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ABSTRACT

Compressive Sensing-Based Estimation of Direction of Arrival in Antenna

Arrays

Amgad A. Salama Afsa, Ph.D.

Concordia University, 2017

This thesis is concerned with the development of new compressive sensing

(CS) techniques both in element space and beamspace for estimating the direction

of arrival of various types of sources, including moving sources as well as fluctuating

sources, using one-dimensional antenna arrays. The problem of estimating the angle

of arrival of a plane electromagnetic wave is referred to as the direction of arrival

(DOA) estimation problem. Such algorithms for estimating DOA in antenna arrays

are often used in wireless communication network to increase their capacity and

throughput. DOA techniques can be used to design and adapt the directivity of the

array antennas. For example, an antenna array can be designed to detect a number

of incoming signals and accept signals from certain directions only, while rejecting

signals that are declared as interference. This spatio-temporal estimation and fil-

tering capability can be exploited for multiplexing co-channel users and rejecting

harmful co-channel interference that may occur because of jamming or multipath

effects.

In this study, three CS-based DOA estimation methods are proposed, one in the

element space (ES), and the other two in the beamspace (BS). The proposed tech-

niques do not require a priori knowledge of the number of sources to be estimated.

Further, all these techniques are capable of handling both non-fluctuating and fluc-

tuating source signals as well as moving signals. The virtual array concept is utilized
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in order to be able to identify more number of sources than the number of the sen-

sors used.

In element space, an extended version of the least absolute shrinkage and selec-

tion operator (LASSO) algorithm, the adaptable LASSO (A-LASSO), is presented.

A-LASSO is utilized to solve the DOA problem in compressive sensing framework.

It is shown through extensive simulations that the proposed algorithm outperforms

the classical DOA estimation techniques as well as LASSO using a small number

of snapshots. Furthermore, it is able to estimate coherent as well as spatially-close

sources. This technique is then extended to the case of DOA estimation of the

sources in unknown noise fields.

In beamspace, two compressive sensing techniques are proposed for DOA estima-

tion, one in full beamspace and the other in multiple beam beamspace. Both these

techniques are able to estimate correlated source signals as well as spatially-close

sources using a small number of snapshots. Furthermore, it is shown that the com-

putational complexity of the two beamspace-based techniques is much less than that

of the element-space based technique. It is shown through simulations that the per-

formance of the DOA estimation techniques in multiple beam beamspace is superior

to that of the other two techniques proposed in this thesis, in addition to having the

lowest computational complexity.

Finally, the feasibility for real-time implementation of the proposed CS-based DOA

estimation techniques, both in the element-space and the beamspace, is examined.

It is shown that the execution time of the proposed algorithms on Raspberry Pi

board are compatible for real-time implementation.
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Chapter 1

Introduction

The ability to transmit and/or receive information without a physical connection

between two locations is very attractive in many applications. Information can be

delivered via electromagnetic, sonar, acoustic, or seismic waves. As the applications

are becoming more complicated, they require processing of more signals and more

data as well as very robust processing systems, which are beyond the capability of

single sensor communication system.

A sensor array consists of a number of sensors arranged in a particular config-

uration. For many years, systems with multiple sensors have been used to receive

or send signals through a wireless channel [1]. Sensor array systems have several

advantages over single sensor systems. First, they can increase the signal-to-noise

ratio (SNR) of a single sensor system M times, where M is the number of sensors,

by appropriate processing of the received signals. Second, sensor arrays can steer

the transmitting or receiving beams and by doing that, they can separate multiple

signals [2]. This is very useful in applications such as multi-user wireless communi-

cations, which require the processing of as many signals as possible without mutual

interference, or passive radar applications which need to localize signal source loca-

tions.
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Array signal processing is important for many applications, such as sonar [3],

radar [4], seismology [5] and radio astronomy [6]. The direction of arrival (DOA)

estimation problem has been studied extensively over the past decades [7]. DOA

estimation deals with the problem of determining the number and identifying the

locations of multiple source signals using a sensor array. With the development

of antenna arrays, DOA estimation technique has become a vital part of a smart

antenna which is focused on radio direction finding, that is, estimating the direction

of electromagnetic waves impinging on one or more sensors. We can classify the

estimation techniques into two main categories, namely parametric and spectral-

based approaches [8]. Parametric techniques make a simultaneous search for all the

parameters of interest at the expense of an increased computational complexity, and

these approaches often lead to more accurate outcomes. Spectral-based approaches

form some spectrum-like function of the parameters of interest, and the locations of

the highest peaks of the function are regarded as the DOA estimates.

Sparsity is a fundamental attribute which characterizes many signals, natural

and man-made. The sparsity in signals can be observed either in the original domain,

or in a transformed domain. The particular transformation under which a signal

exhibits sparsity often depends on the specific application of interest. A wide variety

of signals and measurements can have a natural sparse representation. Examples

include images and videos, spatio-temporal spectrum of data collected by radar and

sonar systems and anomalies and outliers in data used in statistical regression and

inference.

1.1 A Brief Literature Review

DOA estimation has been a problem of intense research, and various algorithms

have been proposed [9, 10, 11, 12]. Spectral approaches, which largely operate on

2



the covariance matrix and compute spectrum-like functions for the DOA estimation

have been investigated. The spectral estimation method, first proposed by Bartlett

[13], consists of estimating the DOA by computing the spatial spectrum and de-

ciding the local maximum. The DOA schemes can be classified as beamforming

(BF), subspace-based and maximum likelihood methods. Multiple signal classifica-

tion (MUSIC) method is a well-known sub-spaced method that estimates the DOA

content of a source signal using an eigenspace method proposed by Schmidt [14].

ESPRIT algorithm is another subspace-based technique [15, 16, 17] that reduces the

computational and storage requirements of MUSIC, since it does not search through

all the possible steering vectors to estimate DOA. However, ESPRIT suffers from

the pairing problem.

Their extensions, such as root-MUSIC [18] and parallel factor analysis [19],

have been proposed for the DOA estimation problem. However, these techniques

require the number of sources to be known in advance and if the exact number

of source signals is unknown, complete disappearance of some of the sources may

happen. Furthermore, the eigenvalue decomposition-based techniques suffer from a

high degradation of performance in low SNR scenarios. In such a case, the signal

subspace is dominated by a high level of noise. In addition, these methods assume

the source signals to be un-correlated with one another or with the noise and that

a sufficient number of snapshots is available.

On the other hand, maximum likelihood methods are the most accurate DOA

estimation techniques. However, they are the most time consuming ones among all

the proposed DOA estimation methods. Here again, the number of source signals

to be estimated is assumed to be known in advance.

It should be noted that most of the modern approaches to signal processing

(including the above mentioned techniques) are model-based in the sense that they

rely on certain assumptions on the data observed and these assumptions may not
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hold in practice [10, 11, 12, 20, 21, 22, 23, 24, 25]. Furthermore, the number of source

signals that can be detected is upper bounded by the number of actual physical

sensors used in the array. We can identify only up to (M − 1) source signals using

a sensor array containing M sensors.

The concept of a difference co-array has been investigated to extend virtually

the array aperture, so that more source signals can be resolved beyond the number

of the physical sensors available [26]. The co-array concept has been employed for

specific array geometries in [26, 27]. In [28, 29], it was shown that by using minimum

redundancy array (MRA) [30] and an augmented covariance matrix (ACM), the

number of degrees of freedom can be increased.

However, the augmented ACM is not positive semidefinite for a finite number

of snapshots and this violates the condition for being a covariance matrix. In [28],

the proposed spatially smoothed matrix is guaranteed to be positive semidefinite for

any finite number of snapshots. A transformation of the augmented matrix into a

suitable positive definite Toeplitz matrix was suggested and an elaborate algorithm

was provided to construct this matrix in [31, 32].

However, there are problems in this approach. First, there is no closed form

expression for either the array geometry or the achievable degrees of freedom for

a given sensor array containing M elements using MRAs. Second, the optimum

design of MRAs is not an easy task. Furthermore, they are based on computer

simulations or complicated algorithms for sensor placement [1, 33, 34, 35, 36]. Also,

the algorithm for finding a suitable covariance matrix corresponding to a long array

is iterative and complicated [31, 32].

Higher order cumulants was suggested to completely remove the Gaussian

noise term and to yield better a DOA estimation in [37]. It was shown that using

fourth order cumulants, a significant increase in the number of degrees of freedom

can be achieved [38, 39, 40]. But one deficiency of this method is that it is restricted
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to non-Gaussian sources.

In [41], using the concept of Khatri-Rao (KR) product and assuming quasi-

stationary sources, it has been shown that one can identify upto (2M − 1) sources

using a ULA of M elements. Unfortunately, this method imposes a constraint on the

source signals in that they cannot be stationary signals. An active sensing technique

was proposed in [42] to increase the degrees of freedom. Unfortunately, this method

requires active sensing and passive sensing cannot be employed. Unlike the MRAs

used in [28, 31, 32], the nested arrays [43] are easy to construct and an exact closed

form expression for the virtual sensor locations and degrees of freedom for a given

array of M sensors, can be easily determined.

In recent years, compressive sensing (CS) has evolved rapidly and has found

multiple applications in various fields, such as ultrasound [44] and medical imag-

ing [45], and radar detection [46]. Unlike the previously mentioned DOA estimation

techniques, CS-based DOA estimation methods are able to identify the sources using

a fewer number of snapshots. Furthermore, they can deal with both non-correlated

and correlated sources without any preprocessing. Malioutov et al. [47] presented

a CS-based DOA estimation technique using a single snapshot and extended it for

multiple snapshots based on the singular value decomposition (SVD). However, since

it is a SVD-based method, the number of sources is required to be known in ad-

vance and the performance gets highly degraded in low and very low SNR situations.

In [48], a DOA estimation technique based on a sparse representation of array co-

variance vectors is proposed, but the computational complexity is extremely high.

Xenaki et al. [49] studied the DOA estimation using CS with coherent arrivals,

single-snapshot data and different array geometries. It has been shown in [49] that

CS does not require the arrivals to be non-coherent.

The least absolute shrinkage and selection operator (LASSO) [50] minimizes
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the residual sum of squares (subject to the sum of the absolute values of the coef-

ficients being less than a constant) and it is popular for solving CS problems. Zou

[51] proposed a new version of LASSO, whereby adaptable weights are used for pe-

nalizing different coefficients in the `1 penalty function. Panahi et al. [52] discussed

the resolution of the LASSO-based DOA estimation; it has been shown that the

LASSO-based DOA estimation is better than that of the traditional beamforming

techniques.

1.2 Motivation

DOA estimation constitutes a major problem of interest in sensor array signal pro-

cessing. With the development of antenna arrays, the DOA estimation technique

has become a vital part of a smart antenna which is focused on radio direction find-

ing, that is, estimating the direction of electromagnetic waves impinging on one or

more sensors. We can classify the estimation techniques into two main categories,

namely element-space (ES)-based and beam-space (BS)-based techniques.

In ES-based methods, the output of each element of the array is processed

at the same time. BS-processing is utilized to reduce the dimensions of the the

observation vector of the sensor array by projecting the received data into a subspace

of lower dimension to produce BS data.

All the known classical methods as well as subspace methods and maximum

likelihood techniques belong to the first category [8]. Classical methods make a si-

multaneous search for all the parameters of interest at the expense of an increased

computational complexity, and these approaches often lead to more accurate out-

comes. Yet, classical methods suffer from low resolution. Subspace-based methods

depend on the orthogonality between the signal and the noise subspaces. Singular

value decomposition is used to separate the signal subspace from the noise subspace,
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by assigning the higher eignvalues to the signal subspace and lower eignvalues to the

noise subspace. Maximum likelihood techniques are very time consuming and com-

putationally complex among all the DOA techniques. However, they lead to more

accurate results.

A fundamental aim of signal processing is to extract essential information from

a set of measurements or observations. Most of the DOA estimation models have an

overdetermined structure (the number of source signals to be estimated, L, is smaller

than the number of sensor array elements, M). A few DOA estimation problems have

considered a data model which is underdetermined (L > M). Recently, studying

underdetermined systems by imposing sparsity on the unknown variables has become

one of the important research areas.

Compressive sensing (CS) plays a significant role wherein the data models are

underdetermined, and has found numerous applications such as in image and video

processing, radar, channel estimation, multivariate regression, sparse Bayesian es-

timation, sub-Nyquist sampling of multiband signals, and monitoring and inferring

from networked data. Furthermore, CS has given us the opportunity of performing

DOA estimation using reduced number of observations. CS-based DOA estimation

can be done using a single snapshot, which automatically result in an underdeter-

mined problem.

Recently, the word Internet of Things (IoT) has become an important phrase in

our world. IoT is not another Internet, rather it is a network of devices that are

connected to the Internet and used every day to search Google, upload images and

connect with friends. It’s a network of products that are connected to the web,

thus, they have their private Internet protocol (IP) addresses and can connect to

one another to automate simple tasks.

In general, IoT promotes an elevated level of awareness about our world and

a platform from which to monitor the reactions to the changing conditions. IoT
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will play an important role in natural disaster management, intelligent urban man-

agement, and better health care systems. Sensor arrays are required to be small

enough so that they will be compatible with IoT and machine-to-machine (M2M)

applications. Simultaneously, it is expected from IoT compatible devices to be able

to communicate with a large number of devices and this requires virtually extended

sensor arrays. Furthermore, the DOA estimation techniques are required to be as

fast as possible in order to adapt for the mobility of the connected devices.

1.3 Thesis Objectives

Based on the above motivation, it is important to design sensor array processing

schemes that are capable of estimating DOA of sources that may be correlated or

closely-spaced in low and very low SNR condition, and processing sources that are

more in number than the number of physical sensors used. Furthermore, the DOA

estimation techniques should be applicable for real-time applications. Hence, a fewer

number of snapshots is required for processing and the DOA algorithms are required

to have low computational complexity. It is important that the estimation methods

work without an advanced knowledge of the total number of sources to be estimated

or of the nature of the source signals. In other words, a blind DOA estimation

technique is needed.

DOA estimation techniques assume that the noise is an additive white Gaus-

sian noise (AWGN). In practical applications, the noise field structure is not known.

Hence, it is required that the DOA estimation technique be able to perform the esti-

mation even in the presence of unknown noise fields. Moreover, due to the crowded

environment, multipath propagation is an ordinary phenomenon in any communica-

tion channel. As a result, the amplitude of the source signals is no longer constant

and the sources are fluctuating. This may cause a failure in the identification and
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tracking of the source signals. DOA estimation techniques that are capable of han-

dling such problems are required, especially for mobile communication systems.

The objective of this thesis is to develop new compressive sensing based schemes,

both in element-space and beamspace, capable of identifying correlated and closely-

spaced sources under low and very low SNR conditions and yielding a performance

superior to that of the existing schemes. The proposed techniques are aimed at

employing as few snapshots as possible for the DOA estimation so as to make them

suitable for real-time applications.

1.4 Thesis Organization

The thesis is organized as follows.

In Chapter 2, background material necessary for the understanding and devel-

opment of the research work undertaken in this thesis is presented.

In Chapter 3, a new iterative element-space compressive sensing-based tech-

nique for DOA estimation under low and very low SNR conditions is proposed. A

weighted version of the least absolute shrinkage and selection operator (LASSO),

the adaptable LASSO (A-LASSO), is presented. Two different initial weights are

utilized for A-LASSO, namely, the ordinary least square (OLS) and the minimum

variance distortionless response (MVDR) beamformer, resulting in OLS A-LASSO

and MVDR A-LASSO algorithms, respectively. Extensive simulations are carried

out both for non-fluctuating and fluctuating source signals. The performance of

the proposed A-LASSO is investigated and compared to that of the classical DOA

estimation techniques as well as that of LASSO.

In Chapter 4, a new compressive sensing-based DOA estimation technique

based on the generalized correlation decomposition (GCD) technique is presented

to identify source signals in unknown noise fields. As in the A-LASSO technique,
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two initial weights are utilized for this DOA estimation as well. The performance of

the proposed technique is extensively investigated using different noise mixtures.

