32 research outputs found

    Retrospective-Cost Adaptive Control of Uncertain Hammerstein-Wiener Systems with Memoryless and Hysteretic Nonlinearities

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/97108/1/AIAA2012-4449.pd

    An adaptive weighted least square support vector regression for hysteresis in piezoelectric actuators

    Full text link
    © 2017 Elsevier B.V. To overcome the low positioning accuracy of piezoelectric actuators (PZAs) caused by the hysteresis nonlinearity, this paper proposes an adaptive weighted least squares support vector regression (AWLSSVR) to model the rate-dependent hysteresis of PZA. Firstly, the AWLSSVR hyperparameters are optimized by using particle swarm optimization. Then an adaptive weighting strategy is proposed to eliminate the effects of noises in the training dataset and reduce the sample size at the same time. Finally, the proposed approach is applied to predict the hysteresis of PZA. The results show that the proposed method is more accurate than other versions of least squares support vector regression for training samples with noises, and meanwhile reduces the sample size and speeds up calculation

    Motion Control of Smart Material Based Actuators: Modeling, Controller Design and Experimental Evaluation

    Get PDF
    Smart material based actuators, such as piezoelectric, magnetostrictive, and shape memory alloy actuators, are known to exhibit hysteresis effects. When the smart actuators are preceded with plants, such non-smooth nonlinearities usually lead to poor tracking performance, undesired oscillation, or even potential instability in the control systems. The development of control strategies to control the plants preceded with hysteresis actuators has become to an important research topic and imposed a great challenge in the control society. In order to mitigate the hysteresis effects, the most popular approach is to construct the inverse to compensate such effects. In such a case, the mathematical descriptions are generally required. In the literature, several mathematical hysteresis models have been proposed. The most popular hysteresis models perhaps are Preisach model, Prandtl-Ishlinskii model, and Bouc-Wen model. Among the above mentioned models, the Prandtl-Ishlinskii model has an unique property, i.e., the inverse Prandtl-Ishlinskii model can be analytically obtained, which can be used as a feedforward compensator to mitigate the hysteresis effect in the control systems. However, the shortcoming of the Prandtl-Ishlinskii model is also obvious because it can only describe a certain class of hysteresis shapes. Comparing to the Prandtl-Ishlinskii model, a generalized Prandtl-Ishlinskii model has been reported in the literature to describe a more general class of hysteresis shapes in the smart actuators. However, the inverse for the generalized Prandtl-Ishlinskii model has only been given without the strict proof due to the difficulty of the initial loading curve construction though the analytic inverse of the Prandtl-Ishlinskii model is well documented in the literature. Therefore, as a further development, the generalized Prandtl-Ishlinskii model is re-defined and a modified generalized Prandtl-Ishlinskii model is proposed in this dissertation which can still describe similar general class of hysteresis shapes. The benefit is that the concept of initial loading curve can be utilized and a strict analytical inverse model can be derived for the purpose of compensation. The effectiveness of the obtained inverse modified generalized Prandtl-Ishlinskii model has been validated in the both simulations and in experiments on a piezoelectric micropositioning stage. It is also affirmed that the proposed modified generalized Prandtl-Ishlinskii model fulfills two crucial properties for the operator based hysteresis models, the wiping out property and the congruency property. Usually the hysteresis nonlinearities in smart actuators are unknown, the direct open-loop feedforward inverse compensation will introduce notably inverse compensation error with an estimated inverse construction. A closed-loop adaptive controller is therefore required. The challenge in fusing the inverse compensation and the robust adaptive control is that the strict stability proof of the closed loop control system is difficult to obtain due to the fact that an error expression of the inverse compensation has not been established when the hysteresis is unknown. In this dissertation research, by developing the error expression of the inverse compensation for modified generalized Prandtl-Ishlinskii model, two types of inverse based robust adaptive controllers are designed for a class of uncertain systems preceded by a smart material based actuator with hysteresis nonlinearities. When the system states are available, an inverse based adaptive variable structure control approach is designed. The strict stability proof is established thereafter. Comparing with other works in the literature, the benefit for such a design is that the proposed inverse based scheme can achieve the tracking without necessarily adapting the uncertain parameters (the number could be large) in the hysteresis model, which leads to the computational efficiency. Furthermore, an inverse based adaptive output-feedback control scheme is developed when the exactly knowledge of most of the states is unavailable and the only accessible state is the output of the system. An observer is therefore constructed to estimate the unavailable states from the measurements of a single output. By taking consideration of the analytical expression of the inverse compensation error, the global stability of the close-loop control system as well as the required tracking accuracy are achieved. The effectiveness of the proposed output-feedback controller is validated in both simulations and experiments

