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Abstract

Modern advances in technology have led to more complex manufacturing processes whose success

centers on the ability to control these processes with a very high level of accuracy. Plant complexity

inevitably leads to poor models that exhibit a high degree of parametric or functional uncertainty. The

situation becomes even more complex if the plant to be controlled is characterized by a multi-valued

function or even if it exhibits a number of modes of behavior during its operation. Since an intelligent

controller is expected to operate and guarantee the best performance where complexity and uncertainty

coexist and interact, control engineers and theorists have recently developed new control techniques under

the framework of intelligent control to enhance the performance of the controller for more complex and

uncertain plants. These techniques are based on incorporating model uncertainty. The new developed

control algorithms for incorporating model uncertainty are proven to give more accurate control results

under uncertain conditions. In this paper we survey some approaches that appear to be promising for

enhancing the performance of intelligent control systems in the face of higher levels of complexity and

uncertainty.

I. I NTRODUCTION

In control problems there are degrees of uncertainty with respect to the process to be controlled.

In general, uncertainty in control problems arises because of insufficient knowledge about the

system itself or the environment in which it operates. This could be due to: the nondeterministic

relationship between the input and the output variables of the system, or the system itself is too
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complex to represent, or unexpected changes in the system characteristics because of failure or

time varying properties.

A large number of control techniques, including classical control, optimal control, and robust

control have been developed to ensure that a system of interest performs according to predefined

desired specifications under uncertain conditions. For example, the technique of adaptive con-

trol [2], [33], [43] has been shown capable of maintaining adequate performance in the presence

of parametric uncertainty. Progress has been reported on the convergence, stability and robustness

properties of linear adaptive control systems, both in discrete and continuous time [15], [47].

Techniques such as feedback linearization have been proposed for feedback linearizable nonlinear

systems [28], [54]. Most of the progress on nonlinear adaptive control has been for continuous

time systems. Progress in nonlinear discrete adaptive control systems has been slower and less

general in scope [60].

Despite this progress, the theory of conventional adaptive control can hardly maintain good

performance when sudden changes, such as sensor or actuator failures, occur in the process. In

addition the theory deals only with parametric uncertain nonlinear systems where systems are

usually characterized by known nonlinear functions and unknown constant parameters which are

also required to appear linearly in the system equation. A more reliable adaptive control scheme

stems from the theory of stochastic adaptive control [2], [58]. In stochastic adaptive control,

the control law is derived by minimizing a performance index that usually takes the form of

the expected value of some cost function. This implies that unlike the conventional adaptive

control scheme, uncertainty of the parameters’ estimate is taken into consideration in the control

algorithm. This control law is referred to as dual control [11]–[13]. Unfortunately, dual control

is shown to be computationally expensive and therefore has not been widely used in practice.

A universal method to deal with nonlinear stochastic or deterministic control systems is

dynamic programming [35], [40], [52]. Several solutions for solving stochastic nonlinear control

problems have been proposed in the literature [35], [40]. One of the proposed solutions to

evaluate optimal control for stochastic systems [35] is to first find the best estimate of the state

of the system from the measurements and then to apply the control that is optimal if the observed

variable of the system is equal to this estimate. This however is practically infeasible, not least

because of the unbounded search space which is needed to try and maintain all possible solution

trajectories.



The success of modern complex manufacturing processes centers on the ability to control

these processes with a very high level of accuracy. Model uncertainty is usually inevitable

when identifying highly complex systems. This is not simply because of the uncertainty arising

from the estimated parameters or functions. It concerns also the structure and the complexity

of the model and the appropriate choice of a cost function. For such complex systems, neural

networks have often been regarded as the key solution for getting more accurate models and

better generalization properties.

A pioneering paper in neural adaptive control was published by Narendra and Parthasarathy [48].

An adaptive neurocontroller with guaranteed stability was developed by Polycarpou and Ioan-

nou [41] and Sanner and Soltine [53] for systems with no internal dynamics, whilst Tzirkel-

Hancock and Fallside [55] generalized this to systems having internal dynamics. More publica-

tions in the neuro-control field with different control algorithms can be found in [3], [9], [26],

[36], [42], [61]. Almost all those papers developed control algorithms based on the assumption

that the outputs of the neural networks are accurate. More precisely, the control law is derived

based on the certainty equivalence principle.

Although neural networks have helped in estimating more accurate models, it has been shown

that for most real world control problems with unpredictable disturbance and which exhibit a

number of distinct modes of behavior during their operation, the predicted output of the neural

network is inherently uncertain. So how could we proceed in such situations? The solution to this

problem has been addressed from the point of view of estimating and incorporating uncertainty. It

has been argued that for such complex systems, it may be the case that incorporating uncertainty

in control design can help provide a better control result. Recently some publications have

considered the use of knowledge of uncertainty to build a more robust controller.

Consequently new control algorithms are being developed for incorporating uncertainty in

controller design. The purpose of this paper is to provide an overview of some of the recently

developed control algorithms that have been reported in the literature concerning this subject.

Mainly this paper concentrates on the recently developed control methods for incorporating

uncertainty in the framework of indirect inverse control, adaptive control and adaptive critic

methods. Figure 1 shows an overview of the three control methods. In addition, problems which

need to be solved yet and future work will be identified.



Fig. 1. Some of the control methods that are related to neural networks. It is usually assumed that neural networks can offer

solutions for complex control systems. Neural network architectures are powerful because of nonlinearities, but uncertain because

of incomplete knowledge and disturbances that are involved in control problems.

II. I NTELLIGENT CONTROL SYSTEMS

In the neuro-control field a large number of publications describing the use of neural network

models for control of linear and nonlinear systems have been published this decade. As a result a

number of design approaches have been developed in the literature. Almost all these approaches

assume the availability of an accurate mathematical model. This assumption however, is not

reliable when speaking about complex nonlinear control problems which often also exhibit a

number of distinct modes of behavior during their operation. The purpose of this section is to

give an overview of some of the current available control techniques, which are derived based

on the above assumption.