In Chapter 5, the performance of the existing beamspace techniques is com-

pared with that of the element-space based technique proposed in Chapter 3 in or-

der to provide motivation for developing beamspace techniques for DOA estimation.

Then, two new beamspace compressive sensing-based DOA estimation techniques

are introduced. The full beamspace is used for the first one whereas multiple beam

beamspace for the second one. The performance of the proposed beamspace-based

techniques is compared with that of the element-space based technique developed in

Chapter 3 using both non-fluctuating and fluctuating source signals. The capability

of the proposed beamspace techniques to detect stationary and moving sources even

when their trajectories intersect is studied. The computational complexity for each

of the proposed techniques is also presented.

In Chapter 6, a study is conducted for the feasibility of real-time implementa-

tion of the DOA techniques proposed in this work.

Finally, some concluding remarks highlighting the contributions of the thesis

and some suggestions for future work based on the schemes developed in this thesis

are provided in Chapter 7.
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Chapter 2

Background Material

In this chapter, we provide the necessary background material for understanding

of the techniques proposed in this thesis for the direction of arrival estimation in

element-space as well as beamspace. In addition, some of the mathematical tools

necessary for such estimation are also presented.

2.1 Sensor Array

A sensor array consists of a number of transducers or sensors arranged in a particular

configuration. Each transducer converts an electromagnetic wave into a voltage and

visa-versa. For many years, systems with multiple sensors have been used to receive

or send signals through a wireless channel [1]. Sensor array systems have several

advantages over single sensor systems. First, they can increase the SNR up to

M times that of a single sensor by appropriately processing the received signals.

Second, sensor arrays can steer the transmitting or receiving beams and by doing

so, they can separate multiple signals [2]. This is very useful in applications such as

multi-user wireless communications which require the processing of as many signals

as possible without mutual interference, or passive radar applications which need to

localize signal source locations.
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without taking into account the atmospheric noise. Then the signals received by

elements 2 and 3 can be written as:

x2(t) = s(t)e−jβ42 = s(t)e−j 2π4

λ
sin θ

x3(t) = s(t)e−jβ43 = s(t)e−j2 2π4

λ
sin θ

(2.3)

respectively, where ko = β = 2π
λ

is the phase shift constant of the wave propagating

in air, λ being the wavelength. The phase shift term e−jβ4m is the result of the

signal propagating over an extra distance 4m in comparison with the path to the

first element[2].

In a more generalized way, the signals received by the three elements can be

written as:

x =

2
666664

x1(t)

x2(t)

x3(t)

3
777775
=

2
666664

1

e−j 2π4

λ
sin θ

e−j2 2π4

λ
sin θ

3
777775
s(t) =

2
666664

1

ejµ

e−j2µ

3
777775
s(t) = a(µ)s(t) (2.4)

where µ = 2π4
λ

sin✓ and a(µ) =
h
1 ejµ e−j2µ

iT
which is often called the array

steering vector.

Even though a non-uniform linear array, which is an array wherein the spacing

between neighboring elements is not the same, has certain advantages such as a lager

aperture for the same number of sensors and is more suitable for actual installation,

it cannot be used for many of the DOA estimation algorithms such as MUSIC [14]

and ESPRIT [16] because of the manifold ambiguity problem. Therefore, in this

section we will consider the simplest array, namely, ULA.

Consider a ULA as shown in Figure 2.2. Let a plane wave signal generated
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which is equal to:

⌧mi =
4mi

c
= (m− 1)

4 sin ✓i
c

(2.8)

The signal received by the mth element is then the delayed version of the signal

si1(t) (which is received by the first element) with the additional delay of ⌧mi:

sim(t) = si1(t− ⌧mi) = sri (t− ⌧d − ⌧mi)

= ↵i(t− ⌧d − ⌧mi) cos[2⇡fc(t− ⌧d − ⌧mi) + β(t− ⌧d − ⌧mi)]

⇡ ↵i(t− ⌧d) cos[2⇡fc(t− ⌧d) + βi(t− ⌧d)− (m− 1)µi]

= Re{si(t)ej(m−1)µi}

(2.9)

where µi = −2πfc
c
4 sin ✓i = −2π

λ
4 sin ✓i, called the spatial frequency that is asso-

ciated with the ith source that generates the signal with an incident angle ✓i, and

λ = c
fc

denotes the wavelength corresponding to the carrier frequency fc.

In complex phasor form, Equation (2.9) can be written as:

sim(t) ⇡ ↵i(t− ⌧d)e
j[2πfc(t−τd)+βi(t)]ej(m−1)µi

= si(t)e
j(m−1)µi

(2.10)

Equation (2.10) shows that the signal received by the mth element from the ith

source is the same as that received by the first (rightmost) element, but with an

additional phase shift factor of ej(m−1)µi . This factor is dependent only on the spatial

frequency µi and the position of the element relative to the first element.

For each incident angle ✓i that determines a source, there is a corresponding spatial

frequency µi. Therefore, the whole objective of estimating a DOA is to extract this

spatial frequency µi from the signals received by the array.

Now consider all the signals generated by all the d sources, si(t), 1  i  d.

Then the overall signal and noises received by the mth element at time t can be
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expressed as:

xm(t) =
dX

i=1

si(t) + nm(t)

=
dX

i=1

si(t)e
j(m−1)µi + nm(t)

= si(t)
dX

i=1

ej(m−1)µi + nm(t) m = 1, 2, .....,M

(2.11)

In matrix form, (2.11) can be written as:

x(t) =
h
a(µ1) a(µ2) ... a(µd)

i

2
666666664

s1(t)

s2(t)

...

sd(t)

3
777777775

+ n(t) = As(t) + n(t) (2.12)

where x(t) =
h
x1(t) x2(t) ... xM(t)

iT
is the data column vector received by the

array, s(t) =
h
s1(t) s2(t) ... sM(t)

iT
is the signal column vector and n(t) = [n1(t)

n2(t) . . .nM(t)]T is a zero-mean spatially uncorrelated additive noise with spatial

covariance matrix equal to σ2
NIM .

The array steering column vector a(µi) is defined as:

a(µi) =
h
1 ejµi ej2µi ... ej(M−1)µi

iT
(2.13)

It is a function of the unknown spatial frequencies µi; these steering vectors form
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the columns of the M ⇥ d steering matrix A:

A =
h
a(µ1) . . . a(µi) . . . a(µd)

i

=

2
666666664

1 1 . . . 1

ejµ1 ejµ2 . . . ejµd

...
...

. . .
...

ej(M−1)µ1 ej(M−1)µ2 . . . ej(M−1)µd

3
777777775

(2.14)

Depending upon the different configurations of the antenna array, different array

steering matrices can be formed. However, using one-dimensional arrays, we can

only estimate one source signal parameter, which is the elevation angle, ✓.

2.2 Models for Fluctuating Source Signals

It is to be noted that most of DOA estimation techniques that have been studied in

the literature [7, 47, 48, 54, 55, 56, 57, 58, 59, 60, 61] (and the references therein),

assume that the source signals are non-fluctuating, which is unlikely in practice.

The propagation channel in urban environments contains multiple objects

which randomly scatter the energy of the sources, and multiple replicas of the source

signals reach the receiver [62, 63, 64, 65]. Swerling models have been proposed to

describe the statistical properties of the fluctuating source signals [66, 67]. Swerling

models can be classified as follows [67]:

• Swerling Case I: It is assumed that the power of the various snapshots of the

signal source is constant within a single scan, but fluctuates from scan-to-scan.

The signal source power varies from scan to scan according to a Chi-squared

probability density function with two degrees of freedom.

• Swerling Case II: It is assumed that the fluctuations in the signal power are
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independent from snapshot-to-snapshot in each scan and follows a Chi-squared

distribution with two degrees of freedom.

• Swerling Case III: This is similar to case I, except that the Chi-squared dis-

tribution has 4 degrees of freedom.

• Swerling Case IV: This is similar to case II, except that the Chi-squared dis-

tribution has 4 degrees of freedom.

Denote by si, i = 1, . . . , N , the individual snapshots, where N is the total number

of snapshots, and let

s =
NX

i=1

si (2.15)

For a fluctuating source signal, si and s are random variables; the probability density

function of the integrator output is determined by the probability distribution of s,

which is determined using the joint probability distribution of s1, . . . , sN [68]. If

si, i = 1, . . . , N have a chi-square distribution, the fluctuations are called wide-sense

chi-square. In this case, the probability density functions of si is denoted by

wk(si, s̄i) =
1

(k − 1)!

k

s̄i

✓
ksi
s̄i

◆
exp

✓−ksi
ssi

◆
(2.16)

where wk is the probability density function, s̄i is the mean of si and 2k is the number

of degrees of freedom of si. Table 2.1 gives the values of k corresponding to each

case of the Swerling models [67]. The χ2 probability density function distributions

for k = 1 and k = 2 are shown in Figure 2.3.
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Table 2.1: Various values of k corresponding to the different Swerling models

Fluctuating Source Signal Model Value of k

Swerling Case I 1

Swerling Case II 1

Swerling Case III 2

Swerling Case IV 2

Figure 2.3: Chi-square probability density function for different values of k.

2.3 Beamforming

The basic idea behind BF techniques is to "steer" the array in one direction at a time

and measure the output power. When the "steered" direction coincides with DOA

of a signal, the maximum output power will be observed [11]. Given the knowledge

of the array steering vector, an array can be steered electronically just as a fixed

antenna can be steered mechanically. A weight vector w can be designed and then
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used to linearly combine the data received by the array elements to form a single

output signal y(t) [2, 11, 12],

y(t) = wHx(t) (2.17)

The total average output power out of an array over K snapshots can be expressed

as [2, 11, 12]

P(w) =
1

K

KX

k=1

| y(tk) |2

= wHRxxw

(2.18)

2.3.1 Conventional Beamforming

In conventional beamforming (CBF), w = a(✓), ✓ being a scanning angle that is

scanned over the angular region of interest. For example, for a ULA of M elements,

w = a(✓) is defined similar to the way a steering vector is defined, but with an

arbitrary scanning angle ✓:

a(✓) =
h
1 ejµ ej2µ . . . ej(M−1)µ

iT
(2.19)

with µ = −2πfc
c
4 sin ✓ = −2π

λ
4 sin ✓.

For each look or scanned direction ✓, the average power output P(✓) of the steered

array is then measured or computed using Equation (2.18).

It can be shown that when ✓ = ✓i, the impinging angle of the signal from source i,

the output power P(✓) will reach a peak or maximum value. At this moment, w =

a(✓ - ✓i) aligns the phases of the signal components received by all the elements of

the array, causing them to add constructively and produce maximum power.
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In practical computations, w = a(✓) is normalized as [11, 12]

w = wCON =
a(✓)p

aH(✓)a(✓)
(2.20)

By inserting the weight vector Equation (2.20) into Equation (2.18), the output

power as a function of the angle of arrival, termed as spatial spectrum, is obtained

as [11, 12]

P(✓) = PCON(✓) =
aH(✓)R̂xxa(✓)

aH(✓)a(✓)
(2.21)

The weight vector in Equation (2.20) can be interpreted as a spatial filter. It is

matched to the impinging spatial angles of the incoming signal to produce a peak,

but it attenuates the output power for signals not coming from the angles of the

incoming signals. Intuitively, it equalizes the different signal delays experienced by

the array elements and maximally combines their respective contributions to form

a peak in the output power at the angles of the incoming signals.

2.3.2 Capon’s Beamformer

In Capon’s method, the degrees of freedom used to form a beam in the look direction

and at the same time null the other directions in order to reject other signals. For a

particular look direction, Capon’s method uses all but one of the degrees of freedom

to minimize the array output power while using the remaining degrees of freedom

to constrain the gain in the look direction to be unity [11, 12]:

minP(w) subject to wHa(✓) = 1 (2.22)
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The weight vector chosen in this way is often referred to as the MVDR beamformer.

The vector is given by [11, 12]

w = wCAP =
R̂

−1

xxa(✓)

aH(✓)R̂
−1

xxa(✓)
(2.23)

Inserting the weight vector Equation (2.23) into Equation (2.20), the output power

spatial spectrum, is obtained as [11, 12]

P(✓) = PCAP (✓) =
1

aH(✓)R̂
−1

xxa(✓)
(2.24)

2.4 Beamspace Processing

For any sensor array, increasing the number of elements leads to an improvement

of the DOA estimation algorithms. However, the computational requirements are

directly related to the dimensions of the received data; consequently, the burden

increases rapidly with the number of the elements used in the array. In many appli-

cations, such as in radar applications, the antenna array is composed of hundreds

of sensors. For such applications, a large number of phase-shifters, analog to digital

converters, and frequency converters are required to process the data which may be

prohibitive in case of element-space (ES) processing [69]. As mentioned in Section

1.2, ES processing is to process the observation (output) of each element of the

sensor array at the same time. In order to reduce the dimension of the observation

vector of the sensor array, beamspace (BS) processing is mandatory.

As mentioned above, in BS processing, the received data (the ES data), which

is of higher dimension, is first projected into a subspace of lower dimension to pro-

duce BS data. Then the BS data is processed in the resultant lower dimensional

BS, thus reducing the computational complexity. The BS processing can be broadly

classified into two types: full beamspace (FBS) and reduced-dimension beamspace
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(RBS) [12]. In FBS, we process the output of a sensor array containing M elements

to produce M orthogonal beams whose center beam is a conventional beam pointed

at the broadside (✓c = 90◦). If a sector of interest that contains all the source signals

is known a priori then RBS could be used. By selecting the appropriate beams suit-

able for the area to be covered, the resulting processing could be notably reduced.

Finally, multiple beams may be combined together so that multiple sectors could be

scanned at the same time.

2.4.1 Full-dimension Beamspace

For an array with M sensors, the FBS beams can be calculated using [12]

Bm(u) =
1

M

sin
⇥
M π

2
(u− 2m

M
)
⇤

sin
⇥
π
2
(u− 2m

M
)
⇤ , m =

8
>><
>>:

−M−1
2

, . . . , M−1
2

if M is odd

−M
2
+ 1, . . . , M

2
if M is even

(2.25)

where the direction cosines ux, uy and uz with respect to each of the axes are given

by

ux = sin ✓ cosφ, uy = sin ✓ sinφ, uz = cos ✓ (2.26)

Consider an example for FBS using a ULA containing M = 7 sensors. In such a

case, there are 7 beams centered at 2m/M , with m = −3,−2,−1, 0, 1, 2, 3. The

center beam is located at uz = 0 (✓c = 90◦). Fig. 4.8(a) shows the seven beams

centered at the seven values of m.
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(a) u-space

(b) θ-space

Figure 2.4: Beam pattern, full-dimension BS. (a) u-space and (b) ✓-space.
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2.4.2 Reduced-Dimension Beamspace

In reduced-dimension beamspace (RBS), a beam fan composed of Nbs beams is

produced. The RBS beams can be calculated using [12]

⇥
bH
bs,m

⇤
=

1p
M

exp


−j(m− M − 1

2
)( c − (nbs − 4)

2⇡

M
)

]
, m = 0, . . . ,M − 1,

nbs = 1, . . . , Nbs

(2.27)

where the center beam is pointed at  c = 2π
λ
d cos ✓c, λ being the wavelength, d

the enter-element spacing, and ✓c is the center beam angle. We now consider an

example using a ULA with 21 elements and a fan beam consisting of Nbs = 5.

Hence, m = 0, 1, . . . , 20 and mbs = 1, . . . , 5. Figures 2.5(a) and 2.6(a) show the

beam patterns in the u-space when uz = 0.5 (✓c = 60◦) and uz = −0.5 (✓c = 120◦),

respectively. The corresponding beam patterns in the ✓-space are shown in Fig.

