7 research outputs found

    Adaptive Content Control for Communication amongst Cooperative Automated Vehicles

    Full text link
    Cooperative automated vehicles exchange information to assist each other in creating a more precise and extended view of their surroundings, with the aim of improving automated-driving decisions. This paper addresses the need for scalable communication among these vehicles. To this end, a general communication framework is proposed through which automated cars exchange information derived from multi-resolution maps created using their local sensing modalities. This method can extend the region visible to a car beyond the area directly sensed by its own sensors. An adaptive, probabilistic, distance-dependent strategy is proposed that controls the content of the messages exchanged among vehicles based on performance measures associated with the load on the communication channel.Comment: 7 Pages, 10 Figures, Sixth International Symposium on Wireless Vehicular Communications (WiVEC'2014

    Review on FM0/Manchester encoder-decoder used in DSRC based Applications

    Get PDF
    DSRC is an emerging technique that plays an important role in sensor networking for intelligent transportation and many other a system applications. The DSRC standards generally adopt FM0 and Manchester codes to reach dc-balance, enhancing the signal reliability In this review, the theoretical backgrounds of FM0/Manchester and how it can be used for DSRC will be discussed

    Multi-Sensor Data Fusion for Robust Environment Reconstruction in Autonomous Vehicle Applications

    Get PDF
    In autonomous vehicle systems, understanding the surrounding environment is mandatory for an intelligent vehicle to make every decision of movement on the road. Knowledge about the neighboring environment enables the vehicle to detect moving objects, especially irregular events such as jaywalking, sudden lane change of the vehicle etc. to avoid collision. This local situation awareness mostly depends on the advanced sensors (e.g. camera, LIDAR, RADAR) added to the vehicle. The main focus of this work is to formulate a problem of reconstructing the vehicle environment using point cloud data from the LIDAR and RGB color images from the camera. Based on a widely used point cloud registration tool such as iterated closest point (ICP), an expectation-maximization (EM)-ICP technique has been proposed to automatically mosaic multiple point cloud sets into a larger one. Motion trajectories of the moving objects are analyzed to address the issue of irregularity detection. Another contribution of this work is the utilization of fusion of color information (from RGB color images captured by the camera) with the three-dimensional point cloud data for better representation of the environment. For better understanding of the surrounding environment, histogram of oriented gradient (HOG) based techniques are exploited to detect pedestrians and vehicles.;Using both camera and LIDAR, an autonomous vehicle can gather information and reconstruct the map of the surrounding environment up to a certain distance. Capability of communicating and cooperating among vehicles can improve the automated driving decisions by providing extended and more precise view of the surroundings. In this work, a transmission power control algorithm is studied along with the adaptive content control algorithm to achieve a more accurate map of the vehicle environment. To exchange the local sensor data among the vehicles, an adaptive communication scheme is proposed that controls the lengths and the contents of the messages depending on the load of the communication channel. The exchange of this information can extend the tracking region of a vehicle beyond the area sensed by its own sensors. In this experiment, a combined effect of power control, and message length and content control algorithm is exploited to improve the map\u27s accuracy of the surroundings in a cooperative automated vehicle system

    Real-time SIL Emulation Architecture for Cooperative Automated Vehicles

    Get PDF
    This thesis presents a robust, flexible and real-time architecture for Software-in-the-Loop (SIL) testing of connected vehicle safety applications. Emerging connected and automated vehicles (CAV) use sensing, communication and computing technologies in the design of a host of new safety applications. Testing and verification of these applications is a major concern for the automotive industry. The CAV safety applications work by sharing their state and movement information over wireless communication links. Vehicular communication has fueled the development of various Cooperative Vehicle Safety (CVS) applications. Development of safety applications for CAV requires testing in many different scenarios. However, the recreation of test scenarios for evaluating safety applications is a very challenging task. This is mainly due to the randomness in communication, difficulty in recreating vehicle movements precisely, and safety concerns for certain scenarios. We propose to develop a standalone Remote Vehicle Emulator (RVE) that can reproduce V2V messages of remote vehicles from simulations or from previous tests, while also emulating the over the air behavior of multiple communicating nodes. This is expected to significantly accelerate the development cycle. RVE is a unique and easily configurable emulation cum simulation setup to allow Software in the Loop (SIL) testing of connected vehicle applications in a realistic and safe manner. It will help in tailoring numerous test scenarios, expediting algorithm development and validation as well as increase the probability of finding failure modes. This, in turn, will help improve the quality of safety applications while saving testing time and reducing cost. The RVE architecture consists of two modules, the Mobility Generator, and the Communication emulator. Both of these modules consist of a sequence of events that are handled based on the type of testing to be carried out. The communication emulator simulates the behavior of MAC layer while also considering the channel model to increase the probability of successful transmission. It then produces over the air messages that resemble the output of multiple nodes transmitting, including corrupted messages due to collisions. The algorithm that goes inside the emulator has been optimized so as to minimize the communication latency and make this a realistic and real-time safety testing tool. Finally, we provide a multi-metric experimental evaluation wherein we verified the simulation results with an identically configured ns3 simulator. With the aim to improve the quality of testing of CVS applications, this unique architecture would serve as a fundamental design for the future of CVS application testing