One of the neural network control schemes that is based on supervised learning methods and

the assumption of an accurate model is the inverse control methodology [1], [27]. In the direct

inverse control scheme [50], the inverse of the plant to be controlled is modeled off-line. Here

the unity operator between the reference input and the output is approximated by connecting

the plant inverse model network in series with the plant in an open loop configuration. This

scheme however, is not very robust due to the absence of feedback. A more robust scheme



that belongs to the inverse control methodology, utilizes a second neural network that has been

trained previously to model the dynamics of the plant [26]. This is called internal model control

(IMC).

Adaptive control techniques [2], [43] have been used in situations where the plant parameters

are uncertain, because of the ability to maintain adequate performance in the presence of

unknown or time varying parameters. Mainly, two methods have been reported in conventional

adaptive control for handling adaptation: the direct and indirect methods [2], [43]. Concepts

from conventional adaptive control theory have been extended naturally to the neural control

case [48]. This is because the neural network models approximate nonlinear functions by a

parameterized mapping. The paper by Narendra and Parthasarathy [48] is often considered as

the pioneering paper in this field. It concentrated on discrete time systems and introduced four

different classes of models. The paper dealt with adaptive control for nonlinear plants. It focused

on indirect adaptive control because of the lack of methods for directly adjusting the parameters

of the controller using only output error between the plant and the reference input.

A more complex approach than the previously mentioned methods, but more powerful under

uncertain conditions is the adaptive critic family [39], [57]. This approach approximates dynamic

programming which is one of the optimal methods for deriving the optimal control law for

stochastic nonlinear control problems. Its application to real world nonlinear stochastic systems

has been proven to be powerful and computationally feasible.

However, no neural control techniques can give good control results when the plant is operating

in suddenly-changing environments or when it exhibits different features in different zones

of its input. This type of plant complexity is called multi-modality [10] and usually is not

accommodated for in the above mentioned neural control techniques. In conventional control

methods, this type of plant complexity has been handled by the use of multiple models. The

multiple model control approach has been developed from the partitioning theory of adaptive

control [34]. The successful use of multiple models in real time applications for control has

been widely reported in the literature [10], [16], [29], [30], [37], [44]–[46], [51]. Multiple model

control techniques have been recently applied to the neural network models. Consequently, a

number of multiple neural network methods such as the mixture of expert approach [6], [29],

[31], [32], multiple paired forward and inverse models [59] and the mixture density network

approach [21] have been developed.



III. I NCORPORATING UNCERTAINTY

In this section a discussion about how uncertainty knowledge is incorporated in the three neural

control methods discussed in the previous section is provided. The next section will survey some

of the multiple model approaches for incorporating uncertainty.

A. Direct Inverse Adaptive Control

In direct inverse adaptive control, the controller is learning to recreate the input that created

the desired output of the plant [1], [4], [26], [50]. Here, the error for adapting the controller is

the command error as shown in Figure 2. Using the command error for adapting the controller

rather than trajectory error has several drawbacks [26], [50]. Mainly, the learning procedure is

not goal directed, since in control minimizing the trajectory error (the difference between the

system and the desired outputs) rather than command error is required. In addition, obtaining

the inverse of the system may not be possible in problems where the mapping is not one-to-one.

   PlantPlant inputs

Network Error

Measured outputs

+

Desired plant outputs

ref

^

−

x(k)u(k)

u(k)

    Model
Neural Inverse

y   (k+d)

Delayed Plant inputs
u(k−1).....u(k−p+1)

y(k).......y(k−q+1)

Fig. 2. Training of an inverse controller. Here the command error is used to adapt the parameters of the inverse controller.

To overcome these problems researchers considered the use of model uncertainty [20], [21].

In [21] a novel inversion-based neurocontroller for solving control problems involving uncertain

nonlinear systems which could also compensate for multi-valued system (where the mapping is

not one-to-one) is introduced. The approach is based on modeling the conditional distributions

of both forward and inverse models.



In their work [21] the conditional distributions of the residual error of the models are assumed

to be Gaussian. The Gaussian assumptions for the residual errors of forward and inverse models

are based on Theorem 4.2.1 in [14]. The theorem states that minimum mean squared error

(MMSE) estimate of a random vector y given another random vectorx is simply the conditional

expectation of y givenx, ŷ = E(y | x). It has also been stressed that the conditional expectation

of y given x could be estimated using a nonlinear model. Based on this theorem the variance

for each input patternx is shown to be given by‖ y − ŷ ‖2, given that a good model could

be estimated to approximate the random vector y given the random vectorx [21]. Another

neural network, assumed to be nonlinear as well, which takes this variance as a target value

has been used in [21] to model the conditional expectation of the variance of the residual error,

σ2(x) = E(‖ y−ŷ ‖2| x). In this way, the distribution of the random variable y could be described

by a Gaussian function with anx dependent mean and anx dependent variance estimated by

nonlinear models. This does not require the conditional distribution of the output variables to

be Gaussian. If a sum of squares error is used, the quantities which can be determined are the

x-dependent mean of the distribution (given by the output of the first trained neural network

to predict the output variable) and thex-dependent variance (given by the output of the second

trained neural network to predict the variance of the residual errors).

Rather than taking the conditional expectation from the inverse controller to represent the

control signal to be forwarded to the plant, they suggested searching for the optimal control

signal by generating samples from the conditional distribution of the inverse controller. Based

on importance sampling from that distribution, the optimal control law is taken to be the one

that minimizes the following performance index

J(k) = Min
u∈U

E
v
[(ŷ(k + d) − yref(k + d))2 + σ2

ξ], (1)

whereU is a vector containing the sampled values from the control signal distribution,E is the

expected value of the cost function over the random noise variablev, and σ2
ξ is the variance

of the uncertainty of the forward model. The architecture of this control method is shown in

Figure 3.

Generating samples from the conditional distribution of the inverse controller and then finding

the control signal that minimizes a performance index of the form given in (1) makes the

direct inverse control approach goal directed in terms of minimizing trajectory error rather than



command error. Moreover, searching for the control signal that minimizes the performance index

in (1) rather than using gradient information of (1) guarantees obtaining the absolute minimum

of the performance index rather than a relative minimum [5]. Finally, for systems driven by a

random forcing component the searching method allows approximating the integral of the utility

function over the random variable, which is not easy to be done analytically, by the finite sum

as given in (1).
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Fig. 3. The architecture of the proposed importance sampling method for the inverse controller.

