nowadays, analyzing different control systems is a must for virtually all types of modern industries and factories. Analyzing these control systems allows optimizing and streamlining processes, which in many cases are carried out manually, leading to large errors, delays and costly processes. Continuous-time adaptive control of nonlinear systems has been an area of increasing research activity [1] and globally, regulation and tracking results have been obtained for several types of nonlinear systems [2]. However, the adaptive technique is gradually becoming more dynamic after 25 years of research and experimentation. Important theoretical results on stability and structure have been established. There is still much theoretical work to be done [3]. On the other hand, adaptive control in discrete-time nonlinear systems has received much less attention, in part because of the difficulties associated with the sampled data of nonlinear systems [2]. Thus, it is in some theories where adaptive control laws are implemented admitting the intervening nonlinearities in the real system [4] where investigations about the regulation of the system are created. The purpose of this is to implement a very simple adaptive control law and to check the convergence of the closed loop.  However, Zhongsheng Hou, author of several well-regarded papers proposes a model-free adaptive control approach for a class of discrete-time nonlinear SISO systems with a systematic framework [5]-[6]
    corecore