2.5(b) and 2.6(b), respectively.
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(a) u-space, uz = 0.5

(b) θ-space, θ = 60◦

Figure 2.5: Beam pattern, reduced-dimension BS, M = 21 sensor, Nbs = 5, u =
0.5 (✓c = 60◦).
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(a) u-space, uz = −0.5

(b) θ-space, θ = 120◦

Figure 2.6: Beam pattern, reduced-dimension BS, M = 21 sensor, Nbs = 5, u =
−0.5 (✓c = 120◦).
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2.5 Ill-posed inverse problems and regularization

An inverse problem is a mathematical framework that is used to obtain information

about a physical object or system from observed measurements [70, 71, 72, 73]. Let

y = Φ(x) where x is the unknown, y is the vector of observations or measurements

and Φ is a known linear operator; then for a noise-free scenario

y = Φx, y 2 C
M , x 2 C

N , Φ 2 C
M⇥N (2.28)

Lack of solution means that y does not lie in the range of Φ, and lack of

uniqueness means that the nullspace of Φ is not trivial. A direct way to solve such

a problem is by taking the Moore-Penrose pseudo-inverse of Φ. Taking the SVD

Φ = UΣVH =

min(M,N)X

i=1

uiσiv
H
i (2.29)

where U is an M ⇥M unitary matrix whose columns are left-singular vectors ui for

the corresponding singular values σi, Σ is a diagonal M⇥N matrix with the singular

values σi on the diagonal (namely, the singular values of Φ) and V is an N ⇥ N

unitary matrix whose columns are right-singular vectors vi for the corresponding

singular values , and VH represents the Hermitian transpose of V.

Let K = rank(Φ). Then the Moore-Penrose pseudo-inverse of Φ is

Φ† =
KX

i=1

viσ
−1
i uH

i (2.30)

By applying the pseudo-inverse we find the minimum-norm least squares solution
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and the reconstruction is given by

x̂ = Φ†y =

 
KX

i=1

viσ
−1
i uH

i

!
y =

KX

i=1

viσ
−1
i uH

i

min(M,N)X

j=1

ujσjv
H
j

=
KX

i=1

min(M,N)X

j=1

σj
σi

viu
H
i ujv

H
j x =

KX

i=1

viv
H
i x

=

 
IN −

NX

i=K+1

viv
H
i

!
x

(2.31)

where I is anN⇥N identity matrix. Assuming thatK < N , the estimated vector x̂ is

an an approximation of x. It should be noted that Φ† chooses the min-norm solution

so that the components of x that lie in the null space of Φ are set to zero. Since Φ†

is a linear function in a finite dimensional space, then it is necessarily continuous.

However, in some applications Φ† may be very large, making the pseudo-inverse

discontinuous.

Now, for a noisy measurement case, (2.28) will be

y = Φx + n (2.32)

where n is the noise term. It is noted that the addition of the noise, even if it is a

small amount, may corrupt the solution as follows

x̂ = Φ†y = Φ† (Φx + n)

= x̂(2.31) +
KX

i=1

viσ
−1
i uH

i n

(2.33)

where x̂(2.31) is the term on the right hand side of (2.31). It is seen from (2.33) that

the noise components are multiplied by σ−1
i , the last few of which are very large

since Φ is ill-conditioned. Consequently, the noise components will dominate the

solution, and the signal component of interest becomes hidden under the noise floor.
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So Φ† should be replaced by a good approximation which is much less sensitive to

noise.

Regularization is used to solve such ill-posed problems by incorporating a

priori knowledge about the signal of interest to provide reasonable and useful so-

lutions. The problem now is to minimize some measure F1(x) related to y, as well

as to satisfy as much as possible the a priori information about x, by minimizing

some appropriate measure F2(x). However, these two objectives cannot be met si-

multaneously, and hence we look for a trade-off between them by taking a linear

combination of the two as follows

F (x) = F1(x) + ⌧F2(x) (2.34)

where ⌧ is the a regularization parameter which brings a compromise between fidelity

to the data, F1(x), and fidelity to the prior information, F2(x). A special case

of (2.34) is the non-regularized (least squares) solution when ⌧ = 0. Selecting an

appropriate regularization parameter is required for the success of the regularization

problem, as will be discussed in Section 3.5.

2.5.1 Regularization Methods

Tikhonov approach [74] is one of the well known approaches to solve ill-posed inverse

problems. The method assumes that the norm of the solution should be small, which

limits the amount of amplification due to small eigenvalues as follows

F (x) = kΦx − yk22 + ⌧ kxk22 (2.35)

where k.k22 is the `2-norm. The first term (the residual) is the data-fidelity term,

F1(x), and the second serves as F2(x). The Tikhonov function has a closed-form
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solution given by

x̂ =
KX

i=1

✓
σ2
i

σ2
i + ⌧

◆
uH
i y

σi
vi (2.36)

The truncated or damped SVD regularization methods have a similar solution [75]

x̂ =
KX

i=1

wi
uH
i y

σi
vi (2.37)

They can be regarded as a weighted version of the pseudo inverses with the weight,

wi. In this case, Tikhonov method can be considered as a special case with

wi =
σ2
i

σ2
i + ⌧

(2.38)

The idea behind all of these methods is to leave the large singular values almost

unchanged, and to limit the effects of the inverses of small singular values.

One of the approaches to solve the regularization problem is to consider the

cost function to be [76, 77, 78, 79]

F (x) = kΦx − yk22 + ⌧ kxkpp (2.39)

where k.kpp is the `p-norm and 0 < p  1. A special case of this when p = 1 is the

well-known LASSO regularization method [50], and the corresponding cost function

is given by [50]

F (x) = kΦx − yk22 + ⌧ kxk1 (2.40)

where k.k1 is the `1-norm. The `1-norm penalty of the LASSO regularization favors

sparse values of x. But, it does not have an analytical solution. However, there

exists an efficient algorithm, namely, the least angle regression (LARS) algorithm,

which can be utilized to obtain an approximate solution to the LASSO problem

given by (2.40).
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2.6 Summary

In this chapter, a brief account of the background material necessary for the devel-

opment of the work undertaken in this thesis has been presented. To start with, the

one-dimension uniform linear array model has been introduced and a mathemati-

cal representation for the steering vector and the received data discussed. A brief

description of fluctuating sources is given along with mathematical representation

of such sources. Next, the concepts of beamforming and beamspace processing are

then discussed along with the benefits of beamspace processing.

An exact solution for the ill-posed inverse problem in a noise-free scenario has

been briefly discussed. Further, regularization methods to overcome the problem

associated with the ill-conditioned inverse problem in the case of noisy environment

is presented.
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Chapter 3

Compressive Sensing-Based DOA

Estimation In Element-Space

3.1 Introduction

Array signal processing plays an important role in many applications, including

sonar, radar, seismology and radio astronomy. DOA deals with the problem of

determining the number and locations of multiple sources using an antenna array.

Many of the recent algorithms deal with DOA estimation of spatiotemporal electro-

magnetic waves emanating from multiple sources.

Increasing the number of sensor array elements leads to an enhancement in

the array gain and directivity, thus improving the array’s overall performance. On

the other hand, increasing the number of array elements increases the complexity of

the feeding network and the time needed to process the received data. Researchers

have focused recently on the pursuit of light weight, small sized and compact an-

tenna arrays to satisfy the requirements of present day applications like the IoT and

unmanned vehicles. Physically increasing the number of antenna array elements is

therefore not an option. Recent literature investigating the virtual array concept
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has shown it to enhance the performance of a sensor array [41, 43, 80, 81, 82].

MRAs and ACM have been investigated for virtually extending the sensor ar-

ray aperture by increasing the available degrees of freedom [28, 29, 30]. However,

there is no closed form expression for the locations of the sensors in the virtual

array and for the number of achievable degrees of freedom. Furthermore, ACM is

not positive semi-definite for a finite number of snapshots, and a transformation was

suggested in [31] to overcome this problem. Higher order cumulants were used to in-

crease the available degrees of freedom and consequently extend the array aperture.

However, using the fourth order cumulants, Gaussian source signals cannot be esti-

mated. The KR product was suggested for the DOA estimation of quasi-stationary

source signals in [41, 82].

Co-prime arrays have been proposed in the literature [83, 84, 85, 86] to in-

crease the degrees of freedom in the array. For these arrays, the number of the

degrees of freedom can be determined, and closed-form expressions for the locations

of the sensors in the corresponding virtual arrays can be obtained. However, the

corresponding virtual arrays are not uniform. Nested arrays have been investigated

for the first time in [43]. These arrays, in addition to all of the advantages provided

by the co-prime arrays, result in virtual arrays that are uniform and provide degrees

of freedom that are even higher [83]. For example, using six elements, the nested

array provides 23 degrees of freedom in contrast to only 17 provided by the co-prime

array.

compressive sensing (CS) has evolved rapidly in recent years and has found

multiple applications in various fields, such as medicine [87], ultrasound imaging

[44] and radar detection [46]. Malioutov et al. [47] investigated the DOA estimation

performance using CS with respect to the SNR, the number of sources and the

coherence of the sources’ signals. Xenaki et al. [49] studied the DOA estimation

using CS with coherent arrivals, single-snapshot data and different array geometries.
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It has been proven in [49] that CS does not require the arrivals to be incoherent.

Furthermore, single or multiple snapshots can be used. In terms of resolution, the

performance of the CS-based DOA is superior to that of the MVDR [88].

In this chapter, we propose a new algorithm for DOA estimation, the adaptable

LASSO (A-LASSO), which combines the benefits of the virtual array concept for

extended array aperture along with CS [61]. Extensive simulations are carried out

to examine the performance of the proposed A-LASSO for non-fluctuating as well

as fluctuating signals.

3.2 Difference Co-Array

Consider a linear array (LA), uniform or non-uniform, consisting of M elements.

Let di denote the i-th element position in the array. Let us assume that there are

L narrowband, far-field sources with angles of arrival (AOA) (✓l) and powers (σ2
l ),

l = 1, 2, . . . , L. It is also assumed that the source signals are uncorrelated with

one another. Let a(✓l) 2 C
M⇥1 be the steering vector corresponding to AOA (✓l),

whose i-th element is e−jkodi cos(θl), where ko = 2⇡/λ is the wavenumber and λ is the

wavelength of the propagating waves. Let the vector s(t) = [s1(t) s2(t) . . . sL(t)]
T ,

where s 2 C
L⇥1 represent the source signals. Then, the output of LA can be written

as:

x(t) = As(t) + n(t) (3.1)

where A = [a(✓1) a(✓2) . . . a(✓L)], A 2 C
M⇥L is the array manifold matrix and

n(t) 2 C
M⇥1 is an AWGN that is uncorrelated with the source signals. One can
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obtain the covariance matrix of the received signals as [12]:

Rxx = E[xxH ]

= ARssA
H + σ2

nI

= A

2
66666666666664

σ2
1

. . .

σ2
l

. . .

σ2
L

3
77777777777775

AH + σ2
nI

(3.2)

where σ2
l , l = 1, . . . , L, correspond to the power of the source signals, I is the

identity matrix of size (M ⇥M) and σ2
n is the noise power. One can now vectorize

Rxx 2 C
M⇥M as [41, 82]:

V = vec(Rxx) = vec

"
LX

l=1

σ2
l (a(✓l)a

H(✓l))

#
+ σ2

n1

= (A⇤ * A)p + σ2
n1

(3.3)

where p 2 C
L⇥1 = [σ2

1 σ2
2 . . . σ2

L]
T and 1 2 C

M⇥M = [eT
1 eT

2 . . . eT
M ]T with

ei 2 C
M⇥1 being a column vector of zeros except for a one at the i-th position.

Comparing Equations (3.3) and (3.1), we can see that V 2 C
M2⇥1 in Equation (3.3)

can be considered as the output of an array with a manifold (A⇤*A), p representing

the equivalent source signals and the noise given by σ2
n1 being deterministic. The

distinct rows of (A⇤*A) form the virtual array (VA); the locations of whose distinct

elements are given by the set:

D = {di − dj} , 8i, j = 1, 2, . . . ,M (3.4)
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where di is the position vector of the i-th sensor in the original array. This array is

known as the difference co-array [43].

We now assume that the original array is a two-level nested array [43] for

which M is even, and each level contains M/2 sensor elements. In such a case, the

VA is a ULA consisting of M̄ sensors, M̄ = (M2/2+M −1), which are located from

−(M̄ − 1)d/2 to (M̄ − 1)d/2, where d is the distance between two adjacent sensors

[43]. Detailed information about the number of sensor in each level, the distinct

sensors in the difference co-array, M̄ , and the maximum number of source signals

to be estimated for odd and even M sensors, are as shown in Table 3.1. In each

case, the virtual array is a ULA consisting of M̄ sensors which are located from

−(M̄ − 1)d/2 to (M̄ − 1)d/2 [43].

Table 3.1: Sensors distribution for a two-level nested array.

M 1st level 2nd level M̄ Max L

Odd (M − 1)/2 (M + 1)/2 (M2 − 1)/2 +M ((M2 − 1)/2 +M − 1)/2

Even M/2 M/2 M2/2 +M − 1 (M2/2 +M − 2)/2

It should be noted that the equivalent source signal vector p (for the difference

co-array) contains the power of the sources σ2
l , l = 1, . . . , L. Therefore, they act

like fully-correlated sources. A spatial smoothing technique was suggested by Pal et

al. [43] to overcome this problem of correlated sources. However, by using the CS

technique, we will no longer need spatial smoothing or any preprocessing scheme,

and CS will be able to detect the source signals.

3.3 Compressive Sensing Framework

Since the sources are assumed to be located in the far field, they can be considered as

point sources; hence, the sources become sparse in space. Let Ω denote the set of all
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possible source locations, {✓̄n}Nn=1, N denoting a grid that covers Ω, with N , L.

Let:

s̄(t) = [σ̄1 σ̄2 . . . σ̄n . . . σ̄N ]
T (3.5)

where s̄ 2 C
N⇥1, and:

Φ = [ā(✓̄1) ā(✓̄2) . . . ā(✓̄n) . . . ā(✓̄N)]

=

2
66666666666664

ejkod(−(M̄−1)/2) cos θ̄1 ejkod(−(M̄−1)/2) cos θ̄2 · · · ejkod(−(M̄−1)/2) cos θ̄N

...
...

...

1 1
. . . 1

...
...

...

ejkod((M̄−1)/2) cos θ̄1 ejkod((M̄−1)/2) cos θ̄2 · · · ejkod((M̄−1)/2) cos θ̄N

3
77777777777775

(3.6)

where Φ 2 C
M̄⇥N and ā(✓̄n) 2 C

M̄⇥1 is the steering vector of the VA corresponding

to the AOA (✓̄n). Then, the received signal at the m̄-th sensor is:

ym̄(t) = φm̄s̄(t) + n̄m̄(t), m̄ = 1, 2, . . . , M̄ (3.7)

where φm̄ is the m̄-th row of Φ. The n-th element of s̄(t), s̄n(t), is nonzero only if

(✓̄n = ✓l), and in that case, σ̄n = σl. Then, Equation (3.7) can be rewritten as:

y(t) = Φs̄(t) + n̄(t) (3.8)

where y 2 C
M̄⇥1 and n̄ 2 C

M̄⇥1. In accordance with conventional DOA estimation,

the technique is to estimate the signal energy as a function of the source location

showing peaks corresponding to the source locations. Since the sources are point

sources and their number is small, the spatial spectrum is sparse. Hence, we can

solve this problem by regularizing it to favour sparse signal fields using LASSO [50].
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The LASSO minimization is defined as:

min
s

∥∥∥∥∥y −
NX

n=1

φns̄n

∥∥∥∥∥

2

+ ⌧

NX

n=1

|s̄n| (3.9)

where φn is the n-th element of φm̄ and s̄n is the n-th element of s̄. Equation (3.9)

can be rewritten as:

ŝlasso = min
s

ky − Φs̄k22 + ⌧ ks̄k1 (3.10)

where ⌧ is a nonnegative regularization parameter. The first term in Equation

(3.9) is the `2 norm, while the second is an `1 penalty function, which is very

important for the success of LASSO. LASSO shrinks the coefficients toward zero,

as the regularization parameter ⌧ increases. This parameter, ⌧ , controls the relative

importance between the sparsity of the solution (`1-norm term) and the fitness to

the measurements (`2-norm term). However, the `1-norm penalty associated with

LASSO tends to produce biased estimates for large coefficients [89], thus degrading

the estimation accuracy. Zou [51] proposed a new version of LASSO, the A-LASSO,

wherein adaptable weights are used for penalizing the coefficients in the `1-norm

term iteratively. Furthermore, Zou [51] suggests using the OLS solution as the initial

weights to construct the adaptable weights in the A-LASSO first iteration. We shall

refer to this as OLS A-LASSO. It should be mentioned that the `1 penalization

approach is also known as basis pursuit [90].