A likelihood framework for deriving the conditional distribution of the inverse controller has

been proposed in [20]. Here, the negative log posterior with respect to the control signal is

minimized instead of minimizing the mean squared error function in the conventional direct

inverse control method. The proposed scheme was for a general nonlinear plant having the

following form

y(k + d) = f(y(k), . . . , y(k − n), u(k), . . . , u(k − n − 1)), (2)

where y(k) is the measured plant output vector,u(k) is the measured plant input vector,n is

the plant order,d is a known plant delay, andf(.) is an unknown nonlinear function.

Based on Theorem 4.2.1 [14] and the result reported in [6], the stochastic forward model of

the system given in (2) is firstly identified. Once the forward model of the plant is identified,



the stochastic forward model can be given by

y(k + d) = ŷ(k + d) + e(k + d),

where e(k + d) represents the residual error of the system output which is assumed to be

random noise of zero mean andσ2 variance. This term in other words, represents uncertainty of

the forward model. Since the residual error of the system output is assumed to be random with

zero mean andσ2 variance, the distribution of the forward model output could be described by

a Gaussian probability density function (pdf) with a global covariance matrix,R−1.

p(y(k+d) | y(k), u(k)) ∝ exp

(
−

1

2
[y(k+d)−f̄(y(k), u(k))]TR−1[y(k+d)−f̄(y(k), u(k))]

)
,

(3)

wherey(k) = [y(k), . . . , y(k − n), u(k − 1), . . . , u(k − n − 1)] is the vector of previous outputs

and inputs values and̄f(y(k), u(k)) is the conditional expectation of the forward model.

Given the conditional distribution of the forward model (3), and a Gaussian prior distribution of

the control signal denoted byp(u(k) | yd(k + d), y(k)), where yd(k + d) is the desired system

output, the posterior probability distribution of the control signal,p(u(k) | y(k + d), yd(k +

d), y(k)) is shown, using Bayes rule, to be given by

p(u(k) | y(k + d), yd(k + d), y(k)) =

p(y(k + d) | u(k), y(k))p(u(k) | yd(k + d), y(k))

p(y(k + d) | y(k))
. (4)

The optimal control lawuopt(k), is then derived by minimizing the negative log posterior

of (4) with respect tou(k)

− logp(u(k) | y(k + d), yd(k + d), y(k)) ∝
1

2
[y(k + d) − f̄(y(k), u(k))]TR−1[y(k + d) − f̄(y(k), u(k))]

+
1

2
[u(k) − û(k)]T P̂−1[u(k) − û(k)]

−
1

2
[y(k + d) − ŷ(k + d)]TQ−1[y(k + d) − ŷ(k + d)], (5)

where P̂−1 is the inverse covariance matrix of the prior distribution of control signals,û(k) is

the mean of the prior which is equal to the estimated control signal value,ŷ(k + d) is the best



prediction of the system output given an estimate of the control signal, andQ−1 is the inverse

covariance matrix of the evidence,p(y(k + d) | y(k)).

For linear systems the update equations for the control signal,uopt(k), and its variance,Popt,

are shown to be given by [20]

uopt(k) = û(k) + Γe(k),

Popt = (I − ΓB̂)P̂, (6)

whereΓ is known as the likelihood gain,e(k) is the error, and̂B is the derivative of the forward

linear model with respect tou(k).

For nonlinear systems the optimal control law is shown to be given by taking the derivative

of equation (5) with respect tou(k) and setting the derivative equal to zero [20].

[y(k + d) − f̄(y(k), u(k))]
∂f̄(y(k), u(k))

∂u(k)
R−1 = (u(k) − û(k))P̂−1 = 0. (7)

A nonlinear optimization method is then used to calculate the optimal control law. The variance

of the optimal control signal is shown to be given by,

Popt =< (u(k) − uopt(k))2 >, (8)

see [20] for more details.

Although the direct inverse control approach does not require the availability of a forward

model of the plant to be controlled, the proposed likelihood method in [20] does. However,

the direct inverse control approach in its conventional form does not consider knowledge of

uncertainty in deriving the optimal control law, while the likelihood method uses knowledge of

uncertainty from both the forward and the inverse models of the plant to obtain the optimal

estimate of the control signals. This is an advantage of the likelihood method over the direct

inverse control method. Moreover, the likelihood method for deriving the optimal control law

provides a systematic procedure for estimating the conditional distribution of the inverse con-

troller. Compared to the proposed sampling approach of the inverse controller [21], one can see

that both the likelihood and the sampling approach assume the availability of the forward model

of the system to be controlled. However the sampling approach of the inverse controller can be

considered to be goal directed, because when generating samples from the inverse controller the

error between the forward model output and the desired output is minimized, see equation (1).



On the other hand, the likelihood approach in its current form could not be considered to be goal

directed, although the development of a goal directed likelihood approach is straight forward.

The forward model in the likelihood approach is used only to measure effects of the control

signal on the system output.

To demonstrates the benefits that could be obtained from incorporating model uncertainty in

the direct inverse control architecture we repeat here the example that has been presented in [17],

[20], where the plant is taken to be a liquid level system described by the following second order

nonlinear equation,

y(k) = 0.9722y(k − 1) + 0.3578u(k − 1) − 0.1295u(k − 2)

− 0.3103y(k − 1)u(k − 1) − 0.04228y2(k − 2) + 0.1663y(k − 2)u(k − 2)

− v̄y2(k − 1)y(k − 2) − 0.3513y2(k − 1)u(k − 2)

+ 0.3084y(k − 1)y(k − 2)u(k − 2) + 0.1087y(k − 2)u(k − 1)u(k − 2), (9)

and wherev̄ is assumed to be a Gaussian random variableN (0.03259, 0.2). The overall per-

formance of the plant under the direct inverse control [26], [50], the proposed sampling ap-

proach [21] and the likelihood approach [20] is shown in Figure 4,a,b,c respectively. From this

figure it is evident that although the output of the plant increased in an unbounded fashion after

running the process for600 time steps when the direct inverse control is used, the system outputs

remain stable in the whole region when the sampling and the likelihood approaches are used.