    Advances in Tracking Control for Piezoelectric Actuators Using Fuzzy Logic and Hammerstein-Wiener Compensation

    Get PDF
    first_page settings Open AccessArticle Advances in Tracking Control for Piezoelectric Actuators Using Fuzzy Logic and Hammerstein-Wiener Compensation by Cristian Napole 1,* [OrcID] , Oscar Barambones 1,* [OrcID] , Isidro Calvo 1 [OrcID] , Mohamed Derbeli 1 [OrcID] , Mohammed Yousri Silaa 1 [OrcID] and Javier Velasco 2 [OrcID] 1 System Engineering and Automation Deparment, Faculty of Engineering of Vitoria-Gasteiz, Basque Country University (UPV/EHU), 01006 Vitoria-Gasteiz, Spain 2 Fundación Centro de Tecnologías Aeronáuticas (CTA), Juan de la Cierva 1, 01510 Miñano, Spain * Authors to whom correspondence should be addressed. Mathematics 2020, 8(11), 2071; https://doi.org/10.3390/math8112071 Received: 23 October 2020 / Revised: 16 November 2020 / Accepted: 17 November 2020 / Published: 20 November 2020 (This article belongs to the Special Issue Fuzzy Applications in Industrial Engineering) Download PDF Browse Figures Abstract Piezoelectric actuators (PEA) are devices that are used for nano- microdisplacement due to their high precision, but one of the major issues is the non-linearity phenomena caused by the hysteresis effect, which diminishes the positioning performance. This study presents a novel control structure in order to reduce the hysteresis effect and increase the PEA performance by using a fuzzy logic control (FLC) combined with a Hammerstein–Wiener (HW) black-box mapping as a feedforward (FF) compensation. In this research, a proportional-integral-derivative (PID) was contrasted with an FLC. From this comparison, the most accurate was taken and tested with a complex structure with HW-FF to verify the accuracy with the increment of complexity. All of the structures were implemented in a dSpace platform to control a commercial Thorlabs PEA. The tests have shown that an FLC combined with HW was the most accurate, since the FF compensate the hysteresis and the FLC reduced the errors; the integral of the absolute error (IAE), the root-mean-square error (RMSE), and relative root-mean-square-error (RRMSE) for this case were reduced by several magnitude orders when compared to the feedback structures. As a conclusion, a complex structure with a novel combination of FLC and HW-FF provided an increment in the accuracy for a high-precision PEA.This research was funded by Basque Government and UPV/EHU projects