3.4 Modified LASSO for DOA Estimation

One can notice from Equation (3.9) that the regularization parameter, ⌧ , penalizes

the coefficients equally in the `1-norm term. Therefore, the LASSO estimates could

be biased [89] and result in reducing the solution accuracy. In order to overcome

this deficiency, we apply the A-LASSO in the DOA estimation problem for the first
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time. Hence, the A-LASSO minimizes:

ky − Φs̄k22 + ⌧
NX

n=1

wn|s̄n| (3.11)

where wn is the n-th element of the weight vector, w 2 C
N⇥1. Let, ŝ be the initial

estimate for s̄. Now, choosing any weight factor, γ, where γ > 0, and defining the

weight vector as ŵ = [ŵ1ŵ2 . . . ŵN ]
T , where:

ŵn =
1

|ŝn|γ
n = 1, 2, . . . , N (3.12)

the A-LASSO is given by:

ŝ(k) = min
s

ky − Φs̄k22 + ⌧k

NX

n=1

ŵn|s̄n| (3.13)

where k is the iteration number and ŵn is the n-th element of the weight vector,

ŵ. The minimization in Equation (3.13) corresponds to a convex optimization

problem; it does not have multiple local minima, and its global minimizer can easily

be found. The A-LASSO is `1 penalized, so any efficient algorithm that can solve

the conventional LASSO should also be able to solve the adaptable version. The

least angle regression (LARS) algorithm [91] is utilized to solve the A-LASSO as

illustrated in Algorithm 3.1

The steps from 2 to 5 are repeated until convergence to a predefined residual,

R, is obtained or when the chosen number of iterations is reached. The compu-

tational cost is of the order O(KN2), where K is the total number of iterations,

which is of the same order as the computation of a single OLS minimization. Figure

3.1 summaries the above steps from 1 to 5. The efficient path algorithm makes the

A-LASSO an attractive method for practical applications [51].
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Algorithm 3.1 The A-LASSO technique.

1: Let the initial estimate for s̄ be ŝ.
2: Find ŵ, where the n-th element of ŵ, ŵn, is given by ŵn = 1

|ŝn|γ
, n = 1, 2, . . . , N .

3: Define M̄ ⇥ N matrix Φ⇤, such that its (m̄, n)-th element is given by φm̄n/ŵn,
where m̄ = 1, 2, . . . , M̄ and n = 1, 2, . . . , N .

4: for k = 1, 2, . . . , K iterations do

Solve the LASSO problem as:

ŝ⇤ = min
s

ky − Φ⇤s̄k22 + ⌧k ks̄k1

Calculate ŝ(k) = ŝ⇤n/ŵn, n = 1, 2, . . . , N .

5: end for

6: Find the final DOA estimation.

For the uniqueness of the sparse solution, the spark of matrix Φ, defined as

the smallest number of columns from Φ that are linearly dependent [92], must be

investigated. Hence, the above algorithm can identify a unique L-sparse solution

only if L < Spark[Φ]/2, Spark[.] denoting the spark of a matrix [92]. Since any set

of (M2/2+M − 1) columns of Φ is linearly independent, Spark(Φ) = (M2/2+M).

Hence, the algorithm can identify L-sparse solutions only if L < Spark(Φ)/2. That

is, our algorithm can detect up to (M2/2 +M − 2)/2 sources using an array of M

sensors.
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3.4.1 OLS A-LASSO

Previously, a vector of ones is assumed as the initial signal estimate for s̄. However,

as proven from the simulations, a vector of ones is not the appropriate guess for

the signal to be estimated, especially since there is no relation between the vector

of ones and the signal to be estimated. Furthermore, multiplying that vector by a

factor, β, will affect the regularized solution (the same effect as that of changing

⌧ , the regularization parameter). Even more, if we try to push the algorithm to

the limits (by choosing a small β), we find spurious peaks along with the genuine

peaks. Therefore, we will use the OLS solution as the initial signal estimate for s̄,

with the expectation that this modification leads to better results and that the OLS

A-LASSO solution converges faster than that of the A-LASSO.

We assume replacing ŝn in Equation (3.12) with ŝOLSn, where ŝOLSn is the n-th

element of ŝOLS 2 C
N⇥1 and is given by:

ŝOLS = min
s

ky − Φs̄k22 (3.14)

The minimization in Equation (3.14) is known as the ordinary least square

minimization. The computational cost for Equation (3.14) is of order O(N2). It

should be mentioned that the number of source signals is not required to be known

in advance for OLS A-LASSO. However, we do not use OLS for DOA estimation.

We use it in OLS A-LASSO only as an initial guess for the signal to be estimated

(not a stand-alone DOA estimation technique). Furthermore, OLS gives nonzero

estimates to all of the coefficients (compared to LASSO minimization) and does not

favor sparse signals as in the case of LASSO minimization.
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3.4.2 MVDR A-LASSO

The MVDR technique uses the available degrees of freedom to form a beam in the

look direction and, at the same time, nulling the output in all of the other directions.

Thus, for a particular DOA, MVDR uses all, but one of the degrees of freedom to

minimize the array output while using the remaining ones to constrain a unity gain

in the look direction according to the following optimization [11]:

min
z

zHRssz, subject to zHa1(✓̄) = 1 (3.15)

where z 2 C
(M2/4+M/2)⇥1 is the MVDR beamformer weight vector, Rss is the

spatially-smoothed (SS) covariance matrix, which we will now obtain, and a1 2

C
(M2/4+M/2)⇥1 is the steering vector of the array whose SS covariance matrix is Rss.

It should be noted that we are not able to use the covariance matrix Rxx in Equation

(3.2), since this contains information only about the real sensor array. Furthermore,

the received source signals are represented as the deterministic vector p in Equation

(3.3). Therefore, we are not able to use V of Equation (3.3) directly for MVDR,

since the resultant covariance matrix is rank defective. However, in our case, it is

required to construct the covariance matrix of the virtual array. Hence, we perform

spatial smoothing on V to construct a full rank covariance matrix for the virtual

array. Assuming a two-level nested array containing M even sensors, the distinct

elements of vector V in Equation (3.3), V̄ 2 C
M̄⇥1 can be rewritten as:

V̄ = [v̄1 v̄2 . . . v̄m̄ . . . v̄M̄ ]T , M̄ = (M2/2 +M − 1) (3.16)

Then, the covariance matrix of the virtual array can be obtained as follows.
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Let R be the Toeplitz matrix:

R =

2
666666664

v̄ (M̄−1)
2

+1
v̄ (M̄−1)

2
+2

. . . v̄M̄

v̄ (M̄−1)
2

v̄ (M̄−1)
2

+1
. . . v̄M̄−1

...
...

. . .
...

v̄1 v̄2 . . . v̄ (M̄−1)
2

+1

3
777777775

(3.17)

where R 2 C
M2/4+M/2⇥M2/4+M/2. forward-backward (FB) SS [12] is applied to R to

obtain the spatial smoothed covariance matrix, Rss. It should be noted that FBSS

is used here only in establishing a full rank covariance matrix. The resulting n-th

element of the weight vector wMVDR 2 C
N⇥1 is given by [11]:

w(✓̄n) =
1

aH
1 (✓̄n)R

−1
ss a1(✓̄n)

, n = 1, 2, . . . , N (3.18)

which is also known as the scalar output power for a single steering direction [93].

The computational complexity of the MVDR algorithm [94] is as shown in Table

3.2. It is noted that the MVDR-based DOA estimation technique does not require

the number of the source signals to be known in advance. Furthermore, the MVDR

DOA estimation method performance is better than that of the CBF. In addition,

assuming that (N , M̄), the computational complexity of obtaining the MVDR

weights is less than that of obtaining the OLS one.

Table 3.2: Computational complexity of the MVDR algorithm.

Operation Computation Cost

Inverse Covariance Matrix R−1
ss O(M̄3)

Beamformer Weight z = R
−1
ss a1(θ̄n)

aH
1 (θ̄n)R

−1
ss a1(θ̄n)

O(2M̄2 + 3M̄)

Beamformer Sum w(✓̄n) = [aH
1 (✓̄n)R

−1
ss a1(✓̄n)]

−1 O(M̄N)
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It should be noted that our proposed algorithm does not depend on the or-

thogonality of the signal subspaces nor on implementing SVD on the sensor array

data. Therefore, it can perform DOA estimation without knowing the number of

source signals in advance. On the other hand, subspace-based techniques, such as

MUSIC and ESPRIT, cannot estimate the DOA without a priori knowledge of the

number of source signals. Furthermore, it is known from the literature that the MU-

SIC algorithm is superior to the ESPRIT algorithm [95, 96, 97]. However, for the

sake of evaluating our proposed algorithm in comparison with MUSIC, we assume

that the number of signal source is to be known a priori.

3.5 Selecting the Regularization Parameter

Choosing the regularization parameter, ⌧ , is an important issue for the success of

LASSO minimization Equation (3.10). The regularization parameter controls the

trade-off between the data fidelity (ky − Φs̄k22) and the prior information (ks̄k1).

The discrepancy principle (DP), cross-validation (CV), generalized cross-validation

(GCV) and L-curve method are some of the existing regularization parameter se-

lection methods. The regularization parameter in DP is chosen so that the sum of

squares of the weighted residuals is equal to the mean of a chi-square distribution

[71, 98, 99]. CV selects the regularization parameter that minimizes the mean square

error, while GCV selects the value of the regularization parameter that minimizes

the GCV function, which is a leave-one-out CV function for large-scale problems

[71, 100]. The L-curve criterion is based on a log-log plot of the corresponding val-

ues of the solution norms and the residuals for a range of values of the regularization

parameter [88, 101, 102]. From Figures 3.2(a) and 3.3(a), it is seen that as the value

of the regularization parameter ⌧ is increased, the significance of the A-LASSO es-

timates shifts from large non-sparse estimates to smaller sparse estimates. In other
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words, a small value of ⌧ leads to an under-regularized estimate, whereas a large

value results into an over-regularized estimate. Therefore, suitable values of ⌧ are

those lying in the knee of the L-curve. We consider the beginning of the knee to

correspond the value of ⌧ at which the solution norm starts to decrease and the end

of the knee to correspond to the value of ⌧ at which the residual norm does not

significantly change. These are the two red stars on the L-curve. We empirically

determine a segment of this knee corresponding to which all of the ⌧ values provide

satisfactory estimates. We have chosen the value of the regularization parameter ⌧

to be the midpoint of this segment. It should be mentioned that there are different

methods to select a suitable value for the regularization parameter in the literature

[71, 98, 99, 100]. However, it has been shown in [103] that the L-curve [88, 101, 102]

method gives a good estimation of the regularization parameter. In order to illus-

trate how ⌧ is chosen, we consider two source signals from DOAs of 60◦ and 120◦ to

be impinging a six-sensor two-level nested array with the sampling grid being uni-

form from 1◦ to 180◦, in increments of 1◦, and an SNR of 10 dB; the corresponding

L-curve plot is as shown in Figure 3.2(a). Selecting ⌧ to be between 1.39 and 2.19,

the resulting DOA estimation is as shown in Figure 3.2(b). Lowering the SNR to

be 0 dB, the results for the same specifications are shown in Figure 3.3. In this

case, a suitable value for ⌧ is between 1.86 and 2.58. From Figure 3.2(b), it can be

seen that we are able to identify correctly the two source signals, even at low SNR

conditions.

3.6 Simulation Results for non-Fluctuating Source

Signals

Consider a sparse linear two-level nested array, for which M is even, consisting of

M = 6 elements, as shown in Figure 3.4. Investigating the array output by applying
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Equations (3.1) to (3.3) and extracting the equivalent distinct virtual elements from

the virtual array manifold (A⇤ * A), one can see that the virtual ULA contains

M̄ = 23 elements, as shown in Figure 3.4. It should be noted that the resultant

virtual is a ULA [43]. The sampling grid ✓̄n 2 [1◦ : 180◦] that covers Ω is chosen

to be of 1◦ step, except for the twelfth simulation and d = λ/2, where λ is the

wavelength of the propagating waves.

Figure 3.4: The proposed sparse (upper) and the virtual co-array (lower).

All of the simulated source signals are assumed to be equi-power and uncorre-

lated with one another or with the noise, except in the fifth experiment, where the

sources are assumed to be correlated. The weight parameter, γ, is set to 0.5 in all

of the simulations, except for the eleventh experiment. The total number of simula-

tions, Nsim, is set to Nsim = 100 for each observation point except in the case of the

eleventh simulation, where it is set to 10. For each experiment, the regularization

parameter, ⌧ , is selected based on the idea of the L-curve [88, 101, 102].

The CVX toolbox [104, 105] for convex optimization that is available within

the MATLAB environment is used for examining the performance of the proposed

A-LASSO algorithms. It uses semi-definite quadratic-linear programming (SDPT3)

[106] to obtain the global solution for the optimization problem.

The RMSE is used as the performance measure:

RMSE =
1

L

LX

l=1

vuut 1

Nsim

NsimX

n=1

(b✓l,n − ✓l)2 (3.19)
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where b✓l,n is the estimate of the DOA angle ✓l of the n-th Monte Carlo trial.

In the first experiment, we study the effect of the initial vectors on the perfor-

mance of the three LASSO algorithms, namely classical LASSO (for which γ = 0),

OLS A-LASSO and MVDR A-LASSO. For the latter two, we assume γ = 0.5. We

consider two source signals impinging on the sparse array from the DOA of 60◦ and

120◦. For SNR of 0 dB, 10 snapshots and one iteration, the results are as shown in

Figure 3.5. It can be seen that the MVDR A-LASSO yields a performance better

than that of the classical LASSO, as well as that of the OLS A-LASSO. It may

be mentioned that by increasing the number of iterations, OLS A-LASSO can be

made to yield a performance similar to that of MVDR A-LASSO. This superior

performance of the MVDR A-LASSO can be attributed to the initial weights used,

compared to the least square weights used for the OLS A-LASSO, as will be seen

later in Simulation 6. It should be noted that classical LASSO uses equal initial

weights and has the poorest performance.
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(a) LASSO

(b) OLS A-LASSO (c) MVDR A-LASSO

Figure 3.5: Performance of LASSO, OLS A-LASSO and MVDR A-LASSO, for two
source signals at DOAs 60◦ and 120◦, 10 snapshots, SNR = 0 dB and one iteration.
(a) LASSO; (b) OLS A-LASSO; and (c) MVDR A-LASSO.

In the second experiment, we investigate the performance of the proposed

MVDR A-LASSO algorithm as we vary SNR and compare it with that of LASSO

and OLS A-LASSO. Two source signals are assumed to impinge on the sparse array

from DOA of 60◦ and 120◦. The performances of the proposed MVDR A-LASSO

algorithm, along with that of the conventional LASSO and OLS A-LASSO are shown
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in Figure 3.6. It is clear from this figure that the MVDR A-LASSO algorithm

outperforms both the LASSO and OLS A-LASSO algorithms for all SNR.

Figure 3.6: Performance of the three LASSO algorithms versus SNR, for two source
signals at DOAs 60◦ and 120◦, 10 snapshots and after one iteration of the MVDR
A-LASSO and OLS A-LASSO algorithms.