B. Neural Network Adaptive Control

The direct inverse control discussed in the previous section in its conventional form lack

adaptation and robustness due to the absence of feedback. Recently developed inverse control

algorithms which incorporate uncertainty knowledge however, could overcome problems and

weaknesses of the inverse controller such that a noticeable improvement on the system perfor-

mance could be achieved. In the neuro-control field a more robust control scheme than the direct

inverse control has been developed. The approach is known as neural adaptive control. It is based

upon more accurate and theoretically rigorous considerations than the inverse control class.

In neural adaptive control, a combined off-line followed by on-line adaptation is often adopted

to determine the parameter vector of the controller. This reduces prior uncertainty of unknown
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Fig. 4. Actual and desired outputs for the SISO stochastic process: (a) The desired and actual output values of direct inverse

control showing unstable divergence. (b) The desired and actual output values of sampling approach. (c) The desired and actual

output values of likelihood approach. Note the use of uncertainty produces stable control.



parameters and assures stability of the overall control system. Only later on-line control is started

using the initial structures of both identifier and controller that are already substantially close to

the optimal.

In their book [10], Fabri and Kadirkamanathan made the argument that the above procedure

for adaptive control defeats its main objective because most of the uncertainty existing prior to

application of the control can be reduced during the off-line training phase. They proposed a

dual adaptive control scheme which avoided the pre-control neural network training phase by

taking into consideration the parameters’ uncertainty and its effect on tracking, in the on-line

control phase. Their proposed scheme was for a stochastic affine class of nonlinear discrete time

systems having the general form,

y(k) = f[x(k − 1)] + g[x(k − 1)]u(k − 1) + e(k), (10)

where y(k) is the system output, u(k) is the control signal,x(k − 1) = [y(k − n), . . . , y(k −

1), u(k − 1 − p), . . . , u(k − 2)]T is the vector of previous output and input values,f[x(k −

1)], g[x(k − 1)] are unknown nonlinear functions of the delay vector ande(k) is an additive

noise signal which is assumed to be independent and has zero mean Gaussian distribution of

varianceσ2.

Using equation (10) and neural network approximation models for the nonlinear functions of

the delay vector, the affine nonlinear discrete system given in (10) is represented in the following

state form

w∗(k + 1) = w∗(k) (11)

y(k) = h(w∗(k), x(k − 1), u(k − 1)) + e(k), (12)

where

h(w∗, x(k − 1), u(k − 1)) = f̂[x(k − 1), ŵf] + ĝ[x(k − 1), ŵg]u(k − 1), (13)

could be a nonlinear or linear function of the unknown optimal parameters

w∗ = [w∗
f1

, . . . , w∗
fi
, w∗

g1
, . . . , w∗

gi
] if multi layer perceptron or Gaussian radial basis function

networks are used to approximate the nonlinear functions of delay vectors respectively. Since

the parameters appear linearly in the Gaussian radial basis controller a Kalman filter is used to

estimate the parameters and their uncertainty. The multilayer perceptron controller however, is



more complicated since the unknown parameters do not appear linearly in the model equations.

Consequently, an extended Kalman filter was used for parameter estimation.

Compared to the conventional neural adaptive control methods where the difference between

the desired output yd(k), and the system output y(k), [y(k)−yd(k)]2 is minimized to derive the

optimal control law as shown in Figure 6,a, the following form of the performance index has

been suggested for incorporating model uncertainty,

J = E{[y(k) − yd(k)]2 + qu2(k − 1) + re2(k) | Ik−1}, (14)

whereE{. | Ik−1} denotes the mathematical expectation conditioned on the information stateIk−1

which consists of all output measurements up to time(k−1), denoted byYk−1 = {y(i)}k−1
i=0 , and

all previous inputsUk−2. The design parametersr, andq are scalar weighting factors.

The control law minimizing the above performance indexJ subject to the system equation (10),

is then shown to be given by

u∗(k − 1) =
{yd(k) − f̂[.]}ĝ[.] − (1 + r)µgf

ĝ2[.] + q + (1 + r)µgg

, (15)

where the arguments[.] of f̂ and ĝ are [x(k − 1), ŵf(k)] and [x(k − 1), ŵg(k)] respectively,

µgf = ∇hg(k), Pgf(k)∇T
hf

(k)

µgg = ∇hg(k)Pgg(k)∇T
hg

(k),

wherePgf, andPgg are the partitioning matrices of the covariance matrix of the optimal neural

network parametersw∗ and∇hg,∇hf
denote the gradients of the two components of the function

h, f̂ and ĝ, with respect tow∗ evaluated atw∗ = ŵ(k) respectively [10].

In the above proposed scheme [10] Fabri and Kadirkamanathan avoided the pre-control neural

network phase by taking into consideration model parameter uncertainty. This is shown to be

more convenient with the features expected from the adaptive control, and also more efficient

and economical since off-line training is usually time consuming and expensive.

An alternative approach for incorporating uncertainty in functional adaptive control by neural

networks was proposed in [17]. The scheme is based on the idea of modeling and incorporating

the uncertainty in the predicted output of the neural network model. Here the forward model

of the plant is firstly identified using a neural network model. Similar to the discussion in



Section III-A and based on theorem 4.2.1 [14], the output of the system is shown to be given

by [17]

y(k) = ŷ(k) + e(k), (16)

whereŷ(k) is the conditional expectation of the system output modeled using a neural network

or any function approximator, ande(k) is the residual error of the output which is shown to be a

random variable with zero mean Gaussian distribution of variance equal to the squared difference

between the system output and its estimate,‖ y − ŷ ‖2. This variance is input dependent as has

been discussed in Section III-A. The conditional expectation of this variance is modeled using

another neural network [17].