    Situational Awareness Enhancement for Connected and Automated Vehicle Systems

    Get PDF
    Recent developments in the area of Connected and Automated Vehicles (CAVs) have boosted the interest in Intelligent Transportation Systems (ITSs). While ITS is intended to resolve and mitigate serious traffic issues such as passenger and pedestrian fatalities, accidents, and traffic congestion; these goals are only achievable by vehicles that are fully aware of their situation and surroundings in real-time. Therefore, connected and automated vehicle systems heavily rely on communication technologies to create a real-time map of their surrounding environment and extend their range of situational awareness. In this dissertation, we propose novel approaches to enhance situational awareness, its applications, and effective sharing of information among vehicles.;The communication technology for CAVs is known as vehicle-to-everything (V2x) communication, in which vehicle-to-vehicle (V2V) and vehicle-to-infrastructure (V2I) have been targeted for the first round of deployment based on dedicated short-range communication (DSRC) devices for vehicles and road-side transportation infrastructures. Wireless communication among these entities creates self-organizing networks, known as Vehicular Ad-hoc Networks (VANETs). Due to the mobile, rapidly changing, and intrinsically error-prone nature of VANETs, traditional network architectures are generally unsatisfactory to address VANETs fundamental performance requirements. Therefore, we first investigate imperfections of the vehicular communication channel and propose a new modeling scheme for large-scale and small-scale components of the communication channel in dense vehicular networks. Subsequently, we introduce an innovative method for a joint modeling of the situational awareness and networking components of CAVs in a single framework. Based on these two models, we propose a novel network-aware broadcast protocol for fast broadcasting of information over multiple hops to extend the range of situational awareness. Afterward, motivated by the most common and injury-prone pedestrian crash scenarios, we extend our work by proposing an end-to-end Vehicle-to-Pedestrian (V2P) framework to provide situational awareness and hazard detection for vulnerable road users. Finally, as humans are the most spontaneous and influential entity for transportation systems, we design a learning-based driver behavior model and integrate it into our situational awareness component. Consequently, higher accuracy of situational awareness and overall system performance are achieved by exchange of more useful information

    Scalable Map Information Dissemination for Connected and Automated Vehicle Systems

    Get PDF
    Situational awareness in connected and automated vehicle (CAV) systems becomes particularly challenging in the presence of non-line of sight objects and/or objects beyond the sensing range of local onboard sensors. Despite the fact that fully autonomous driving requires the use of multiple redundant sensor systems, primarily including camera, radar, and LiDAR, the non-line of sight object detection problem still persists due to the inherent limitations of those sensing techniques. To tackle this challenge, the inter-vehicle communication system is envisioned that allows vehicles to exchange self-status updates aiming to extend their effective field of view and thus compensate for the limitations of the vehicle tracking subsystem that relies substantially on onboard sensing devices. Tracking capability in such systems can be further improved through the cooperative sharing of locally created map data instead of transmitting only self-update messages containing core basic safety message (BSM) data. In the cooperative sharing of safety messages, it is imperative to have a scalable communication protocol to ensure optimal use of the communication channel. This dissertation contributes to the analysis of the scalability issue in vehicle-to-everything (V2X) communication and then addresses the range issue of situational awareness in CAV systems by proposing a content-adaptive V2X communication architecture. To that end, we first analyze the BSM scheduling protocol standardized in the SAE J2945/1 and present large-scale scalability results obtained from a high-fidelity simulation platform to demonstrate the protocol\u27s efficacy to address the scalability issues in V2X communication. By employing a distributed opportunistic approach, the SAE J2945/1 congestion control algorithm keeps the overall offered channel load within an optimal operating range, while meeting the minimum tracking requirements set forth by upper-layer applications. This scheduling protocol allows event-triggered and vehicle-dynamics driven message transmits that further the situational awareness in a cooperative V2X context. Presented validation results of the congestion control algorithm include position tracking errors as the performance measure, with the age of communicated information as the evaluation measure. In addition, we examine the optimality of the default settings of the congestion control parameters. Comprehensive analysis and trade-off study of the control parameters reveal some areas of improvement to further the algorithm\u27s efficacy. Motivated by the effectiveness of channel congestion control mechanism, we further investigate message content and length adaptations, together with transmit rate control. Reasonably, the content of the exchanged information has a significant impact on the map accuracy in cooperative driving systems. We investigate different content control schemes for a communication architecture aimed at map sharing and evaluate their performance in terms of position tracking error. This dissertation determines that message content should be concentrated to mapped objects that are located farther away from the sender to the edge of the local sensor range. This dissertation also finds that optimized combination of message length and transmit rate ensures the optimal channel utilization for cooperative vehicular communication, which in turn improves the situational awareness of the whole system
    corecore