Assuming now that L (the number of source signals) is known, we compare the

performance of the LASSO algorithms with that of the MVDR algorithm and that

of MUSIC. For that purpose, two ULAs, one consisting of six elements and another

consisting of 23 elements, are used to evaluate the performance of MUSIC, while

only the ULA with six elements is considered for the MVDR algorithm. However, for

the three LASSO algorithms, the real array used is as shown in Figure 3.4, namely

with six elements. The performance of the various algorithms as SNR is varied is

shown in Figure 3.7. It is observed from the figure that all three LASSO algorithms

outperform the MUSIC algorithm, as well as the MVDR algorithm, even when 23

elements are used in the array.
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Figure 3.7: Performance of the LASSO algorithms as SNR is varied in comparison
with that of MVDR and MUSIC algorithms, for two source signals at DOAs 60◦

and 120◦, 10 snapshots and after one iteration of the MVDR A-LASSO and OLS
A-LASSO algorithms.

We investigate, in the third experiment, the capabilities of the proposed al-

gorithms in detecting the sources even when the number of sources exceeds the

number of physical array elements. In other words, the proposed algorithm is for

an underdetermined DOA scenario. For that purpose, two ULAs, one consisting of

six elements and another consisting of 23 elements, are used to evaluate the per-

formance of MVDR, while only the ULA with 23 elements is considered for the

MUSIC algorithm. However, for the three LASSO algorithms, the real array used is

as shown in Figure 3.4, namely with six elements. Let 11 source signals impinge the

array from uniformly-distributed DOAs over ✓ = [30◦, 150◦]. The snapshots number

is chosen to be 70, and SNR is set to be −5 dB. All of the LASSO algorithms can

easily identify 11 peaks (even after just one iteration of the MVDR A-LASSO and

OLS A-LASSO algorithms), as seen from Figures 3.8,3.9, and 3.10, while MVDR

and MUSIC fail to identify the source signals.
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(a)

(b)

Figure 3.8: DOA estimation when the number of sources is more than the number
of sensors: (a) After one iteration of OLS A-LASSO and (b) After one iteration of
MVDR A-LASSO.

55



(a)

(b)

Figure 3.9: DOA estimation when the number of sources is more than the number
of sensors: (a) Classical LASSO and MVDR using a six-element array; (b) Classical
LASSO, MVDR and MUSIC using a 23-element array.
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Figure 3.10: DOA estimation when the number of sources is more than the number
of sensors: MVDR and MUSIC using a 23-element array.

In the fourth experiment, we examine the resolution of the proposed adaptive

algorithms in comparison with that of MVDR and MUSIC. Two spatially-correlated

equi-power signals are assumed to impinge on the array from the DOAs of 85◦ and

95◦. The SNR is set to 15 dB. Figure 3.11 illustrates the results. Two peaks can

easily be identified in the case of the three LASSO algorithms, while in the case of

MVDR and MUSIC algorithms, the two peaks are merged into one.
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(a) (b)

(c)

Figure 3.11: DOA estimation for spatially-closed two-source signals using LASSO
algorithms, for two source signals at DOAs 85◦ and 95◦, 10 snapshots, SNR = 15 dB
and one iteration of the MVDR A-LASSO and OLS A-LASSO algorithms. (a) OLS
A-LASSO after the first iteration; (b) MVDR A-LASSO after the first iteration; and
(c) the classical LASSO algorithm.

In the fifth experiment, we examine the performance of our proposed algo-

rithms for the detection of correlated source signals. Two fully-correlated (coherent)

source signals are assumed to impinge on the array from directions of 60◦ and 100◦

with SNR set to 15 dB. Figure 3.12 shows that the three LASSO algorithms can
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resolve the two sources, revealing the capability of the algorithms in detecting cor-

related source signals. It is also clear that MVDR and MUSIC fail to distinguish

the two sources.

From the above experiments, it is seen that the performance of the A-LASSO-

based DOA estimation is superior to that of the MVDR (for which L is not required

to be known) and that of MUSIC (for which L must be known in advance). Further,

we also conclude that the performance of the classical LASSO is inferior to that of

the two A-LASSO schemes, even though it exhibits a performance better than that

of MVDR and MUSIC. In view of these results, we will not consider MVDR, MUSIC

or the classical LASSO algorithm further in our study.
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(a) (b)

(c)

Figure 3.12: DOA estimation for two correlated source signals using LASSO algo-
rithms, for two source signals at DOAs 60◦ and 100◦, 10 snapshots, SNR = 15 dB
and one iteration of the MVDR A-LASSO and OLS A-LASSO algorithms. (a) OLS
A-LASSO after the first iteration; (b) MVDR A-LASSO after the first iteration; and
(c) the classical LASSO algorithm.

In the sixth experiment, we test the performance of the OLS A-LASSO and

MVDR A-LASSO algorithms in a low SNR situation. For this purpose, we consider

two source signals with DOAs of 60◦ and 120◦, set SNR to 0 dB and snapshots to 10.

The results for the two A-LASSO algorithms are shown in Figure 3.13. It can be seen
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from this figure that MVDR A-LASSO can detect the source signals after the first

iteration itself, while OLS A-LASSO needs more iterations to be able to eliminate

all of the false peaks. This can be explained by looking at the initial weights for both

the OLS A-LASSO and MVDR A-LASSO algorithms. Figure 3.13(d) illustrates the

initial weights for OLS A-LASSO and MVDR A-LASSO; it can be seen that the

weights using the MVDR A-LASSO algorithm are relatively smooth compared to

those of OLS A-LASSO. Furthermore, it can be seen that the OLS A-LASSO weight

consists of many peaks that affect its performance and lead to false source signal

peaks.

The DOA performance is investigated after five and 15 iterations for both the

OLS A-LASSO and MVDR A-LASSO in the seventh experiment. Two signal sources

are assumed to be impinging the array from DOAs of 60◦ and 120◦, while the SNR

changes. The snapshot number is chosen to be 10; the results are shown in Figure

3.14. It can be seen from the figure that, in terms of RMSE, MVDR A-LASSO

outperforms the OLS A-LASSO algorithms.

Based on the results of the previous experiments (Figures 3.5, 3.6, 3.13 and

3.14), it is clear that MVDR A-LASSO outperforms OLS A-LASSO. Hence, OLS

A-LASSO will not be considered in the rest of this chapter.
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(a) (b)

(c) (d)

Figure 3.13: DOA estimation using A-LASSO algorithms, for two source signals at
DOAs 60◦ and 120◦, 10 snapshots, SNR = 0 dB. (a) MVDR A-LASSO after the
first iteration; (b) OLS A-LASSO after the first iteration; (c) OLS A-LASSO after
five iterations; and (d) initial weights of the two algorithms.
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(a)

(b)

Figure 3.14: DOA estimation of two source signals at DOAs 60◦ and 120◦, and 10
snapshots (a) after five iterations and (b) after 15 iterations, using the A-LASSO
algorithms.
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The eighth experiment investigates the DOA estimation using MVDR A-

LASSO as we increase the number of iterations. Let two source signals with DOAs

of 60◦ and 120◦ impinge on the array, and let the SNR be −5 dB and 50 snapshots

be used. The results for the first five iterations are shown in Figure 3.15. It is seen

from the figure that, after the first iteration, fake source signal peaks appear. As the

algorithm runs, the weights corresponding to the fake source signals become very

large, whereas those of the actual source signals remain constant. Hence, the weights

corresponding to the false source signals damp the false peaks, while those of the

real source signals remain constant. As a consequence, as the number of iterations

increases, it is clear that only the real source signal peaks remain. Furthermore, it

can be observed that the sidelobe ratio (SLR) after the fifth iteration is more than

twice that after the first iteration.
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We now examine the performance of the proposed MVDR A-LASSO algorithm

at low and very low SNR situations in the ninth experiment. The same settings as

in the previous experiment are used, except that the SNR is set to −10 dB and −15

dB. The snapshot number is set to 150 for the first case and 200 for the second one.

The results are as shown in Figure 3.16 for SNR of −10 dB and Figure 3.17 for that

of SNR set to be −15 dB. It can be seen from Figures 3.16 and 3.17 that the two

signals can be identified after only five iterations, even for very low SNR conditions.

However, more snapshots are needed in this situation. Thus, it is a trade-off between

SNR and the number of snapshots required so that the DOA of the source signals

can be correctly identified. It is further observed that even after three iterations,

we are able to identify the two source signals.
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In the tenth experiment, we study the effect of changing the number of snap-

shots on the performance of MVDR A-LASSO. We consider two source signals ar-

riving from DOAs of 60◦ and 120◦ with SNR changing from −5 dB to 5 dB. The

results are shown in Figure 3.18. It can be observed from this figure that increasing

the number of snapshots leads to an enhancement in the performance, in terms of

RMSE. In other words, it is a trade-off between the number of snapshots and the

RMSE. For low and very low SNR, the number of snapshots has to be increased, for

better performance.

Figure 3.18: MVDR A-LASSO DOA estimation performance versus the number of
snapshots, two source signals with DOAs 60◦ and 120◦, γ = 0.5.

The eleventh experiment involves the investigation of the effect of changing γ.

Two source signals impinging the array from DOAs of 60◦ and 120◦ are considered,

the SNR being set to −5 dB while changing γ. Figure 3.19 shows the residual,

R, in terms of the absolute value of ( ky − Φs̄k+1k22 − ky − Φs̄kk22 ), where k is the

iteration number, for 10 simulations. From this figure, it is clear that increasing the

number of snapshots decreases the residuals for all three cases of γ = 0.25, 0.5 and
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0.75. Furthermore, the residual after the end of the first iteration using γ = 0.5 is

smaller than when γ = 0.25 or 0.75, even when the number of snapshots is increased.

From Figure 3.19b, it can be seen that, at the end of the second iteration, the residual

corresponding to γ = 0.25 is smaller than that corresponding to γ = 0.5 or γ = 0.75.

However, for none of these values of γ have we achieved convergence by the end of

the second iteration. At the end of Iteration 3, the convergence of the residual is

achieved only for the weight factor γ = 0.5. However, since the residual for γ = 0.5

at the end of the first iteration is less than that of γ = 0.25, the signal sources are

identified at the end of the first iteration (Figure 3.13e), while that of γ = 0.25 needs

more iterations (Figure 3.13a–c). The effect of γ on the DOA estimation, using the

same previous source signals, with SNR chosen to be −5 dB is shown in Figure 3.20.

In this case, 50 snapshots are used, while γ assumes values of 0.25, 0.50 and 0.75. It

can be seen from this figure that γ = 0.5 provides the right signal sources at the end

of the first iteration with a smaller residual than for γ = 0.25 or 0.75. On the other

hand, selecting γ = 0.25 leads to more fake source signals being detected, and as

a consequence, more iterations are needed to identify the real sources, while using

γ = 0.75 leads to misidentifying one of the source signals.
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(a)

(b)

Figure 3.19: The residual for two source signals at DOAs 60◦ and 120◦, with
γ = 0.25, 0.5 and 0.75, 10 iterations, SNR = −5 dB using the MVDR A-LASSO
algorithm, (a) 10 snapshots and (b) 50 snapshots.
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The twelfth experiment involves the investigation of the effect of varying the

angular separation between the source signals. Consider two source signals, the first

one held fixed at DOA of 60◦, while the second one with DOA ranging from 61◦ to

100◦ with steps of 1◦. The SNR is set to be 10 dB; 10 snapshots are considered for

the simulation; 100 trials for each point; and a sampling grid ✓̄n 2 [1◦ : 180◦] chosen

to be of 0.1◦ steps. Figure 3.21 illustrates the DOA estimation error as a function

of the angular separation between the two source signals. It can be seen from this

figure that the DOA estimation error is less than 2◦ for an angular separation < 5◦.

This DOA estimation error is reduced to < 0.4◦ for an angular separation ≥ 6◦.
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Figure 3.21: RMSE for each of the signals as a function of the separation between
two sources, SNR = 10 dB, 10 snapshots and one iteration of MVDR A-LASSO.

3.7 Simulation Results for Fluctuating Signal Sources

Consider a sparse linear two-level nested array, for which M is odd, consisting of

M = 7 elements, three of which are in the first level, and four in the second level.

Investigating the array output by applying Equations (3.1) to (3.3) and extracting

the equivalent distinct virtual elements from the virtual array manifold (A⇤ * A),

one obtains a virtual ULA containing M̄ = 31 elements. The sampling grid ✓̄n 2

[1◦ : 180◦] that covers Ω is chosen to be in steps of 1◦ and d = λ/2, where λ is the

wavelength of the propagating waves.

The power of the fluctuating simulated source signals is assumed to follow the

Chi-squared distribution as given in Section 2.2 and the sources are assumed to be

uncorrelated with one another or with noise. The signal sources are modeled as

ej2πfdt where fd is the Doppler frequency. For Swerling sources of type I as well as

III, each scan is assumed to contain 10 snapshots.
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In the first experiment, we investigate the performance of the MVDR A-

LASSO estimation technique in terms of RMSE given by Equation (3.19), as we

vary SNR. Two fluctuating source signals of the same type are assumed to impinge

on the nested array from fixed DOA of 60◦ and 120◦. The SNR is varied from −5

dB to 10 dB. The number of snapshots is set to be 10 and 50. The DOA estimation

error for non-fluctuating source signal is also included in the figures as a reference,

where again the number of snapshots is set to 10 and 50. These numbers correspond

respectively to 1 and 5 scans for Swerling source types I and III.

The simulations results are as shown Fig. 3.22. From this figure, it can be seen

that the non-fluctuating sources have the lowest RMSE, as expected. It is noted

that the performance can be improved by increasing the number of snapshots. It is

seen from the figure that by increasing the number of snapshots to 50 from 10, the

DOA estimation error for sources can be reduced by at least 40%.

Figure 3.22: Performance of MVDR A-LASSO as SNR is varied, for two fluctuating
source signals at DOAs 60◦ and 120◦, using different Swerling source signals models.
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In the second experiment, we investigate the effect of varying the angular

separation between the Swerling source signals. Consider two fluctuating source

signals, the first one with a fixed DOA of 60◦ while the DOA of the second ranges

from 65◦ to 110◦ in steps of 5◦. The SNR is set 0 dB, 10 snapshots are considered

for the simulation and 100 trials for each observation point.

Fig. 3.23 illustrates the RMSE versus the angular separation for the different

Swerling sources. Results for RMSE for non-fluctuating source signals is also in-

cluded for reference. The same number of snapshots is used for the non-fluctuating

sources as for the fluctuating sources. It is noted that for angular separation of 5◦

or less, the two source signals cannot be identified as separate signals. Hence, the

results are presented starting with a 10◦ separation.

From this figure, it is seen that the DOA estimation error for non-fluctuating

sources is the lowest. Further, the errors for Swerling types II and IV are lower than

that for types I and III. The DOA estimation errors can be reduced by increasing

the number of snapshots (see previous experiments).

Figure 3.23: RMSE for two sources as a function of separation between the DOAs
of the sources, SNR = 0 dB, 10 snapshots using MVDR A-LASSO.
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In the third experiment, we investigate the probability of detection (POD) of

the different Swerling source signals using the MVDR A-LASSO DOA estimation

technique. For this purpose, let two fluctuating source signals impinge the sensor

array from fixed DOAs of 60◦ and 120◦. The POD measuring scenario is as follows:

for each trial, the height of the peaks of the estimated source signals is measured. If

the height is ≥ 0.5 (using normalized power scale), the peak is considered to corre-

spond to the detection of a possible source signal; otherwise, the peak is considered

no to correspond to a source signal. This operation is repeated 100 times for various

values of SNR.

The POD corresponding to the different Swerling source signals using only 10

snapshots for non-fluctuating and Swerling source types II and IV, and 10, 50 and

100 snapshots for Swerling source types I and III, are shown in Fig. 3.24. It is seen

from Fig. 3.24(a) that the POD for non-fluctuating sources and Swerling source

types II and IV are greater than 0.99. Further, it is observed from fig. 3.24(b)

that the Swerling source types I and III need more number of snapshots than that

required for types II and IV, in order to achieve an acceptable detection probability

similar to that of types II and IV.
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(a) 10 snapshots

(b) 50 and 100 snapshots

Figure 3.24: Probability of detection of different Swerling source signals, two source
signals with DOA of 60◦ and 120◦ using MVDR A-LASSO. (a) 10 snapshots and (b)
50 and 100 snapshots.
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The following experiments are now conducted to investigate the capability

of the proposed method to track the various sources along different trajectories.