Since the estimated variance,σ2, around the predicted output of the system model is input

dependent, Herzallah [17] has shown that the derived control law from the conventional neural

adaptive control method is not optimal. Instead of minimizing the difference between the system

and the desired outputs,‖ y(k) − yd(k) ‖2 in the conventional adaptive control, it has been

shown [17] that a performance index of the following form should be minimized,

J = E{(y(k) − yd(k))2},

= (y(k) − yd(k))2 + σ2. (17)

Hence, dropping off the variance of the system output which is also input dependent from the

performance index to be minimized in deriving the control law can in no way give the optimal

solution. Consequently the optimal control law is shown to be given by differentiation of (17)

with respect tou(k) and equating to zero.

∂J

∂u(k)
= (y(k) − yd(k))

∂y(k)

∂u(k)
+

∂σ2

∂u(k)
= 0. (18)

This Control law and the control law proposed by Fabri and Kadirkamanathan [10] take into

consideration uncertainty of the forward model only, and ignore uncertainty of the inverse model.

An alternative control algorithm which takes uncertainty of the forward and inverse models

into consideration is proposed in [19]. The architecture of this proposed method is shown in

Figure 6,b. It is of an explicit type, sub-optimal dual performance index based on the innovations

dual controller developed by Fabri and Kadirkamanathan [10] for a class of stochastic single-

input single-output affine nonlinear systems. The performance index in [19] is modified such



that uncertainty in the inverse controller model is taken into consideration as well as uncertainty

in the forward model output. Hence the performance index is taken to have the form

J = E{[y(k + d) − yd(k + d)]2 + re2
y(k+d) + τu2(k) + λe2

u(k) | Ik}, (19)

whereE{. | Ik} denotes mathematical expectation conditioned on the information stateIk which

consists of all output measurements up to time(k), denoted byYk = {y(i)}ki=0, and all previous

inputsUk−1. The design parametersr, τ, andλ are scalar weighting factors chosen within the

rangeτ ≥ 0, −1 ≤ r ≤ 0, 0 ≤ λ ≤ 1.

The difference between this performance index and that originally proposed in [10], is the

inclusion of the termλe2
u(k). This term reflects our knowledge about uncertainty of the inverse

controller.

The optimal control law is then derived by minimization of the sub-optimal dual performance

index given in Equation (19). Taking the assumptions of Gaussian distributions of the residual

errors of the forward and inverse models, and using the general result that for a Gaussian

random variableη, E{η2} = [E{η}]2 +variance{η}, the sub-optimal performance dual index given

in Equation (19) can be rewritten as

J = [ŷ(k + d) − yd(k + d)]2 + (1 + r)σ2
y(k+d) + τu2(k) + λσ2

u(k). (20)

Taking the derivative of this equation with respect tou(k) and setting the derivative equal to

zero yields,

2[ŷ(k + d) − yd(k + d)]
∂ŷ(k + d)

∂u(k)
+ (1 + r)

∂σ2
y(k+d)

∂u(k)

+ 2τu(k) + λ
∂σ2

u(k)

∂ŷ(k + d)

∂ŷ(k + d)

∂u(k)
= 0. (21)

This equation is then solved for the optimal control law. The parameters of the inverse controller

are then adapted such as to predict the conditional expectation of this optimal control law. The

parameters of the network which model the variance of the inverse controller have also to be

adapted to minimize the squared difference between the optimal control law and its estimate.

We repeat here the example in [19] to demonstrate the advantages of incorporating model

uncertainty in the functional adaptive control scheme. The dynamic equation of the system was



taken to be described by

y(k + 1) = sin[y(k)] + cos[3y(k)] + {2 + cos[y(k)]}u(k) + e(k + 1). (22)

wheree(k + 1) was assumed to be sampled from a Gaussian distribution,N (0, 0.001). In [19],

three experiments were conducted using three different design parameter settings corresponding

to certainty equivalence(r = −1, λ = 0), cautious(r = 0, λ = 1) and dual control(r =

−0.6, λ = 0.8). In all experiments on-line control was started immediately and the neural

networks were never subjected to initial off-line training phase. The three experiments were

simulated using the same initial conditions, noise sequence, reference input, and control penalty

τ = 0.0001. The plant and desired outputs resulting from each experiment are shown in Figure 5.

As can be seen from this figure and following the discussion in [19] the large transient error

results from the certainty equivalence controller is expected because model uncertainties are

not considered in calculating the control signal of this controller. The cautious controller on

the other hand, does not overreact during the transient period knowing that model parameter

estimates are still inaccurate. However as can be seen from the figure, the cautious controller

is almost inactive during the first period of control and takes longer time to track the desired

output. The best results could be obtained from the dual controller. It strikes a compromise

between the slow tracking performance of the cautious controller and at the same time shows

no large overshoots in the transient period [19].

Compared to the method proposed by [10] this method can be seen to be more general for

many reasons. Firstly, this method is shown to be suitable for the four different classes of models

defined by Narendra and Parthasarathy in [48], as long as the variance of the forward model

could be estimated as an input dependent variance. The method proposed in [10] on the other

hand was for a specific affine class of nonlinear discrete time systems. Secondly, the variance

of the residual error in [19] is the variance of the error of the predicted output from the neural

network. This includes all possible sources of variation in the predicted output, whether it is

due to noise affecting the output, noise affecting the input, or even due to parameter uncertainty.

The variance in [10] however, includes variations of model parameters only.
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Fig. 5. Control Results of the single-input single-output nonlinear stochastic control system using three different control

methods: (a) The actual and desired model outputs using certain equivalence control method. (b) The tracking error from the

certain equivalence method. (c) The actual and desired model outputs using the cautious control method. (d) The tracking error

from the cautious method. (e) The actual and desired model outputs using the dual control method. (f) The tracking error from

the dual method.
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Fig. 6. The architectures of conventional indirect adaptive control and indirect adaptive control which incorporates model

uncertainty: (a) Conventional indirect adaptive control using a neural network, here the error between the identification model

and the desired output is used to adapt the inverse controller. (b) Indirect adaptive control which incorporates model uncertainty,

as can be seen uncertainty of the forward and inverse models in addition to the error between the identification model and the

desired output are used to adapt the inverse controller.

C. Adaptive Critic Control

The neuro-control community has developed a general family of control designs capable of

planning or optimization over time in complex way and has the ability to cope with noise. So

unlike the neural adaptive and the inverse control algorithms, adaptive critic neural networks

show real promise of deriving the optimal control law for complex processes under uncertain

conditions.