    Modeling and Control of Magnetostrictive-actuated Dynamic Systems

    Get PDF
    Magnetostrictive actuators featuring high energy densities, large strokes and fast responses appear poised to play an increasingly important role in the field of nano/micro positioning applications. However, the performance of the actuator, in terms of precision, is mainly limited by 1) inherent hysteretic behaviors resulting from the irreversible rotation of magnetic domains within the magnetostrictive material; and 2) dynamic responses caused by the inertia and flexibility of the magnetostrictive actuator and the applied external mechanical loads. Due to the presence of the above limitations, it will prevent the magnetostrictive actuator from providing the desired performance and cause the system inaccuracy. This dissertation aims to develop a modeling and control methodology to improve the control performance of the magnetostrictive-actuated dynamic systems. Through thorough experimental investigations, a dynamic model based on the physical principle of the magnetostrictive actuator is proposed, in which the nonlinear hysteresis effect and the dynamic behaviors can both be represented. Furthermore, the hysteresis effect of the magnetostrictive actuator presents asymmetric characteristics. To capture these characteristics, an asymmetric shifted Prandtl-Ishlinskii (ASPI) model is proposed, being composed by three components: a Prandtl-Ishlinskii (PI) operator, a shift operator and an auxiliary function. The advantages of the proposed model are: 1) it is able to represent the asymmetric hysteresis behavior; 2) it facilitates the construction of the analytical inverse; 3) the analytical expression of the inverse compensation error can also be derived. The validity of the proposed ASPI model and the entire dynamic model was demonstrated through experimental tests on the magnetostrictive-actuated dynamic system. According to the proposed hysteresis model, the inverse compensation approach is applied for the purpose of mitigating the hysteresis effect. However, in real systems, there always exists a modeling error between the hysteresis model and the true hysteresis. The use of an estimated hysteresis model in deriving the inverse compensator will yield some degree of hysteresis compensation error. This error will cause tracking error in the closed-loop control system. To accommodate such a compensation error, an analytical expression of the inverse compensation error is derived first. Then, a prescribed adaptive control method is developed to suppress the compensation error and simultaneously guaranteeing global stability of the closed loop system with a prescribed transient and steady-state performance of the tracking error. The effectiveness of the proposed control scheme is validated on the magnetostrictive-actuated experimental platform. The experimental results illustrate an excellent tracking performance by using the developed control scheme

    Retrospective Cost Adaptive Control of Uncertain Hammerstein Systems.

    Full text link
    This dissertation extends retrospective cost adaptive control (RCAC) by broadening its applicability to nonlinear systems. Specifically, we consider command following and disturbance rejection for uncertain Hammerstein systems. All real-world control systems must operate subject to constraints on the allowable control inputs. We use convex optimization to perform the retrospective input optimization, provided the saturation levels are known. The use of convex optimization bounds the magnitude of the retrospectively optimized input and thereby influences the controller update to satisfy the control bounds. We demonstrate this technique on illustrative numerical examples involving single and multiple inputs. In particular, this technique is applied to a multi-rotor helicopter with constraints on the total thrust magnitude and inclination of the rotor plane. We develop RCAC for uncertain Hammerstein systems with odd, even, or arbitrary nonlinearities by constructing auxiliary nonlinearities to account for the non-monotonic input nonlinearities. The purpose of the auxiliary nonlinearities is to ensure that RCAC is applied to a Hammerstein system with a globally nondecreasing composite input nonlinearity. We assume that the linear plant is either asymptotically stable or minimum-phase, and only one Markov parameter of the linear plant is known. The input nonlinearity is uncertain. The required modeling information for the input nonlinearity includes the intervals of monotonicity as well as values of the nonlinearity that determine overlapping segments of the range of the nonlinearity within each interval of monotonicity. Although RCAC is able to tune the linear controller to the command signal and nonlinear characteristics of the plant, the ability of the linear controller to produce accurate command following is limited by the distortion introduced by the nonlinearities. The linear controller structure of RCAC is replaced by a NARMAX (nonlinear ARMAX) controller structure, where the basis functions in the NARMAX controller are chosen by the user, and the controller coefficients appear linearly. To account for the case in which the input nonlinearity is uncertain, we investigate the performance of retrospective cost adaptive NARMAX control (RCNAC) in the case of uncertainty, an approximate input nonlinearity, called the ersatz nonlinearity, can be used by RCANC for adaptation.PhDAerospace EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/100042/1/yanjin_1.pd