For this purpose, three different scenarios are considered for the simulations using

two uncorrelated source signals. In the first one, the two sources are assumed to be

moving in phase, which is designated as "in phase" scenario. In the second scenario,

the two source signals are moving in opposite phases, which will be designated as

"opp-phase" scenario. In the last scenario, one of the source signals has a fixed

DOA, while DOA of the other is changing, and this scenario is designated as "fixed

vs. moving".

Furthermore, the trajectory of a source signal is divided into four sections.

In the first section, the source signal follows a sinusoidal trajectory while in the

second section the direction of the source DOA is fixed. In the last two sections,

the source follows a linear trajectory with positive and negative slopes, respectively.

The proposed source signal trajectories are shown in Fig. 3.25.
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(a) In pahse

(b) Opp-phase

(c) Fixed vs. moving

Figure 3.25: The proposed ideal source signals trajectories where in the sources DOA
are following (a) the same direction, (b) opposite directions, and (c) one source DOA
is being fixed while the other is changing.
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In the last experiment, the three different scenarios explained above are used

with SNR being set to 10 dB. Based on the results of the third experiment (see Fig.

3.24) and in order to obtain an acceptable POD, the total number of snapshots is

chosen to be 10 for non-fluctuating as well as for Swerling source types II and IV,

while this number is set to 100 for Swerling source types I and III. Figures 3.26, 3.27,

3.28, 3.29 and 3.30 show the results of tracking the various signals using MVDR A-

LASSO. From these figures, it can be seen that the MVDR A-LASSO technique

is able to detect and track properly not only non-fluctuating but also fluctuating

source signals.
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(a)

(b)

(c)

Figure 3.26: Trajectory of two non-fluctuating source signals using MVDR A-
LASSO, SNR = 10 dB using 10 snapshots.
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(a)

(b)

(c)

Figure 3.27: Trajectory of two fluctuating source signals using MVDR A-LASSO,
SNR = 10 dB. (a,b, and c) Swerling-I, 100 snapshots.
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(a)

(b)

(c)

Figure 3.28: Trajectory of two fluctuating source signals using MVDR A-LASSO,
SNR = 10 dB. (a,b, and c) Swerling-II, 10 snapshots.
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(a)

(b)

(c)

Figure 3.29: Trajectory of two fluctuating source signals using MVDR A-LASSO,
SNR = 10 dB. (a,b, and c) Swerling-III, 100 snapshots.
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(a)

(b)

(c)

Figure 3.30: Trajectory of two fluctuating source signals using MVDR A-LASSO,
SNR = 10 dB. (a,b, and c) Swerling-IV, 10 snapshots.
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3.8 Summary

In this chapter, we have presented a novel technique in compressive sensing frame-

work for estimating DOAs of signals using a linear array. We have proposed a new

A-LASSO algorithm, the MVDR A-LASSO, for the DOA estimation problem. The

proposed A-LASSO algorithm outperforms the classical LASSO, as well as the clas-

sical DOA estimation techniques. It does not require any a priori knowledge about

the number of source signals.

The proposed algorithm is able to perform DOA estimation using a small

number of snapshots and is able to estimate correlated source signals as well as

spatially-close source signals. Our proposed algorithm can identify ((M2 − 2)/2 +

M − 1)/2 source signals using M sensors and has a high resolution. Using the

proposed technique, we are able to eliminate any spurious peaks and identify only

those that corresponds to actual sources. Further, it has been shown that, using the

proposed MVDR A-LASSO, the source signals can be identified with a lesser number

of iterations than that using OLS A-LASSO. Thus lowering the computational cost

of the MVDR A-LASSO with respect to that of the OLS A-LASSO.

The simulation results have shown that MVDR A-LASSO is also able to detect

fluctuating source signals. Furthermore, it is able to detect and track signals moving

with certain types of trajectories.
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Chapter 4

Compressive Sensing-Based DOA

Estimation For Unknown Noise

Fields In Element-Space

4.1 Introduction

Many of the DOA techniques that have been proposed assume spatially white noise

[107, 108, 109, 110]. Hence, the array noise covariance matrix is related to the noise

power through an identity matrix. However, the assumption of spatially white noise

is not realistic in many practical applications [111, 112, 113, 114, 115, 116, 117],

where the noise fields are spatially colored. The colored noise significantly degrades

the performance of the DOA estimator. Furthermore, estimating the number of

signal sources becomes a problem. In addition, some of the peaks due to the non-

white noise background may be identified as source signals.

To overcome this degradation, certain constraints are imposed on the signal

or on the colored noise. In [109], the signal is assumed to be partially known as a

linear combination of a set of basis functions, while in [118] the noise is modeled
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as an autoregressive process. However, these assumptions are still not realistic, and

furthermore, if they are not satisfied, then the DOA performance will be highly

degraded. In [82], an underdetermined KR based technique using a ULA was pro-

posed for DOA estimation in unknown spatial noise covariance. However, the source

signals are assumed to be quasi-stationary. Iterative methods using ULAs for DOA

estimation in nonuniform noise were proposed in [119]. These methods are based on

estimating the signal subspace and noise covariance matrices simultaneously. Yet,

the number of sources to be estimated is assumed to be known in advance and the

methods are computationally intensive.

Sparse arrays are used to avoid the above unrealistic assumptions for DOA

estimation in the presence of spatially colored noise [115, 120]. In [120], the sepa-

ration between the sub-arrays is chosen such that the noise is uncorrelated between

the sub-arrays. In this situation, the noise covariance matrix has a block-diagonal

structure, which allows the DOA estimation to be done accurately. In [115], the

DOA estimation was explored using two separated sub-arrays and based on the gen-

eralized correlation (GC) analysis, a new method for DOA estimation in unknown

noise (UN) fields known as, UN-MUSIC, is proposed for DOA estimation in the case

of unknown correlated noises. However, two separate ULAs are used for the DOA

estimation and in order to be able to decompose the received signal into its unique

subspaces a long procedure is required. In [116], a maximum likelihood (ML) tech-

nique on a sparse sensor array is proposed for DOA estimation in the presence of

spatially colored noise. However, the technique requires a large number of snapshots.

Furthermore, the algorithm is based on the ML technique, which is computation-

ally the most intensive amongst the DOA estimation methods [11] and further, the

number of sources to be estimated is assumed to be known a priori [121].

In this chapter, using a single sparse linear array, we propose a new CS-based

DOA estimation technique, called the GCD A-LASSO technique, that is capable
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of performing DOA estimation for source signals in the presence of unknown noise

fields [122].

4.2 GCD A-LASSO for DOA Estimation in Unknown

Noise Fields

Taking into account that the source signals are far-field sources, they can be consid-

ered as point sources and consequently become sparse in space. Hence, the output

of the sensor array, y 2 C
M̄⇥1, can be expressed as

y(t) = Φs̄(t) + n̄(t) (4.1)

where Φ 2 C
M̄⇥N is the overcomplete steering matrix and is given by

Φ = [a0(✓̄1) a0(✓̄2) . . . a0(✓̄n) . . . a0(✓̄N)]

=

2
66666666666664

ejkod(−(M̄−1)/2) cos θ̄1 ejkod(−(M̄−1)/2) cos θ̄2 · · · ejkod(−(M̄−1)/2) cos θ̄N

...
...

...

1 1
. . . 1

...
...

...

ejkod((M̄−1)/2) cos θ̄1 ejkod((M̄−1)/2) cos θ̄2 · · · ejkod((M̄−1)/2) cos θ̄N

3
77777777777775

(4.2)

and n̄ 2 C
M̄⇥1 is an AWGN. Denoting a0(✓̄n) 2 C

M̄⇥1 as the steering vector of

the virtual array corresponding to AOA of (✓̄n), where {✓̄n}Nn=1 denotes a grid that

covers the set of all possible locations, Ω and N , L. In this case, the source signal

vector s̄ 2 C
N⇥1 is given by

s̄(t) = [σ̄1 σ̄2 . . . σ̄n . . . σ̄N ]
T (4.3)
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where the nth element of s̄(t), s̄n(t), is nonzero only if (✓̄n = ✓l) and, in that case,

σ̄n = σl. The compressive sensing (CS) technique is to estimate the signal energy

as a function of the source signal locations given the sensor array output, y. In a

noise free scenario, a direct way to investigate the sparsity on s̄ is by minimizing the

`0-norm, which counts the number of nonzero elements in the vector s̄, as follows

min
s̄

ks̄k0 subject to y = Φs̄ (4.4)

However, this minimization is an NP-hard problem [123], which becomes, even

for a moderate dimensional problem, computationally intractable. For that reason,

different alternative approaches to approximate the solution of `0-norm problems

were presented in [123, 124, 125, 126]. It has been proven that, for sufficiently

sparse signals and sensing matrices with sufficiently incoherent columns [127, 128],

the `0-norm problem is equivalent to the `1-norm one [129, 130, 131], where `1

minimization is given by

min
s̄

ks̄k1 subject to y = Φs̄ (4.5)

Furthermore, `2-norm could be used as an alternative approach to solve `0-

norm problem by relaxing `0-norm into `2-norm as follows

min
s̄

ks̄k2 subject to y = Φs̄ (4.6)

which is a convex problem and has an analytic solution given by

ˆ̄s = ΦH(ΦΦH)−1y (4.7)

However, `1-norm problem favors sparse signals than the `2-norm. Further-

more, `1-norm relaxation is the closest convex optimization to that of the `0-norm
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and it converges to the global minimum [49]. In practice, CS can be extended to

noisy measurement scenarios. The `1-norm problem for a noisy measurement can

written as

min
s̄

ks̄k1 subject to kΦs̄ − yk2  β (4.8)

where β is an error tolerance parameter (β > 0). The `2-norm used for evaluating

the error Φs̄ − y can be replaced by any other norm, such as `1 or `p, 0 < p < 1.

Proper choice of β is an important issue for the success of minimization in (4.8)

[75, 98]. An `1-norm constrained form of (4.8) is known as LASSO [50]. The LASSO

minimization problem can be written as

min
s̄

ky − Φs̄k22 + ⌧ ks̄k1 (4.9)

where ⌧ is a nonnegative regularization parameter. The `1 penalization approach is

also known as the basis pursuit [90]. Two iterative versions of LASSO, namely, the

OLS A-LASSO and MVDR A-LASSO, were introduced in [61]. It was shown that

the performance of these A-LASSO techniques is superior to that of the classical

DOA estimation techniques and LASSO-based DOA estimation. The A-LASSO is

given by [61]

ˆ̄s(k) = min
s̄

ky − Φs̄k22 + ⌧k

NX

n=1

ŵn|s̄n| (4.10)

where k is the iteration number and ŵn is the n-th element of the weight vector, ŵ

which is given by OLS or MVDR in the first iteration, k = 1.

It should be pointed out that in most of the CS-based DOA estimation tech-

niques, the noise covariance structure is known in advance; it is assumed to be

AWGN (see [7] and the references therein). However, in practice, this assumption

does not hold and the noise covariance structure is probably unknown. Thus, the

DOA estimator performance is highly degraded when the noise covariance is not

known. Further, in such scenarios, more false source signal peaks could appear due
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to the background noise.

In order to overcome the above mentioned problem, we adopt the following

technique for signal source DOA estimation in unknown correlated noise fields [115].

Consider two ULAs whose output vectors can be written as

x1(t) = A1s1(t) + n1(t)

x2(t) = A2s2(t) + n2(t)

(4.11)

where x1(t) and x2(t) are the data vectors of dimensions M1 and M2, respectively,

A1 2 C
M1⇥L and A2 2 C

M2⇥L are the steering matrices of the arrays and s1(t) and

s2(t) are the signal vectors. The outputs of the two sub-arrays can be considered to

be the same, but one is a delayed version of the other. The noise vectors n1(t) and

n2(t) are assumed to be stationary, zero-mean, Gaussian with the joint covariance,

J, given by

J =

8
><
>:

2
64
n1

n2

3
75
⇥
nH
1 nH

2

⇤
9
>=
>;

=

2
64
Rnn1 0

0 Rnn2

3
75 (4.12)

Rnn1 and Rnn2 are unknown covariance matrices of the noise of the two sub-arrays.

The joint covariance matrix of the received data from the two sub-arrays, Σ 2

C
2(M1+M2)⇥2(M1+M2), can be written as [115]

Σ =

8
><
>:

2
64
x1

x2

3
75
⇥
xH
1 xH

2

⇤
9
>=
>;

=

2
64
R11 R12

R21 R22

3
75 (4.13)

where

Rii = AiRssiA
H
i + σ2

nRnni
, i = 1, 2

R12 = RH
21 = A1Rss12A

H
2

(4.14)

where Rssi is the auto-correlation and Rss12 is the cross-correlation of the signals
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such that

Rssi = E
{
sis

H
i

 
, i = 1, 2

Rss12 = E
{
s1s

H
2

 (4.15)

and both are assumed to be of full rank. In practice, we do not know the true value

of Σ, and therefore, we use the average of the outer products of the output data as

an estimate of Σ such that

bΣ =
1

T

NX

n=1

2
64
x1(n)

x2(n)

3
75
⇥
xH
1 (n) xH

2 (n)
⇤
=

2
64
R̂11 R̂12

R̂21 R̂22

3
75 (4.16)

where T is the snapshot number. It should be noted that R12 and R21 contain

noiseless DOA information. So, we can proceed using any technique such as MUSIC

[14] to estimate the DOA. However, the signal subspace estimation from R̂12 is not

unique. To uniquely estimate the signal subspace from R̂12, the GCD is used to

develop the UN-MUSIC algorithm in [115].

Consider now a two-level nested array containing an odd number of sensors,

M ; the resulting virtual array will contain M̄ virtual sensors, as given in Table 3.1.

Assume that the first sub-array contains the virtual sensors from the first virtual

sensor to the (M̄ −Q)-th sensor and the second sub-array contains the sensors from

(Q+ 1)-th to the last virtual sensor, so that the total number of sensors in each of

the sub-arrays is M̄ − Q. It should be pointed out that the maximum number of

sources to be estimated will be affected by Q and is given by (M̄ −Q− 1)/2. Due

to the overlapping of the two sub-arrays and because the source signals are assumed

to be located in the far-field, the steering matrices A1 and A2 of the two sub-arrays

could be assumed to be the same, that is A1 = A2 = Ā, where Ā is the steering

matrix of the sensor array for which the total number of sensors is M̄ − Q and is

given by

Ā =
⇥
ā(✓̄1) ā(✓̄2) . . . ā(✓̄N)

⇤
(4.17)
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where ā(✓̄n) 2 C
(M̄−Q)⇥1 as the steering vector of the sensor array whose m̄th element

can be written as

ām̄(✓̄n) = ejkodm̄ cos θ̄n , m̄ =

8
>><
>>:

−M̄−Q−1
2

, . . . , M̄−Q−1
2

if Q is even

−M̄−Q
2

+ 1, . . . , M̄−Q
2

if Q is odd

(4.18)

Consider extracting R̂12 2 C
M̄−Q⇥M̄−Q from (4.16) which can be written as

R̂12 = A1Rss12A
H
2 = ĀRss12Ā

H
(4.19)

Following linear algebra theory, each column (vector) of R̂12 can be linearly

represented by any complete basis in the (M̄−Q)-dimensional complex vector space

[48]. The qth column of R̂12 can be written as

r̂q = Φ⇤bq, q = 1, . . . , M̄ −Q (4.20)

where bq is the representation coefficient vector in terms of the overcomplete steering

matrix, Φ⇤ and Φ⇤ 2 C
(M̄−Q)⇥N is the overcomplete steering matrix for the sensor

array for which the total number of sensors is M̄ − Q. In matrix from, (4.20) can

be written as

R̂12 = ΦB (4.21)

where B = [b1, . . . ,bq, . . . ,bM̄−Q]. It should be noted that {bq}M̄−Q
q=1 have the same

sparsity structure, i.e., the non-zero elements of each vector of B appear in the same

index [48]. Based on (4.20), DOA estimation is the same as seeking the sparsity of

bq, which has the same structure as that of the signal to be estimated. Using (4.20),
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the DOA estimation problem can be reformulated using A-LASSO [61] as follows:

b(k)
q = min

bq

kr̂q − Φbqk22 + ⌧k

NX

n=1

ŵn|bqn| (4.22)

We denote (4.22) as GCD A-LASSO. Algorithm 4.1 illustrates single iteration of

the GCD A-LASSO technique. Following [61], two initial weights are considered for

the first iteration (k = 1) of the GCD A-LASSO algorithm, these initial weights are

given by OLS or MVDR. Depending on whether OLS or MVDR weights are used

as initial weights, the algorithm will be known as GCD OLS A-LASSO or GCD

MVDR A-LASSO, respectively.