This approach can be defined as a set of methods that approximate dynamic programming.

The method is based on the basic concept common to all forms of dynamic programming [24].

The user needs to supply a utility functionU and a stochastic model of the plant to be controlled.

Dynamic programming is used to solve for another function called the cost functionJ, which is

assumed to be a function of the state variable at timek of the plant to be controlled,x(k).

Following the concept of dynamic programming, adaptive critic methods can be defined

more precisely as designs that include two neural networks: the critic network which tries to

approximate the cost functionJ or its derivatives, and the action network which should be adapted

so as to maximizeJ in the near term future. As shown in Figure 7, the input to both the action

and the critic networks is the state vectorx(k). The cost function to be minimized is usually



taken to be of the following form

J[x(k)] = U(x(k), u[x(k)])+ < J[x(k + 1)] > . (23)

Based on the output supposed to be approximated by the critic network and the method for

adapting the action network, three different critic designs have been proposed in the literature:

(1) Heuristic dynamic programming(HDP), which adapts a critic network whose output is an

approximation ofJ(x(k)), (2) Dual heuristic programming(DHP), which adapts a critic network

whose outputs represent the derivative ofJ(x(k)) [3], and (3) GlobalizedDHP (GDHP), which

adapts a critic network whose output is an approximation ofJ(x(k)), but adapts it so as to

minimise errors in the implied derivatives ofJ, as well asJ itself. The reader is referred to [49],

[56] for full discussion about critic designs.

The adaptive critic design methods are capable of deriving near-optimal control laws over

time in noisy nonlinear environments and under uncertain conditions. This comes from the

fact that the adaptive critic methods are an approximation for dynamic programming which is

currently the only mathematical formalism under which an optimal controller can be designed

under uncertain conditions. The fact that (23) takes the expected value of the cost function at

time k + 1, < J[x(k + 1)] >, shows that model uncertainty can be accounted for in deriving the

near-optimal control law, although non of the new research considers this.

   Critic

Action
  Nonlinear 

Actual
StateControl

Critic
Update

Action
UpdatePlant

Model

State Prediction

Plant

Fig. 7. An adaptive critic design. The outputs of the critic network are the derivative ofJ(x(k))

Recently Herzallah [18] has proposed a new control algorithm for the adaptive critic networks

which takes into consideration model uncertainty. Critic methods usually assume the availability



of a forward model when calculating the control law. The argument raised in [18] was that,

although an approximation model is usually identified so as to represent the forward model of

the plant, researchers in the adaptive critic field usually assume that the obtained forward model

is accurate and ignore uncertainty of that model. Consequently, a cautious type adaptive critic

controller which takes uncertainty of a models’ estimate into consideration when calculating

the control law was proposed. The proposed controller has been obtained directly by ideally

solving the adaptive critic problem. In contrast to how the adaptive critic problem is usually used

so as to derive the control law, certainty equivalence is not assumed in the cautious adaptive

critic controller [18]. The control law is derived by minimization of the performance index

J[x(k)] given in (23), but with the uncertainty of the model estimates taken into consideration

by treating the predicted state vector or output of the system as random variables. Taking the

assumptions of Gaussian distributions of the forward model, the fact that the cost function

J[x(k)] is a quadratic function inx(k), and using the general result that for a random variable

η, E{η2} = [E{η}]2 + variance{η}, the sub-optimal performance index given in Equation (23) is

shown to be given by [18]

J[x(k)] = U(x(k), u[x(k)])

+ < J[x̂(k + 1) + e(k + 1)] >

= U(x(k), u[x(k)]) + J[x̂(k + 1)] + tr ΣM. (24)

where tr denotes the trace of the matrix,M is the weighting matrix associated with the cost

function J[x(k)] which can be calculated if required, andΣ is the covariance matrix of the

residual error.

SinceΣ is state dependent, the derivative of the above cost function with respect to the state

x(k) at timek, defined asλ[x(k)] is shown to be given by,

λ[x(k)] ≡ δJ[x(k)]

δx(k)
=

∂U[x(k), u(k)]

∂x(k)
+

∂U[x(k), u(k)]

∂u(k)

∂u[x(k)]

∂x(k)

+ λ[x(k + 1)]
∂x(k + 1)

∂x(k)

+ λ[x(k + 1)]
∂x(k + 1)

∂u(k)

∂u[x(k)]

∂x(k)
+ tr

∂Σ

∂x(k)
M. (25)

The covariance of the forward modelΣ is dependent on the control signal as well, so the



optimality equation is shown to be given by,

∂J[x(k)]

∂u(k)
=

∂U[x(k), u(k)]

∂u(k)

+ λ[x(k + 1)]
∂x(k + 1)

∂u(k)
+ tr

∂Σ

∂u(k)
M

= 0. (26)

The training process for the cautious type adaptive critic proposed in [18] is exactly the same

as that described for the adaptive critic in its conventional form. The only difference is that (25)

is used here to calculate the target of the critic network, and the output from the converged critic

is used in (26) solving for the targetu∗(k) which is then used to correct the action network. In

addition the proposed method is recommended to be implemented on-line. The forward model of

the plant to be controlled, the controller and the critic networks can all be adapted on-line. This

is because the proposed adaptive-critic-based cautious controller considers model uncertainty in

calculating the control law.

Compared to the conventional adaptive critic networks, the cautious adaptive critic network

proposed by Herzallah [18] has the advantage of incorporating model uncertainty when deriving

the optimal control law.

In the same way, the example that has been presented in [18] is repeated here. The plant

equation was assumed to be a linear input-output stochastic model given by,

x(k + 1) = x(k) + 2u(k) + noise, (27)

where the noise term is assumed to be sampled from a Gaussian distribution,N (0, 0.02).

Following the procedure in [18] Figure 8 shows a comparison of the system state being controlled

by both the optimal control using the policy method of dynamic programming which accounts

for model uncertainty in calculating the control law by considering state and control signal

dependent variance and the control determined by the proposed cautious adaptive critic method

for x(0) = −20. The results in this figure are obtained by performing on-line identification

for the proposed adaptive critic method only. For the policy method of dynamic programming,

off-line identification for calculating the optimal control law is assumed [18]. From this figure

it is clear that good control results could be obtained from the cautious adaptive critic method

which incorporates model uncertainty.



