628 research outputs found

    Eliciting New Wikipedia Users' Interests via Automatically Mined Questionnaires: For a Warm Welcome, Not a Cold Start

    Full text link
    Every day, thousands of users sign up as new Wikipedia contributors. Once joined, these users have to decide which articles to contribute to, which users to seek out and learn from or collaborate with, etc. Any such task is a hard and potentially frustrating one given the sheer size of Wikipedia. Supporting newcomers in their first steps by recommending articles they would enjoy editing or editors they would enjoy collaborating with is thus a promising route toward converting them into long-term contributors. Standard recommender systems, however, rely on users' histories of previous interactions with the platform. As such, these systems cannot make high-quality recommendations to newcomers without any previous interactions -- the so-called cold-start problem. The present paper addresses the cold-start problem on Wikipedia by developing a method for automatically building short questionnaires that, when completed by a newly registered Wikipedia user, can be used for a variety of purposes, including article recommendations that can help new editors get started. Our questionnaires are constructed based on the text of Wikipedia articles as well as the history of contributions by the already onboarded Wikipedia editors. We assess the quality of our questionnaire-based recommendations in an offline evaluation using historical data, as well as an online evaluation with hundreds of real Wikipedia newcomers, concluding that our method provides cohesive, human-readable questions that perform well against several baselines. By addressing the cold-start problem, this work can help with the sustainable growth and maintenance of Wikipedia's diverse editor community.Comment: Accepted at the 13th International AAAI Conference on Web and Social Media (ICWSM-2019

    Representation Learning for cold-start recommendation

    Full text link
    A standard approach to Collaborative Filtering (CF), i.e. prediction of user ratings on items, relies on Matrix Factorization techniques. Representations for both users and items are computed from the observed ratings and used for prediction. Unfortunatly, these transductive approaches cannot handle the case of new users arriving in the system, with no known rating, a problem known as user cold-start. A common approach in this context is to ask these incoming users for a few initialization ratings. This paper presents a model to tackle this twofold problem of (i) finding good questions to ask, (ii) building efficient representations from this small amount of information. The model can also be used in a more standard (warm) context. Our approach is evaluated on the classical CF problem and on the cold-start problem on four different datasets showing its ability to improve baseline performance in both cases.Comment: Accepted as workshop contribution at ICLR 201

    Budget-Constrained Item Cold-Start Handling in Collaborative Filtering Recommenders via Optimal Design

    Full text link
    It is well known that collaborative filtering (CF) based recommender systems provide better modeling of users and items associated with considerable rating history. The lack of historical ratings results in the user and the item cold-start problems. The latter is the main focus of this work. Most of the current literature addresses this problem by integrating content-based recommendation techniques to model the new item. However, in many cases such content is not available, and the question arises is whether this problem can be mitigated using CF techniques only. We formalize this problem as an optimization problem: given a new item, a pool of available users, and a budget constraint, select which users to assign with the task of rating the new item in order to minimize the prediction error of our model. We show that the objective function is monotone-supermodular, and propose efficient optimal design based algorithms that attain an approximation to its optimum. Our findings are verified by an empirical study using the Netflix dataset, where the proposed algorithms outperform several baselines for the problem at hand.Comment: 11 pages, 2 figure

    Epidemic Information Diffusion: A Simple Solution to Support Community-based Recommendations in P2P Overlays

    Full text link
    Epidemic protocols proved to be very efficient solutions for supporting dynamic and complex information diffusion in highly dis- tributed computing infrastructures, like P2P environments. They are useful bricks for building and maintaining virtual network topologies, in the form of overlay networks as well as to support pervasive diffusion of information when it is injected into the network. This paper proposes a simple architecture exploiting the features of epidemic approaches to foster a collaborative percolation of information between computing nodes belonging to the network aimed at building a system that groups similar users and spread useful information among them.Comment: 8 pages, 2 figure

    A Study on User Demographic Inference Via Ratings in Recommender Systems

    Get PDF
    Everyday, millions of people interact with online services that adopt recommender systems, such as personalized movie, news and product recommendation services. Research has shown that the demographic attributes of users such as age and gender can further improve the performance of recommender systems and can be very useful for many other applications such as marketing and social studies. However, users do not always provide those details in their online profiles due to privacy concern. On the other hand, user interactions such as ratings in recommender systems may provide an alternative way to infer demographic information. Most existing approaches can infer user demographics based on sufficient interaction history but could fail for users with few ratings. In this thesis, we study the association between users demographic information and their ratings, and explore the tradeoff between user privacy and the utility of personalization. In particular, we present a novel multi-task preference elicitation method, with which a recommender system asks a new user to rate selected items adaptively and infers the demographics rapidly via a few interactions. Experimental results on real-world datasets demonstrate the performance of the proposed method in terms of the accuracy of both demographics inference and rating prediction

    Exploiting past users’ interests and predictions in an active learning method for dealing with cold start in recommender systems

    Get PDF
    This paper focuses on the new users cold-start issue in the context of recommender systems. New users who do not receive pertinent recommendations may abandon the system. In order to cope with this issue, we use active learning techniques. These methods engage the new users to interact with the system by presenting them with a questionnaire that aims to understand their preferences to the related items. In this paper, we propose an active learning technique that exploits past users’ interests and past users’ predictions in order to identify the best questions to ask. Our technique achieves a better performance in terms of precision (RMSE), which leads to learn the users’ preferences in less questions. The experimentations were carried out in a small and public dataset to prove the applicability for handling cold start issues

    Enhancing new user cold-start based on decision trees active learning by using past warm-users predictions

    Get PDF
    The cold-start is the situation in which the recommender system has no or not enough information about the (new) users/items, i.e. their ratings/feedback; hence, the recommendations are not accurate. Active learning techniques for recommender systems propose to interact with new users by asking them to rate sequentially a few items while the system tries to detect her preferences. This bootstraps recommender systems and alleviate the new user cold-start. Compared to current state of the art, the presented approach takes into account the users' ratings predictions in addition to the available users' ratings. The experimentation shows that our approach achieves better performance in terms of precision and limits the number of questions asked to the users
    • …
    corecore