Algorithm 4.1 GCD A-LASSO

1: Collect T snapshots of the received signals, x(t).
2: Calculate the covariance matrix, Rxx.
3: Vectorize Rxx and construct the virtual sensor array output as given in Section

3.2.
4: Divide the virtual array into two equal uniform linear sub-array with M̄ − Q

virtual sensor in each sub-array.
5: Calculate the joint covariance matrix, Σ, from (4.16) and extract R̂12 from the

result.
6: Select q-th column of R̂12 where q = 1, . . . , M̄ −Q.
7: Compute the initial estimate for the signal, s̄, using OLS or MVDR as initial

weights.
8: Find ŵ, where the n-th element of ŵ, ŵn, is given by ŵn = 1/ |ŝn|γ , n =

1, . . . , N .
9: Define Φ0 2 C

(M̄−Q)⇥N matrix, such that its (q, n)-th element is given by φqn/ŵn,
where q = 1, . . . , M̄ −Q and n = 1, . . . , N .

10: for k = 1, 2, . . . , K iterations do

Solve the LASSO problem as:

b⇤
q = min

bq

kr̂q − Φ0bqk22 + ⌧k kbqk1

Calculate b(k) = b⇤n/ŵn, n = 1, 2, . . . , N .

11: end for

12: Find the final DOA estimation.
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algorithms.

We investigate, in the first experiment, the capabilities of the proposed algo-

rithm in detecting the sources even when the number of sources exceeds the number

of physical array elements in the presence of unknown noise fields. In other words,

the proposed algorithm is for an underdetermined DOA scenario. For that purpose,

let 14 fixed source signals impinge the array from uniformly distributed DOAs over

✓ = [38◦, 142◦]. The number of snapshots is set to 100, SNR is set to 0 dB and the

noise is a mixture of AWGN and pink noise.

For UN-MUSIC simulations, two different scenarios are assumed. In the first

scenario, two separate ULAs are considered for the simulation and the number of

sensors in each one of them is chosen to be 7, that is, M1 = M2 = 7 (the same number

of sensors as that of the two-level nested array). Such an array will be denoted as

array #2. However, using this scenario, we cannot identify the 14 source signals

because the maximum number of sources that can be estimated using UN-MUSIC

is upper limited by the number of the used sensors, that is, Lmax < {M1,M2} [115].

Hence, one can detect only up to 6 source signals using UN-MUSIC. Furthermore,

the number of sources to be estimated is assumed to be known in advance in the

UN-MUSIC technique.

We therefore assume, in the second scenario, for UN-MUSIC technique, two

separate ULAs each containing 15 elements, that is, M1 = M2 = 15. Therefore, the

maximum number of sources that can be estimated using this array, which we shall

call array #3, is 14 sources [115].

Simulations are carried out on array #1 using both of the proposed techniques,

namely, GCD OLS A-LASSO and GCD MVDR A-LASSO, as well as array #3 using

the UN-MUSIC technique to identify the 14 sources. The results are as shown in

Figs. 4.2 and 4.3. Figs. 4.2(a) and 4.2(b), show that all of the 14 source signals are

identified correctly by both the GCD OLS A-LASSO and GCD MVDR A-LASSO,
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even in the presence of unknown noise, whereas even when we use 15 sensors and

theoretically the maximum number of sources that can be identified is 14, UN-

MUSIC has identified only 6 source signals, see Fig. 4.3(a). However, increasing

the number of snapshots to be at least 105 snapshots, UN-MUSIC is able to identify

the 14 sources as shown in Fig. 4.3(b). This clearly shows the capability of the

proposed techniques in being able to identify all the sources ((M̄ −Q−1)/2), which

is exactly the maximum number of sources that our method is supposed to be able

to identify. It should be mentioned that, in order to uniquely calculate the signal

and the noise subspaces for the UN-MUSIC technique, a long procedure is followed.

Increasing the number of snapshots will increase the computational load of the DOA

estimation technique. Consequently, UN-MUSIC will not be suitable for real-time

applications. On the other hand, the proposed techniques are able to identify the

maximum number sources that they suppose to detect using a fewer number of

snapshots comparing to that of used for the UN-MUSIC technique, even for low

SNR scenario. In view of this result, for the succeeding experiments we assume

the number of sources to be three, except in the last one where we assume only 2

sources.
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(a) GCD MVDR A-LASSO, array #1, 100 snapshots

(b) GCD OLS A-LASSO, array #1, 100 snapshots

Figure 4.2: DOA estimation when the number of sources is more than the number
of sensors, 100 snapshots, SNR = 0 dB, using array #1.
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(a) UN-MUSIC, array #3, 100 snapshots

(b) UN-MUSIC, array #3, 105 snapshots

Figure 4.3: DOA estimation when the number of sources is more than the number
of sensors, SNR = 0 dB, using (a) array #3 and 100 snapshots, and (b) array #3
and 105 snapshots.
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In the second experiment, we consider two cases: (a) three uncorrelated signals

impinging on array #1 and 2 at 40◦, 60◦ and 160◦, and (b) three signals impinging at

the same angles, but with the first two signals being fully correlated (coherent). The

received signal is assumed to be contaminated by pink noise and AWGN with SNR

set to 0 dB and only 10 snapshots are employed. Figs. 4.4 and 4.5 show that all the

three techniques namely, the two proposed and the UN-MUSIC, are able to identify

the three signals when they are uncorrelated. However, when two of the sources are

correlated, Figs. 4.6 and 4.7 show that all the source signals are correctly identified

by the two proposed techniques, whereas UN-MUSIC is not able to do so even with

furthermore number of snapshots even when more number of snapshots is used. In

fact, UN-MUSIC is unable to identify correlated signals.
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(a) GCD MVDR A-LASSO

(b) GCD OLS A-LASSO

Figure 4.4: DOA estimation for 3 source signals with DOAs 40◦, 60◦ and 160◦,
uncorrelated sources, 10 snapshots, and pink noise and AWGN with SNR = 0 dB,
using (a) GCD MVDR A-LASSO and (b) GCD OLS A-LASSO.
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(a) UN-MUSIC

Figure 4.5: DOA estimation for 3 source signals with DOAs 40◦, 60◦ and 160◦,
uncorrelated sources, 10 snapshots, and pink noise and AWGN with SNR = 0 dB,
using UN-MUSIC.

104



(a) GCD MVDR A-LASSO

(b) GCD OLS A-LASSO

Figure 4.6: DOA estimation for 3 source signals with DOAs 40◦, 60◦ and 160◦,
where the first 2 source signals are fully correlated, 10 snapshots, and pink noise
and AWGN with SNR = 0 dB, using (a) GCD MVDR A-LASSO and (b) GCD OLS
A-LASSO.
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(a) UN-MUSIC, 10 snapshots

(b) UN-MUSIC, 104 snapshots

Figure 4.7: DOA estimation for 3 source signals with DOAs 40◦, 60◦ and 160◦, where
the first 2 source signals are fully correlated, 10 snapshots, and pink noise and AWGN
with SNR = 0 dB, using (a) UN-MUSIC, 10 snapshots, and (b) UN-MUSIC, 104

snapshots.
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In the third experiment, we examine the capability of the proposed techniques

in identifying closely-spaced sources. For this purpose, let three sources impinge

arrays #1 and 2 form DOAs of 55◦, 60◦, and 170◦. The received signal sources

are assumed to be contaminated with pink noise with SNR is set to 0 dB, and 10

snapshots of the received data are used. The simulations results are shown in Figs.

4.8 and 4.9. From these figures, three peaks can easily be identified using GCD

OLS A-LASSO and GCD MVDR A-LASSO, thus identifying the three sources.

However, UN-MUSIC is not able to identify the sources properly; and the two

closely-spaced sources are identified as a single source. However, increasing the

number of snapshots to be at least 2⇥ 104 snapshots, UN-MUSIC is hardly able to

discriminate the sources. Yet, Even with more number of snapshots, UN-MUSIC

is not able to clearly discriminate the closely-spaced sources as that of GCD OLS

A-LASSO as well as GCD MVDR A-LASSO are able to clearly identify using only

10 snapshots.
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(a) GCD MVDR A-LASSO, 10 snapshots

(b) GCD OLS A-LASSO, 10 snapshots

Figure 4.8: DOA estimation for spatially closed two source signals, pink Noise with
SNR = 0 dB, two source signals at DOAs 60◦ and 64◦, 10 snapshots, using (a) GCD
MVDR A-LASSO and (b) GCD OLS A-LASSO.
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(a) UN-MUSIC, 10 snapshots

(b) UN-MUSIC, 2⇥ 104 snapshots

Figure 4.9: DOA estimation for spatially closed two source signals, pink Noise with
SNR = 0 dB, two source signals at DOAs 60◦ and 64◦, 10 snapshots, using (a) and
(b) UN-MUSIC.
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In the next two experiment, the RMSE is used as the performance measure,

which is given by

RMSE =
1

L

LX

l=1

vuut 1

Nsim

NsimX

n=1

(b✓l,n − ✓l)2 (4.23)

where b✓l,n is the estimate of the DOA angle ✓l of the n-th Monte Carlo trial.

In the fourth experiment, we investigate the performance of the GCD OLS

A-LASSO, GCD MVDR A-LASSO, and UN-MUSIC algorithms as we vary SNR.

For this purpose, let three source signals impinge on the arrays from DOA of 60◦, 70◦

and 120◦. For UN-MUSIC, as before two separated ULAs are used wherein each

ULA contains 7 sensors (M1 = M2 = 7). The performance of the various algo-

rithms as SNR is varied is shown in Figs. 4.10 and 4.11. It is observed from the

figures that both GCD OLS A-LASSO and GCD MVDR A-LASSO outperform UN-

MUSIC algorithm for the four assumed different noise mixtures. Furthermore, GCD

MVDR A-LASSO performs better than GCD OLS A-LASSO for all the different

noise mixtures.
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(a) UN-MUSIC VS. GCD OLS A-LASSO

(b) UN-MUSIC VS. GCD MVDR A-LASSO

Figure 4.10: Performance comparison of the different algorithms as SNR is varied
using UN-MUSIC, GCD OLS A-LASSO (single iteration), and GCD MVDR A-
LASSO (single iteration). (a) UN-MUSIC vs. GCD OLS A-LASSO and (b) UN-
MUSIC vs. GCD MVDR A-LASSO
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Figure 4.11: Performance comparison of the different algorithms as SNR is varied
using GCD OLS A-LASSO (single iteration), and GCD MVDR A-LASSO (single
iteration).

The final experiment involves the investigation of the effect of varying the

angular separation between the source signals. Consider two source signals, the first

being held fixed at DOA of 60◦, while for the second one the DOA ranges from 62◦

to 90◦ in steps of 2◦. The SNR is set to be 5 dB, 10 snapshots are considered for the

simulation, 100 trials for each observation point, and a sampling grid varying from

1◦ to 180◦ with 1◦ steps. In UN-MUSIC, for source signals with separation  10◦,

the DOA estimation error is high. Hence, the simulations for the UN-MUSIC are

conducted starting form a source signal separation > 10◦. Fig. 4.12 illustrates the

DOA estimation error as a function of the angular separation between the two source

signals using the proposed DOA estimation techniques. It can be seen from this

figure that, the performance of GCD OLS A-LASSO and GCD MVDR A-LASSO

are superior to that of the UN-MUSIC technique. Moreover, The DOA estimation

error for of the GCD MVDR A-LASSO technique is always less than that of the
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GCD OLS A-LASSO; in fact the DOA of GCD MVDR A-LASSO estimation error

is < 0.2◦ for an angular separation of ≥ 8◦.

Figure 4.12: DOA estimation error for two sources as a function of separation be-
tween the two sources, SNR = 5 dB, 10 snapshots.

4.4 Summary

This chapter has presented two novel techniques using the compressive sensing

framework on a sparse linear array for DOA estimation in the presence of unknown

noise; based on the generalized correlation decomposition (GCD); these have referred

to as GCD OLS A-LASSO and GCD MVDR A-LASSO, depending on whether ordi-

nary least squares or minimum variance distortionless response is used as the initial

weights. The performance of the proposed techniques is studied and compared with

that of the UN-MUSIC technique. Neither of the proposed techniques require a

priori knowledge about the number of source signals.

The proposed algorithms are able to perform the DOA estimation using a

small number of snapshots and are able to estimate correlated source signals and
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closely-spaced source signals in the presence of unknown noise using a fewer number

of snapshots. The proposed algorithms can identify source signals of order O(M2)

using an array of order O(M) sensor, with high resolution.

For UN-MUSIC, even when the number of antennas is more than the number

of sources, it is not able to distinguish source signals that are close to one another

nor able to identify coherent sources. Even when the sources are not correlated,

the UN-MUSIC technique requires more number of snapshots than that required

by the proposed techniques in order to identify the sources but not necessarily all

of them. Furthermore, since UN-MUSIC procedure itself is a long one, increasing

the number of snapshots will dramatically increase the computational burden of the

DOA estimation technique which will make it not suitable for real-time applications.

On the other hand, both of the proposed techniques are able to fulfill the DOA

estimation task, even in low SNR scenario, using a much lower number of snapshots

than that used for UN-MUSIC.

It has been shown that the DOA estimation performance using the proposed

techniques is superior to that of the UN-MUSIC; further, the performance of GCD

MVDR A-LASSO is better than that of GCD OLS A-LASSO.
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Chapter 5

Beamspace Compressive

Sensing-Based DOA Estimation

5.1 Introduction

We would like to recall that the CS-based DOA estimation algorithms proposed

in Chapters 3 and 4 are in element-space. In order to reduce the computational

burden of the DOA estimation techniques, especially for sensor arrays with a high

number of elements which are used for applications such as radar, BS-processing

is proposed [12]. As already explained in Chapter 2, in a BS processor, the high

dimensional data received in ES is first projected into a subspace with reduced

dimensions to produce the BS data. This BS data is then processed in the resultant

reduced dimensional space. BS processing schemes could be categorized into two

main methods, full beamspace (FBS) and reduced-dimension beamspace (RBS), as

explained in Sections 2.4.1 and 2.4.2, respectively.

It has been shown in Chapter 3 that the performances of CS-based DOA

estimation algorithms, namely, ES OLS A-LASSO and ES MVDR A-LASSO, are

vastly superior to that of the other ES-based methods. We will show in this chapter
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that the performances of the CS-based algorithms are superior to that of the existing

BS-based techniques, such as BS MVDR, BS MUSIC and BS ESPRIT.

This has motivated us to extend the CS-based techniques to BS to take advan-

tage of the lower computational burden of BS processing. In order to do so, we first

give a brief review of the existing BS methods and then compare the performance of

existing BS methods with that of ES A-LASSO techniques proposed in Chapter 3.

Finally, we propose CS-based techniques in BS and compare the performance with

that of CS-based MVDR techniques in ES [132].