1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6
−20

−15

−10

−5

0

5

Time, k

St
at

e,
 x

Cautious adaptive critic based control
Cautious optimal control

Fig. 8. Controlled linear input output stochastic system with initial conditionx(0) = −20. It can be seen that that the cautious
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prior off-line training.

IV. I MPROVING THE PERFORMANCE OFINTELLIGENT CONTROL USING MULTIPLE MODELS:

DEALING WITH UNCERTAINTY

As discussed in Section II, multiple model approaches have been proposed to handle problems

with higher levels of uncertainty and complexity, known as multi-modality.

In the control literature, three types of multi-modality are considered. The first one is temporal

multi-modality: this situation occurs when the plant operates in suddenly changing environments

or when a fault condition occurs. The second type of multi-modality is called spatial multi-

modality: it occurs when the plant is characterized by a highly nonlinear complex function,

which exhibits different characteristics over different operating zones or operating spaces. The

third type of multi-modality occurs when one tries to acquire the inverse dynamics of the plant

using supervised learning. This is an ill posed problem, where there is a well defined forward

solution, but the solutions to the inverse problem are not unique. Most motor control problems

are ill-posed in the sense that there is a well defined forward solution, but the inverse solution

is not unique.

Although multiple approaches usually model the conditional probability of theith model,



the controller is usually designed by ignoring knowledge of uncertainty. Two different methods

have been suggested for designing the controller. In the first method the new control signal is

taken to be the output of the controller with the highest conditional probability. In the second

method, the new control signal is taken to be the probability weighted average of the outputs of

all controllers.

Different methods for incorporating uncertainty knowledge in the multiple model approaches

have recently appeared in the control literature. In the following we discuss briefly two of the

approaches.

The first method is a mixture of adaptive control to handle dynamic uncertainty, and multiple

model techniques to handle the multi-modality. This method is known as a multiple model

adaptive control scheme [10]. It is designed for a class of affine-nonlinear stochastic plant with

temporal multi-modality of the following form

y(k) = fm(k)[x(k − 1)] + gm(k)[x(k − 1)]u(k − 1) + e(k), (28)

where y(k) is the system output,u(k) is the control signal,x(k − 1) = [y(k − n), . . . , y(k −

1), u(k−1−p), . . . , u(k−2)]T is the vector of previous output and input values, ande(k) is an

additive noise signal which is assumed to be independent and has zero mean Gaussian distribution

of varianceσ2. The smooth nonlinear functionsfm(k)[x(k − 1)], gm(k)[x(k − 1)] could switch

form at an arbitrary instant in time taking on any of the pairs{(f1, g1), (f2, g2), . . . , (fH, gH)} as

indexed bym(k) ∈ {1, . . . , H}.

A multiple model approach based on a Gaussian radial basis function network is used to

identify the nonlinear modes of the plant.H local neural network models, one per mode, are then

used to identify the plant and to control it via indirect adaptive techniques. Two Gaussian radial

basis function networks are used for each local model to identify the two nonlinear functions

(fi) and (gi) in (28),

f̂i[x, ŵT
fi
] = ŵT

fi
φfi

[x],

ĝi[x, ŵT
gi

] = ŵT
gi

φgi
[x]. (29)

As can be seen from the above equation, the unknown variables consist of the optimal output

layer parameters of the networks in all local models,w∗
fi

, w∗
gi

; i = 1, . . . , H.



From (28) and (29), the system dynamics during activity of the mode captured by local model

i could be represented in the following state space form

w∗
i (k + 1) =w∗

i (k),

y(k) =w∗T

i (k)φi[x(k − 1)] + e(k), (30)

wherew∗T

i = [w∗T

fi
(k), w∗T

gi
(k)] andφT

i [x(k − 1)] = [φT
fi
[x(k − 1)]φT

gi
[x(k − 1)]u(k − 1)].

The number of local models to be estimated is determined by the number of plant modes if

known a priori. Otherwise, a self organized scheme which allows adding new local models is

used [10]. Since (30) is linear in the parameters, a Kalman filter is used to generate recursively

the conditional minimum mean square predictive estimateŵi(k + 1) of w∗
i and its covariance

matrix Pi(k+1) whenever the mode corresponding to local modeli is active as could be detected

by m(k). As the mode indexm(k) is not actually known a mode estimation method is developed

in [10]. Interested readers are referred to [10] for the problem of mode and parameter estimation.

Following the discussion in Section III-B a performance index of the form given in (14)

has been suggested for incorporating model uncertainty in the multiple model adaptive control

scheme [10]. The difference here is that a number of local models are taken to represent the

forward dynamics of the system as can be seen from (28).

Subject to (28) and knowledge of the mode sequenceS(k) = {m(1),m(2), . . . , m(k)}, the

control law minimizing the performance indexJ stated in (14) is then shown to be given by

u∗(k − 1) =
{yd(k) − f̂m(k)[.]}ĝm(k)[.] − (1 + r)νgfm(k)

ĝ2
m(k)[.] + q + (1 + r)νggm(k)

, (31)

where

f̂m(k) =ŵT
fm(k)

(k | S(k))φf[x(k)],

ĝm(k) =ŵT
gm(k)

(k | S(k))φg[x(k)],

νgfm(k)
=φT

g[x(k)]Pgfm(k)
(k | S(k))φf[x(k)],

νggm(k)
=φT

g[x(k)]Pggm(k)
(k | S(k))φg[x(k)], (32)

and whereŵfm(k)
(k | S(k)) and ŵgm(k)

(k | S(k)) are sub-vectors of̂wm(k)(k | S(k)). Similarly

Pgfm(k)
(k | S(k)) andPggm(k)

(k | S(k)) are sub-matrices of the covariance matrixPm(k)(k | S(k)).



Compared to the conventional multiple model approaches, this approach has the advantage of

incorporating uncertainty of model parameters. Again only parameter uncertainty is accounted

for in this approach. All other sources of uncertainty have been ignored.

