15 research outputs found

    Sensor Array Processing with Manifold Uncertainty

    Get PDF
    <p>The spatial spectrum, also known as a field directionality map, is a description of the spatial distribution of energy in a wavefield. By sampling the wavefield at discrete locations in space, an estimate of the spatial spectrum can be derived using basic wave propagation models. The observable data space corresponding to physically realizable source locations for a given array configuration is referred to as the array manifold. In this thesis, array manifold ambiguities for linear arrays of omni-directional sensors in non-dispersive fields are considered. </p><p>First, the problem of underwater a hydrophone array towed behind a maneuvering platform is considered. The array consists of many hydrophones mounted to a flexible cable that is pulled behind a ship. The towed cable will bend or distort as the ship performs maneuvers. The motion of the cable through the turn can be used to resolve ambiguities that are inherent to nominally linear arrays. The first significant contribution is a method to estimate the spatial spectrum using a time-varying array shape in a dynamic field and broadband temporal data. Knowledge of the temporal spectral shape is shown to enhance detection performance. The field is approximated as a sum of uncorrelated planewaves located at uniform locations in angle, forming a gridded map on which a maximum likelihood estimate for broadband source power is derived. Uniform linear arrays also suffer from spatial aliasing when the inter-element spacing exceeds a half-wavelength. Broadband temporal knowledge is shown to significantly reduce aliasing and thus, in simulation, enhance target detection in interference dominated environments. </p><p>As an extension, the problem of towed array shape estimation is considered when the number and location of sources are unknown. A maximum likelihood estimate of the array shape using the field directionality map is derived. An acoustic-based array shape estimate that exploits the full 360∘^\circ field via field directionality mapping is the second significant contribution. Towed hydrophone arrays have heading sensors in order to estimate array shape, but these sensors can malfunction during sharp turns. An array shape model is described that allows the heading sensor data to be statistically fused with heading sensor. The third significant contribution is method to exploit dynamical motion models for sharp turns for a robust array shape estimate that combines acoustic and heading data. The proposed array shape model works well for both acoustic and heading data and is valid for arbitrary continuous array shapes.</p><p>Finally, the problem of array manifold ambiguities for static under-sampled linear arrays is considered. Under-sampled arrays are non-uniformly sampled with average spacing greater than a half-wavelength. While spatial aliasing only occurs in uniformly sampled arrays with spacing greater than a half-wavelength, under-sampled arrays have increased spatial resolution at the cost of high sidelobes compared to half-wavelength sampled arrays with the same number of sensors. Additionally, non-uniformly sampled arrays suffer from rank deficient array manifolds that cause traditional subspace based techniques to fail. A class of fully agumentable arrays, minimally redundant linear arrays, is considered where the received data statistics of a uniformly spaced array of the same length can be reconstructed in wide sense stationary fields at the cost of increased variance. The forth significant contribution is a reduced rank processing method for fully augmentable arrays to reduce the variance from augmentation with limited snapshots. Array gain for reduced rank adaptive processing with diagonal loading for snapshot deficient scenarios is analytically derived using asymptotic results from random matrix theory for a set ratio of sensors to snapshots. Additionally, the problem of near-field sources is considered and a method to reduce the variance from augmentation is proposed. In simulation, these methods result in significant average and median array gains with limited snapshots.</p>Dissertatio

    Antenna Systems

    Get PDF
    This book offers an up-to-date and comprehensive review of modern antenna systems and their applications in the fields of contemporary wireless systems. It constitutes a useful resource of new material, including stochastic versus ray tracing wireless channel modeling for 5G and V2X applications and implantable devices. Chapters discuss modern metalens antennas in microwaves, terahertz, and optical domain. Moreover, the book presents new material on antenna arrays for 5G massive MIMO beamforming. Finally, it discusses new methods, devices, and technologies to enhance the performance of antenna systems

    Compressive Sensing Based Estimation of Direction of Arrival in Antenna Arrays

    Get PDF
    This thesis is concerned with the development of new compressive sensing (CS) techniques both in element space and beamspace for estimating the direction of arrival of various types of sources, including moving sources as well as fluctuating sources, using one-dimensional antenna arrays. The problem of estimating the angle of arrival of a plane electromagnetic wave is referred to as the direction of arrival (DOA) estimation problem. Such algorithms for estimating DOA in antenna arrays are often used in wireless communication network to increase their capacity and throughput. DOA techniques can be used to design and adapt the directivity of the array antennas. For example, an antenna array can be designed to detect a number of incoming signals and accept signals from certain directions only, while rejecting signals that are declared as interference. This spatio-temporal estimation and filtering capability can be exploited for multiplexing co-channel users and rejecting harmful co-channel interference that may occur because of jamming or multipath effects. In this study, three CS-based DOA estimation methods are proposed, one in the element space (ES), and the other two in the beamspace (BS). The proposed techniques do not require a priori knowledge of the number of sources to be estimated. Further, all these techniques are capable of handling both non-fluctuating and fluctuating source signals as well as moving signals. The virtual array concept is utilized in order to be able to identify more number of sources than the number of the sensors used. In element space, an extended version of the least absolute shrinkage and selection operator (LASSO) algorithm, the adaptable LASSO (A-LASSO), is presented. A-LASSO is utilized to solve the DOA problem in compressive sensing framework. It is shown through extensive simulations that the proposed algorithm outperforms the classical DOA estimation techniques as well as LASSO using a small number of snapshots. Furthermore, it is able to estimate coherent as well as spatially-close sources. This technique is then extended to the case of DOA estimation of the sources in unknown noise fields. In beamspace, two compressive sensing techniques are proposed for DOA estimation, one in full beamspace and the other in multiple beam beamspace. Both these techniques are able to estimate correlated source signals as well as spatially-close sources using a small number of snapshots. Furthermore, it is shown that the computational complexity of the two beamspace-based techniques is much less than that of the element-space based technique. It is shown through simulations that the performance of the DOA estimation techniques in multiple beam beamspace is superior to that of the other two techniques proposed in this thesis, in addition to having the lowest computational complexity. Finally, the feasibility for real-time implementation of the proposed CS-based DOA estimation techniques, both in the element-space and the beamspace, is examined. It is shown that the execution time of the proposed algorithms on Raspberry Pi board are compatible for real-time implementation
    corecore