227 research outputs found

    Adaptive channel selection in IEEE 802.15.4 TSCH networks

    Get PDF

    Adaptive channel selection in IEEE 802.15.4 TSCH networks

    Get PDF
    Additional files 6: Table S5. Four conjugative transposon gene clusters in the Chryseobacterium indologenes J31 genome

    Towards efficient coexistence of IEEE 802.15.4e TSCH and IEEE 802.11

    Full text link
    A major challenge in wide deployment of smart wireless devices, using different technologies and sharing the same 2.4 GHz spectrum, is to achieve coexistence across multiple technologies. The IEEE~802.11 (WLAN) and the IEEE 802.15.4e TSCH (WSN) where designed with different goals in mind and both play important roles for respective applications. However, they cause mutual interference and degraded performance while operating in the same space. To improve this situation we propose an approach to enable a cooperative control which type of network is transmitting at given time, frequency and place. We recognize that TSCH based sensor network is expected to occupy only small share of time, and that the nodes are by design tightly synchronized. We develop mechanism enabling over-the-air synchronization of the Wi-Fi network to the TSCH based sensor network. Finally, we show that Wi-Fi network can avoid transmitting in the "collision periods". We provide full design and show prototype implementation based on the Commercial off-the-shelf (COTS) devices. Our solution does not require changes in any of the standards.Comment: 8 page

    A Case for Time Slotted Channel Hopping for ICN in the IoT

    Full text link
    Recent proposals to simplify the operation of the IoT include the use of Information Centric Networking (ICN) paradigms. While this is promising, several challenges remain. In this paper, our core contributions (a) leverage ICN communication patterns to dynamically optimize the use of TSCH (Time Slotted Channel Hopping), a wireless link layer technology increasingly popular in the IoT, and (b) make IoT-style routing adaptive to names, resources, and traffic patterns throughout the network--both without cross-layering. Through a series of experiments on the FIT IoT-LAB interconnecting typical IoT hardware, we find that our approach is fully robust against wireless interference, and almost halves the energy consumed for transmission when compared to CSMA. Most importantly, our adaptive scheduling prevents the time-slotted MAC layer from sacrificing throughput and delay

    Adaptive Multi-Channel Offset Assignment for Reliable IEEE 802.15.4 TSCH Networks

    Get PDF
    International audienceMore and more IoT applications require low-power operations and high reliability (close to 100%). Unfortunately, radio transmissions are unreliable by nature since they are prone to collision and external interference. The IEEE 802.15.4-2015 TSCH standard has been recently proposed to provide high-reliability through radio channel hopping and by appropriately scheduling all the transmissions. Since some of the radio channels still suffer from external interference, blacklisting techniques consist in detecting bad radio channels, and in privileging the good ones to transmit the packets. MABO-TSCH is a centralized scheduling algorithm which allocates several channel offsets to allow each radio link to apply a localized blacklist. However, such strategy is inefficient for large blacklists. In this study, we propose to allocate the channel offsets dynamically at each timeslot according to the number of parallel transmissions, while still avoiding collisions. We evaluate the performance of our solution relying on a real experimental dataset, highlighting the relevance of dynamic and per timeslot channel offset assignment for environments with high external interference, such as a smart building

    A Performance-to-Cost Analysis of IEEE 802.15.4 MAC With 802.15.4e MAC Modes

    Full text link
    [EN] The IEEE 802.15.4 standard is one of the widely adopted networking specification for Internet of Things (IoT). It defines several physical layer (PHY) options and medium access control (MAC) sub-layer protocols for interconnection of constrained wireless devices. These devices are usually battery-powered and need to support requirements like low-power consumption and low-data rates. The standard has been revised twice to incorporate new PHY layers and improvements learned from implementations. Research in this direction has been primarily centered around improving the energy consumption of devices. Recently, to meet specific Quality-of-Service (QoS) requirements of different industrial applications, the IEEE 802.15.4e amendment was released that focuses on improving reliability, robustness and latency. In this paper, we carry out a performance-to-cost analysis of Deterministic and Synchronous Multi-channel Extension (DSME) and Time-slotted Channel Hopping (TSCH) MAC modes of IEEE 802.15.4e with 802.15.4 MAC protocol to analyze the trade-off of choosing a particular MAC mode over others. The parameters considered for performance are throughput and latency, and the cost is quantified in terms of energy. A Markov model has been developed for TSCH MAC mode to compare its energy costs with 802.15.4 MAC. Finally, we present the applicability of different MAC modes to different application scenarios.This work was supported in part by the SERB, DST, Government of India under Grant ECRA/2016/001651.Choudhury, N.; Matam, R.; Mukherjee, M.; Lloret, J. (2020). A Performance-to-Cost Analysis of IEEE 802.15.4 MAC With 802.15.4e MAC Modes. IEEE Access. 8:41936-41950. https://doi.org/10.1109/ACCESS.2020.2976654S4193641950

    Dependable wireless sensor networks for in-vehicle applications

    Get PDF
    • …
    corecore