    Modeling and Control of Liquid Crystal Elastomer Based Soft Robots

    Get PDF
    Soft robots are robotic systems which are inherently compliant, and can exhibit body deformation in normal operations. This type of systems has unprecedented advantage over rigid-body robots since they can mimic biological systems to perform a series of complicated tasks, work in confined spaces, and interact with the environment much more safely. Usually, the soft robots are composed of subsystems including the actuator, the sensor, the driving electronics, the computation system, and the power source. In these subsystems, the actuator is of great importance. This is because in most situations the actuator works to carry out the operations of the soft robot. It decides the functionalities and physical features of the whole system. Meanwhile, other subsystems work to aid the successful functioning of the actuator. Thus, the study on soft robot actuators, especially the modeling and control of soft robot actuators is the key to soft robot applications. However, characteristics of soft robot actuators vary greatly due to the usage of different actuator materials. These materials include the variable length tendons, rubbers, smart materials, etc.. Among these different materials, smart material based actuators have the advantage of fast response, light weight, and can respond to various types of external stimuli such as electrical signal, magnetic signal, light, heat, etc.. As a result, smart material based actuators have been studied widely for possible soft robot applications. Recent years, among smart materials, the liquid crystal elastomer (LCE) starts to catch researchers' attention. LCE is a type of smart material which can deform under the stimulation of light. Unlike conventional actuators, the LCE actuator can be separated from the power source, suggesting a simpler and lighter design, possible for applications that are totally different from conventional electro-driven or magneto-driven actuators. However, just like other smart materials, the deformation characteristics of the LCE actuator exhibits a complicated hysteretic behavior highly dependent on environmental factors, which brings difficulty to the modeling and control. Furthermore, the deformation of the photo-responsive LCE actuator is a multi-step process, resulting greater inaccuracy when compared with conventional smart material based actuators. These are huge challenges that need to be overcome for the modeling and control of the LCE actuator, which is still in its preliminary stage. This dissertation aims to develop suitable modeling and control strategies for the photo-responsive LCE actuator with the purpose of using it in soft robot applications. Here, by looking into the physical nature of the light-induced deformation of the LCE actuator, it can be concluded that LCE's deformation is inherently the macroscopic shape change resulted from the microscopic phase change of LCE molecules. Based on this deformation mechanism, an experimental platform including a computer, an I/O module, a programmable laser, the LCE actuator, a thermal camera, and a laser distance sensor is established to study the modeling and control of the photo-responsive LCE actuator. Experiments are performed and the results show that the deformation characteristics of the LCE actuator indeed exhibit obvious hysteresis, which is dependent on environmental factors. Based on the deformation mechanism of LCE, basic modeling scheme and positioning control scheme for the photo-responsive LCE actuator are established. For the modeling of the LCE actuator, the goal is to obtain its temperature-deformation relationship and describe the hysteresis with small errors. Here, the average order parameter is introduced to give a quantitative description of the macroscopic average phase of LCE molecules. Then, the key to obtain the temperature-deformation relationship is to first find the relationship between the temperature of the LCE actuator and the average order parameter, and then find the relationship between the average order parameter and the macroscopic deformation. The overall model is the combination of the above two relationships. According to this modeling scheme, a basic physical model for the photo-responsive LCE actuator is established. This model aims to develop a quantitative model that reflects the actual physics of the LCE actuator. By assuming that the phase transition of LCE molecules is under dynamic equilibrium at each specific moment, a simple analytical relationship between the temperature and deformation of the LCE actuator can be obtained. For this model, the Landau-de Gennes expansion of free energy for nematic LCEs is utilized to calculate the average order parameter. First, under the above assumption, the relationship between the temperature and the average order parameter is obtained. Meanwhile, thermal dynamic analysis gives the relationship between the average order parameter and the deformation. The above two relationships are then combined together to give the overall model. Model parameters are calculated based on nonlinear least squares method. Experimental results show that this model works to give a good prediction of the deformation characteristics. Based on the above basic model, an improved model is then established to give a more detailed description on the hysteresis by considering the actual dynamic process of the phase transition of LCE molecules. In order to reflect the actual dynamic process, a small variation of the temperature is considered, and the corresponding number of LCE molecules that undergo phase transition is calculated based on thermal dynamic analysis and a polynomial expansion of the transition rate. As a result, a dynamic equation that gives the temperature-deformation relationship is obtained. To obtain the values of model parameters with efficiency, a two-step parameter identification method based on the differential evolution algorithm and nonlinear least squares method is established. Experiments show that the improved model can describe the hysteretic deformation characteristic of the photo-responsive LCE actuator with high accuracy. Meanwhile, based on the physical nature of the LCE actuator, the positioning control of the photo-responsive LCE actuator is studied. Analysis on the deformation of the LCE actuator from the energy perspective shows that the positioning control of the photo-responsive LCE actuator is a multi-step process, which brings difficulties in control accuracy. To reduce the positioning control errors, a double closed-loop control structure with a feed-forward module is designed for the positioning control of the photo-responsive LCE actuator. Utilizing positioning control scheme together with the developed models, controllers are designed for the positioning control of the photo-responsive LCE actuator. For the proposed double-closed loop structure, the inner loop uses a PID controller to control the temperature of the LCE actuator, the parameters of the inner loop controller are tuned using a stimulation-experiment combined method based on the Hammerstein-Wiener model. Meanwhile, the outer loop consists of a PID controller and a feed-forward controller, the feed-forward controller is a numerical inverse model of the simple physical model that is established in the modeling part, and calculates the target temperature for the inner loop based on the positioning control objective. Parameters of the outer loop controller are directly tuned through experiments. Based on the proposed control strategy, experiments with different control targets are carried out to prove that the proposed controller can achieve the positioning control target with high accuracy. Comparison experiments also show that the proposed double closed-loop structure is faster in response, and has smaller control errors than conventional single closed-loop control structure. In the end, design guidelines for LCE based soft robots are discussed from the application perspective. Designs of a two-legged walking robot and a light-controlled rolling robot based on the photo-responsive LCE actuator are introduced, conclusions are made together with possible working directions for future studies