The second method uses the mixture density network approach for representing general

probability density functions of the inverse controllers. This method is applied to ill-posed control

problems in which the solution to the inverse controller is not unique [21].

For multi-valued functions (ill-posed problems), it has been shown [6], [21] that mixture

density networks (MDNs) provide a general framework for modeling the conditional probability

density functions of inverse controllers,p(u(k) | s(k)). Here s(k) = [yd(k + d), x(k)], where

x(k) = [y(k), . . . , y(k − q + 1), u(k − 1), . . . , u(k − p + 1)]. The distribution of the control

signals,u(k), is described by a parametric model whose parameters are determined by the output

of a neural network, which takess(k) as inputs. The general conditional distribution function is

given by

p(u(k) | s(k)) =

M∑

j=1

αj(s(k))φ(u(k) | s(k)), (33)

where αj(s(k)) represents the mixing coefficients, and can be regarded as prior probabilities

(which depend ons(k)), φj(u(k)|s(k)) are the kernel distributions of the mixture model (whose

parameters are also conditioned ons(k)), and M is the number of kernels in the mixture

model. This combination of a density model and a feed-forward neural network is represented

schematically in Fig 9.

Different methods for using the output from the mixture density network have been suggested.

For control applications where unique solutions cannot be found, and where the distribution of

the target data consists of different numbers of distinct branches, one specific branch from the

estimated conditional density of the MDN needs to be selected. Two examples of how to select

a specific branch are the most likely, and the most probable output values. Interested readers are

referred to [6], [17] for more details.

However it has been shown [21] that neither of the two proposed methods lead to the optimal

control law. The argument was based on the fact that although mixture density networks model

the general distribution of the inverse controllers, specific quantities are then selected to represent

the output of the mixture density network, either the most probable or the most likely value,

and all other information about uncertainty is ignored.
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Fig. 9. The architecture of the mixture density network. The inputs to the models(k) = [yd(k + d), x(k)] and the outputs

estimate the parameters of the mixture components.

Consequently Herzallah [17] proposed an inversion based neuro-controller for incorporating

uncertainty in the mixture density network. Similar to the discussion in Section III-A the approach

is based on importance sampling, this time from the non-Gaussian distribution of the inverse

controller. The optimal control signal is searched for by generating samples from that distribution

which are then forwarded to the plant model. The optimal control signal is then taken to be the

one that minimizes a performance index of the form given in (1).

In contrast to selecting a specific quantity to represent the output of the mixture density

network, the approach in [17] has the advantage of considering the full distribution which is

estimated using a mixture density network.

The validity of the proposed method in [17] is demonstrated on a third order system with two



inputs and two outputs described by the following state equation :

x1(k + 1) = 0.9x1(k) sin[x2(k)] +

[
2 + 1.5

x1(k)u1(k)

1 + x2
1(k)u2

1(k)

]
u1(k) +

[
x1(k) +

2x1(k)

1 + x2
1(k)

]
u2(k),

x2(k + 1) = x3(k){1 + sin[4x3(k)]} +
x3(k)

1 + x2
3(k)

,

x3(k + 1) = {3 + sin[2x1(k)]}u2(k),

y1(k) = x1(k),

y2(k) = x2(k), (34)

wherexxx(k) = [x1(k), x2(k), x3(k)] is the state,uuu(k) = [u1(k), u2(k)] is the control variable, and

y(k) = [y1(k), y2(k)] is the output. Figures 10, 11, 12 show the results obtained from using the

most probable value, the most likely value of the mixture density network as control signal and

the control results from sampling the mixture density network respectively. From these figures

it is clear that the performance of the controller by sampling the mixture density network has

the best performance.

V. OPEN PROBLEMS AND FUTURE WORK

The discussion in this paper focused on incorporating functional uncertainty in three control

methods: direct inverse control, indirect adaptive control and the adaptive critic. Incorporating

model uncertainty in other control methods has also been considered in the control literature [7],

[8], [22], [23], [25], [38].

Although some progress has been achieved for incorporating model uncertainty in the intel-

ligent control framework, the problem has not been completely solved. Almost all the methods

discussed in this paper were limited to considering model uncertainty which results because

of uncertain model parameters or uncertain model outputs. Functional uncertainty which could

result because of the wrong order of the model, the wrong structure or even because of missing

data has not been considered.

In addition, the use of the mixture density network has been rarely reported in the control

literature. This network has been demonstrated to give good results when used as a controller [17],

and it also can model the conditional distribution of the controller or the forward model. The

use of this network needs further investigation; such as the possibility of using this network to



0 50 100 150 200 250 300
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

3

Time

O
ut

pu
ts

System Output
Reference Output

(a)

0 50 100 150 200 250 300
−3

−2

−1

0

1

2

3

4

Time

O
ut

pu
ts

System Output
Reference Output

(b)

Fig. 10. Performance of the most probable control value of the mixture density network : (a) the first output of the plant. (b)

the second output of the plant. Note the large overshoots in the second output.
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Fig. 11. Performance of the most likely value of the mixture density network: (a) the first output of the plant. (b) the second

output of the plant. The overshoots in the second output have been reduced.
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Fig. 12. Performance of the proposed control approach of mixture density network for the dynamical MIMO system: (a) the

first output of the plant. (b) the second output of the plant. The overshoots have been reduced and the average error on the first

output is also reduced compared to the previous two methods for selecting a control signal.



model forward and inverse models in the indirect adaptive control framework or even in the

adaptive critic methods.

VI. CONCLUSIONS

This paper has provided a survey of some of the recently developed methods in the neural

control field for incorporating model uncertainty. The basic ideas, the strength and the weakness

of each method, and relations with conventional methods have been summarized. The methods

discussed in the paper are mainly based on utilizing statistical techniques for modeling the

conditional distributions of the outputs or parameters of the neural networks. We explored

advantages and disadvantages of each method and discussed the links between the different

methods in a unified presentation and identified key areas for future research.

This survey is aimed at researchers currently working in the control field. By putting together

some of the publications related to incorporating uncertainty in control problems, we hope that

interested researchers may find out about the current status of this field.
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