1,151 research outputs found

    Perfect tag identification protocol in RFID networks

    Full text link
    Radio Frequency IDentification (RFID) systems are becoming more and more popular in the field of ubiquitous computing, in particular for objects identification. An RFID system is composed by one or more readers and a number of tags. One of the main issues in an RFID network is the fast and reliable identification of all tags in the reader range. The reader issues some queries, and tags properly answer. Then, the reader must identify the tags from such answers. This is crucial for most applications. Since the transmission medium is shared, the typical problem to be faced is a MAC-like one, i.e. to avoid or limit the number of tags transmission collisions. We propose a protocol which, under some assumptions about transmission techniques, always achieves a 100% perfomance. It is based on a proper recursive splitting of the concurrent tags sets, until all tags have been identified. The other approaches present in literature have performances of about 42% in the average at most. The counterpart is a more sophisticated hardware to be deployed in the manufacture of low cost tags.Comment: 12 pages, 1 figur

    From M-ary Query to Bit Query: a new strategy for efficient large-scale RFID identification

    Get PDF
    The tag collision avoidance has been viewed as one of the most important research problems in RFID communications and bit tracking technology has been widely embedded in query tree (QT) based algorithms to tackle such challenge. Existing solutions show further opportunity to greatly improve the reading performance because collision queries and empty queries are not fully explored. In this paper, a bit query (BQ) strategy based Mary query tree protocol (BQMT) is presented, which can not only eliminate idle queries but also separate collided tags into many small subsets and make full use of the collided bits. To further optimize the reading performance, a modified dual prefixes matching (MDPM) mechanism is presented to allow multiple tags to respond in the same slot and thus significantly reduce the number of queries. Theoretical analysis and simulations are supplemented to validate the effectiveness of the proposed BQMT and MDPM, which outperform the existing QT-based algorithms. Also, the BQMT and MDPM can be combined to BQMDPM to improve the reading performance in system efficiency, total identification time, communication complexity and average energy cost

    LPDQ: a self-scheduled TDMA MAC protocol for one-hop dynamic lowpower wireless networks

    Get PDF
    Current Medium Access Control (MAC) protocols for data collection scenarios with a large number of nodes that generate bursty traffic are based on Low-Power Listening (LPL) for network synchronization and Frame Slotted ALOHA (FSA) as the channel access mechanism. However, FSA has an efficiency bounded to 36.8% due to contention effects, which reduces packet throughput and increases energy consumption. In this paper, we target such scenarios by presenting Low-Power Distributed Queuing (LPDQ), a highly efficient and low-power MAC protocol. LPDQ is able to self-schedule data transmissions, acting as a FSA MAC under light traffic and seamlessly converging to a Time Division Multiple Access (TDMA) MAC under congestion. The paper presents the design principles and the implementation details of LPDQ using low-power commercial radio transceivers. Experiments demonstrate an efficiency close to 99% that is independent of the number of nodes and is fair in terms of resource allocation.Peer ReviewedPostprint (author’s final draft

    A fast tag identification anti-collision algorithm for RFID systems

    Full text link
    © 2019 John Wiley & Sons, Ltd. In this work, we propose a highly efficient binary tree-based anti-collision algorithm for radio frequency identification (RFID) tag identification. The proposed binary splitting modified dynamic tree (BS-MDT) algorithm employs a binary splitting tree to achieve accurate tag estimation and a modified dynamic tree algorithm for rapid tag identification. We mathematically evaluate the performance of the BS-MDT algorithm in terms of the system efficiency and the time system efficiency based on the ISO/IEC 18000-6 Type B standard. The derived mathematical model is validated using computer simulations. Numerical results show that the proposed BS-MDT algorithm can provide the system efficiency of 46% and time system efficiency of 74%, outperforming all other well-performed algorithms

    Goodbye, ALOHA!

    Get PDF
    ©2016 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.The vision of the Internet of Things (IoT) to interconnect and Internet-connect everyday people, objects, and machines poses new challenges in the design of wireless communication networks. The design of medium access control (MAC) protocols has been traditionally an intense area of research due to their high impact on the overall performance of wireless communications. The majority of research activities in this field deal with different variations of protocols somehow based on ALOHA, either with or without listen before talk, i.e., carrier sensing multiple access. These protocols operate well under low traffic loads and low number of simultaneous devices. However, they suffer from congestion as the traffic load and the number of devices increase. For this reason, unless revisited, the MAC layer can become a bottleneck for the success of the IoT. In this paper, we provide an overview of the existing MAC solutions for the IoT, describing current limitations and envisioned challenges for the near future. Motivated by those, we identify a family of simple algorithms based on distributed queueing (DQ), which can operate for an infinite number of devices generating any traffic load and pattern. A description of the DQ mechanism is provided and most relevant existing studies of DQ applied in different scenarios are described in this paper. In addition, we provide a novel performance evaluation of DQ when applied for the IoT. Finally, a description of the very first demo of DQ for its use in the IoT is also included in this paper.Peer ReviewedPostprint (author's final draft

    Tag anti-collision algorithms in RFID systems - a new trend

    Get PDF
    RFID is a wireless communication technology that provides automatic identification or tracking and data collection from any tagged object. Due to the shared communication channel between the reader and the tags during the identification process in RFID systems, many tags may communicate with the reader at the same time, which causes collisions. The problem of tag collision has to be addressed to have fast multiple tag identification process. There are two main approaches to the tag collision problem: ALOHA based algorithms and tree based algorithms. Although these methods reduce the collision and solve the problem to some extent, they are not fast and efficient enough in real applications. A new trend emerged recently which takes the advantages of both ALOHA and tree based approaches. This paper describes the process and performance of the tag anti-collision algorithms of the tree-ALOHA trend

    An RFID Anti-Collision Algorithm Assisted by Multi-Packet Reception and Retransmission Diversity

    Get PDF
    RFID provides a way to connect the real world to the virtual world. An RFID tag can link a physical entity like a location, an object, a plant, an animal, or a human being to its avatar which belongs to a global information system. For instance, let's consider the case of an RFID tag attached to a tree. The tree is the physical entity. Its avatar can contain the type of the tree, the size of its trunk, and the list of actions a gardener took on it
    • …
    corecore