    Frequency domain approach for dynamics identification of the actuator with asymmetric hysteresis

    Get PDF
    postprin

    Advanced Control of Piezoelectric Actuators.

    Get PDF
    168 p.A lo largo de las últimas décadas, la ingeniería de precisión ha tenido un papel importante como tecnología puntera donde la tendencia a la reducción de tamaño de las herramientas industriales ha sido clave. Los procesos industriales comenzaron a demandar precisión en el rango de nanómetros a micrómetros. Pese a que los actuadores convencionales no pueden reducirse lo suficiente ni lograr tal exactitud, los actuadores piezoeléctricos son una tecnología innovadora en este campo y su rendimiento aún está en estudio en la comunidad científica. Los actuadores piezoeléctricos se usan comúnmente en micro y nanomecatrónica para aplicaciones de posicionamiento debido a su alta resolución y fuerza de actuación (pueden llegar a soportar fuerzas de hasta 100 Newtons) en comparación con su tamaño. Todas estas características también se pueden combinar con una actuación rápida y rigidez, según los requisitos de la aplicación. Por lo tanto, con estas características, los actuadores piezoeléctricos pueden ser utilizados en una amplia variedad de aplicaciones industriales. Los efectos negativos, como la fluencia, vibraciones y la histéresis, se estudian comúnmente para mejorar el rendimiento cuando se requiere una alta precisión. Uno de los efectos que más reduce el rendimiento de los PEA es la histéresis. Esto se produce especialmente cuando el actuador está en una aplicación de guiado, por lo que la histéresis puede inducir errores que pueden alcanzar un valor de hasta 22%. Este fenómeno no lineal se puede definir como un efecto generado por la combinación de acciones mecánicas y eléctricas que depende de estados previos. La histéresis se puede reducir principalmente mediante dos estrategias: rediseño de materiales o algoritmos de control tipo feedback. El rediseño de material comprende varias desventajas por lo que el motivo principal de esta tesis está enfocado al diseño de algoritmos de control para reducir la histéresis. El objetivo principal de esta tesis es el desarrollo de estrategias de control avanzadas que puedan mejorar la precisión de seguimiento de los actuadores piezoeléctricos comerciale
    corecore