5.2 A Brief Review of BS Methods

In this subsection, we give a brief review of the existing BS methods, namely, BS

MVDR [12, 133, 134], BS MUSIC [135, 136], and BS ESPRIT [11, 12, 137, 138].

It should be mentioned that the current BS-based DOA estimation techniques are

developed using the FBS processing scheme.

5.2.1 BS MVDR

The sensor array output is given by (3.1) which is reproduced below

x(t) = As(t) + n(t) (5.1)

As discussed in Section 3.4, MVDR considers the following minimization problem:

min
w

wHRxxw, subject to wHa(✓) = 1 (5.2)

where w is the MVDR beamformer weight vector, Rxx is the covariance matrix and

a(✓) is the sensor array steering vector corresponding to the DOA given by angle ✓.
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The MVDR weight vector w is given by [11, 12]:

wES =
R−1

xxa(✓)

aH(✓)R−1
xxa(✓)

(5.3)

and the MVDR beamformer output is given by [11, 12]

PES =
1

aH(✓)R−1
xxa(✓)

(5.4)

Using the FBS transformation matrix, B, given by Equation (2.25), the sensor array

output is transformed from ES to FBS by the transformation [12, 133, 134]

y(t) = BHx(t) (5.5)

Denoting the FBS steering vector as b(✓) = BHa(✓), the associated beamspace

covariance matrix is given by Ryy = BHRxxB. Hence, the BS MVDR weight vector

is given by [133, 134]

wBS =
R−1

yy b(✓)

bH(✓)R−1
yy b(✓)

(5.6)

and the BS MVDR sensor array output is given by [133, 134]

PBS =
1

aH(✓)BR−1
yy BHa(✓)

(5.7)

5.2.2 BS MUSIC

Given an M -element sensor array output as in Equation (5.1), the ES covariance

matrix, Rxx is given by [12]

Rxx = E[x(t)xH(t)] = ARssA
H + σ2I (5.8)
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where Rss is the signal covariance matrix, E denotes the statistical expectation,

σ2 and I are the noise variance and identity matrix, respectively. The subspace

decomposition of the covariance matrix, Rxx, is [12]

Rxx =
MX

i=1

λieie
H
i = EsΛsE

H
s + EnΛnE

H
n (5.9)

where λ1 · · · ≥ λL ≥ . . . λM are the eigenvalues of Rxx and ei are the corresponding

orthonormal eigenvectors. Es = [e1 . . . eL] is the signal subspace with rank L (the

number of sources) and En = [eL + 1 . . . eM ] is the noise subspace. Λs and Λn are

diagonal matrices, with the corresponding eigenvalues. The MUSIC spectrum is

given as follows [11, 12, 135, 136]

PES−MUSIC =
aH(✓)a(✓)

aH(✓)EnE
H
n a(✓)

(5.10)

where a(✓) is the sensor array steering vector corresponding to the DOA given

by angle ✓. Using the FBS transformation matrix, B, given by Equation (2.25)

and utilizing Equation (5.5), the BS MUSIC spatial spectrum can be described as

[11, 12, 135, 136]

PBS−MUSIC =
aH(✓)BBHa(✓)

aH(✓)BEn,bsE
H
n,bsB

Ha(✓)
(5.11)

where En,bs is the BS noise subspace eigenvector matrix calculated from the SVD of

the BS covariance matrix, Ryy = BHRxxB.

5.2.3 BS ESPRIT

As explained in the previous subsections, one can calculate the BS array output

using Equation (5.5). Following the square-root approach, the signal subspace, Es
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is computed as the L dominant left singular vectors of

[Re(y)Im(y)] with y(t) = BHx(t) (5.12)

where Re and Im correspond to the real and the imaginary parts, respectively. Let

the L singular vectors corresponding to the L largest singular values of (5.12) be

denoted by Es (the signal subspace). Asymptotically, the real-valued matrices Es

and B span the same L-dimensional signal subspace, so there is a nonsingular matrix

TA such that [11]

B = EsTA (5.13)

Then the real-valued invariance equation is [11]

Γ1EsY = Γ2 (5.14)

where Γ1 and Γ2 are the selection matrices [11] and

Y = TAΨT−1
A (5.15)

Ψ being a real-valued diagonal matrix containing the desired DOA information as

Ψ = diag[tan(
µ1

2
), . . . , tan(

µl

2
), . . . , tan(

µL

2
)] (5.16)

In the above equation, µl =
2π
λ
d cos(✓l), d being the inter-element spacing, λ denotes

the wavelength and ✓l is the DOA of the lth source signal. Equation (5.15) is used

to solve for Ψ by using either the least square or trilinear least square. Then the

desired DOA information, namely, the angles ✓l, l = 1, . . . , L are obtained using

Equation (5.16).
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5.3 Performance Comparison of existing Beamspace

techniques with that of Element-space A-LASSO

methods

In this section, we investigate the performance of the existing BS-based techniques

in comparison with that of the ES-based techniques, namely, ES OLS A-LASSO and

ES MVDR A-LASSO proposed in Chapter 3.

For this purpose, we conduct a number of experiments to examine the capa-

bility of the BS MVDR and BS MUSIC algorithms, as well as the ES A-LASSO

algorithms to detect the number of source signals that they are supposed to be able

to identify, theoretically. For that purpose, we consider a ULA containing M ele-

ments. For such a scenario, all the algorithms are supposed to be able to identify

up to Lmax source signals, where Lmax  (M − 1). It should be mentioned that

the number of source signals to be estimated is assumed to be known in advance

in the BS MUSIC and BS ESPRIT DOA estimation techniques, whereas no such

assumption is needed for ES-based A-LASSO techniques. Further, the BS-based

techniques are covariance matrix dependent. Hence, it is not possible to estimate

the covariance matrix correctly, by using a single snapshot. In view of this, in the

BS-based DOA estimation techniques, we consider at least 10 snapshots. However,

only a single snapshot along with only one iteration is employed for the ES OLS

A-LASSO and ES MVDR A-LASSO simulations.

We now evaluate the performance with regard to estimating the DOA using a

ULA with M = 7. Hence, it should be possible to identify up to 6 sources. Let us

assume that there are 6 sources impinging on the array with DOAs being uniformly

distributed over ✓ = [40◦, 140◦]. Let us also assume that the noise is AWGN and

SNR = 0 dB.

Simulations are carried out using ES OLS A-LASSO and ES MVDR A-LASSO,
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as well as the BS MVDR and BS MUSIC DOA estimation techniques to identify

the 6 sources. The results are as shown in Figs. 5.1, 5.2 and 5.3. Fig. 5.1 shows

that all of the 6 source signals are identified correctly using the ES OLS A-LASSO

or ES MVDR A-LASSO technique with only a single snapshot of the received data.

However, even when we use 7 sensors and theoretically the maximum number of

sources that can be identified is 6, neither BS MVDR nor BS MUSIC is able to

clearly identify the source signals using 10 snapshots (Figs. 5.2(a) and 5.3(a)).

BS MVDR is unable to identify properly even when the number of snapshots is

increased to 200 (Fig. 5.2(b)). Also, it is seen from Fig. 5.3(b) that even with

200 snapshots, BS MUSIC is hardly able to identify the 6 source signals. Thus, it

is seen that with a single snapshot, both the ES OLS A-LASSO and ES MVDR

A-LASSO techniques are able to identify the 6 sources properly, while neither BS

MVDR nor BS MUSIC is able to identify the sources with 10 snapshots and require

a large number of snapshots to be able to barely identify all the sources. It should be

noted that increasing the number of snapshots will lead to increased computational

complexity of the DOA estimation algorithms, thus making them unsuitable for

real-time applications.

Since even with 200 snapshots, neither BS MVDR nor BS MUSIC is able to

identify properly all the source signals, we now reduce the number of sources to

only three to see if BS-based methods can correctly identify the sources using a

reasonable number of snapshots.

Fig. 5.4 illustrates the DOA estimation of 3 source signals impinging on the

the 7 element ULA from DOAs of 60◦, 75◦ and 120◦. In this case, we set SNR

to be 0 dB and use 10 snapshots for the BS-based techniques, while only a single

snapshot along with only one iteration is considered for ES OLS A-LASSO as well

as ES MVDR A-LASSO. From this figure, it is clear that all the DOA estimation

techniques are able to identify the three sources correctly. Even though the results
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are shown only for specific case of ✓ = 60◦, 75◦ and 120◦, similar results have been

obtained for various values of SNR and values of ✓, assuming only 3 sources and

keeping the angles to be not very close to one another.

In view of the results obtained by the above experiments, for the remaining

experiments, we assume that there are only 3 signal sources, so that we can utilize

a reasonable number of snapshots for the BS-based methods.
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(a) ES MVDR A-LASSO, single snapshot

(b) ES OLS A-LASSO, single snapshot

Figure 5.1: DOA estimation of 6 sources using a ULA containing 7 elements, single
snapshot, single iteration, SNR = 0 dB, using (a) ES MVDR A-LASSO and (b) ES
OLS A-LASSO.
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(a) BS MVDR, 10 snapshots

(b) BS MVDR, 200 snapshots

Figure 5.2: BS MVDR DOA estimation of 6 sources using a ULA containing 7
elements, SNR = 0 dB, using (a) 10 snapshots and (b) 200 snapshots.
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(a) BS MUSIC, 10 snapshots

(b) BS MUSIC, 200 snapshots

Figure 5.3: BS MUSIC DOA estimation of 6 sources using a ULA containing 7
elements, SNR = 0 dB, using (a) 10 snapshots and (b) 200 snapshots.
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(a) ES MVDR A-LASSO (b) ES OLS A-LASSO

(c) BS MVDR (d) BS MUSIC

Figure 5.4: DOA estimation of 3 sources using a ULA containing 7 elements, SNR
= 0 dB, using (a) ES MVDR A-LASSO, (b) ES OLS A-LASSO, (c) BS MVDR, and
(d) BS MUSIC.
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The purpose of the second experiment is to investigate as to whether the two

BS-based algorithms can identify correlated sources. From Chapter 3, we know that

the ES-based A-LASSO algorithms can in fact identify such correlated sources. For

this experiment, we again assume a ULA of 7 elements, and consider two cases: (a)

three uncorrelated signals impinging on the array from DOAs of 40◦, 60◦ and 160◦,

and (b) three signals impinging from the same angles, but with the first two signals

being fully correlated (coherent). The received signal is assumed to be contaminated

by AWGN with SNR set to 0 dB. A single snapshot with a single iteration is consid-

ered for ES OLS A-LASSO and ES MVDR A-LASSO techniques and 10 snapshots

are employed for BS-based methods. Figs. 5.5(a), 5.6(a), 5.7(a), 5.7(b), 5.8(a) and

5.8(b) show that all the DOA estimation techniques are able to identify the source

signals when they are uncorrelated, even though the BS-based techniques require a

very large number of snapshots.

Even with a number of snapshots as large as 104, when two of the sources

are correlated, Figs. 5.7(c) and (d) and Figs. 5.8(c) and (d) show that neither BS

MVDR nor BS MUSIC is able to detect the coherent sources. In fact, the BS-based

techniques will not be able to identify correlated sources.

However, even with a single snapshot along with just one iteration, both ES

OLS A-LASSO and ES MVDR A-LASSO techniques are able to identify properly

uncorrelated as well as correlated sources.
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(a) ES MVDR A-LASSO, uncorrelated sources

(b) ES MVDR A-LASSO, correlated sources

Figure 5.5: DOA estimation for 3 source signals with DOAs 40◦, 60◦ and 160◦, single
snapshot and single iteration and AWGN with SNR = 0 dB, using ES MVDR A-
LASSO. (a) Uncorrelated sources and (b) two of the sources being correlated.
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(a) ES OLS A-LASSO, uncorrelated sources

(b) ES OLS A-LASSO, correlated sources

Figure 5.6: DOA estimation for 3 source signals with DOAs 40◦, 60◦ and 160◦,
single snapshot and single iteration and AWGN with SNR = 0 dB, using ES OLS
A-LASSO. (a) Uncorrelated sources and (b) two of the sources being correlated.
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(a) BS MVDR, 10 snapshots (b) BS MVDR, 104 snapshots

(c) BS MVDR, 10 snapshots (d) BS MVDR, 104 snapshots

Figure 5.7: DOA estimation for 3 source signals with DOAs 40◦, 60◦ and 160◦, SNR
= 0 dB, using BS MVDR. (a)and (b) uncorrelated sources, (c) and (d) two of the
sources being correlated.
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(a) BS MUSIC, 10 snapshots (b) BS MUSIC, 104 snapshots

(c) BS MUSIC, 10 snapshots (d) BS MUSIC, 104 snapshots

Figure 5.8: DOA estimation for 3 source signals with DOAs 40◦, 60◦ and 160◦, SNR
= 0 dB, using BS MUSIC. (a) and (b) uncorrelated sources, (c) and (d) two of the
sources being correlated.
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In the third experiment, we examine the capability of the proposed techniques

in identifying closely-spaced sources. For this purpose, let three sources impinge

the array form DOAs of 50◦, 60◦, and 170◦. The received signal is assumed to

be contaminated with AWGN with SNR set to 0 dB. Single snapshot with single

iteration is considered for the ES-based DOA estimation techniques and 10 or more

snapshots of the received data are used for BS-based DOA estimation methods. The

simulations results are shown in Figs. 5.9, 5.10 and 5.11. From these figures, three

peaks can easily be identified using ES MVDR A-LASSO and ES OLS A-LASSO,

thus identifying the three sources.

Using 10 snapshots, neither BS MVDR nor BS MUSIC is able to identify the

two closely-spaced sources, and these two source signals are identified as a single

one. Furthermore, even with number of snapshots as large as 106, BS MVDR is not

able to identify the two closely-spaced sources.

Even with 7 ⇥ 102 snapshots, BS MUSIC is hardly able to discriminate the

sources. On the other hand, as mentioned earlier, increasing the number of snap-

shots will lead to increased computational load, and consequently, these BS-based

estimation techniques will not be suitable for real-time application.
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(a) ES MVDR A-LASSO

(b) ES OLS A-LASSO

Figure 5.9: DOA estimation for 3 source signals with DOAs 50◦, 60◦ and 170◦,
uncorrelated sources, single snapshot, single iteration and AWGN with SNR = 0
dB, using (a) ES MVDR A-LASSO and (b) ES OLS A-LASSO.
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(a) BS MVDR, 10 snapshots

(b) BS MVDR, 106 snapshots

Figure 5.10: DOA estimation for 3 source signals with DOAs 50◦, 60◦ and 170◦, SNR
= 0 dB, using BS MVDR.
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(a) BS MUSIC, 10 snapshots

(b) BS MUSIC, 7⇥ 102 snapshots

Figure 5.11: DOA estimation for 3 source signals with DOAs 50◦, 60◦ and 170◦, SNR
= 0 dB, using BS MUSIC.
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In the final experiment, we investigate the performance of the BS MVDR, BS

MUSIC, BS ESPRIT, ES OLS A-LASSO and ES MVDR A-LASSO as we vary SNR

by using RMSE as the performance measure, where RMSE is given by [139]

RMSE =
1

L

LX

l=1

vuut 1

Nsim

NsimX

n=1

(b✓l,n − ✓l)2 (5.17)

b✓l,n being the estimate of the DOA angle ✓l of the n-th Monte Carlo trial.

For this purpose, let three non-fluctuating source signals impinge on the array

from DOA of 60◦, 75◦ and 120◦. For BS MVDR, BS MUSIC as well as BS ESPRIT,

10 snapshots are considered. A single snapshot with a single iteration is considered

for ES MVDR A-LASSO and ES OLS A-LASSO techniques.

The performance of the various algorithms as SNR is varied is shown in Fig.

5.12. It is observed from the figure that, even with a single snapshot along with

only one iteration, the performance of the ES-based DOA estimation techniques,

namely, ES OLS A-LASSO and ES MVDR A-LASSO, is superior to that of any of

the BS-based methods irrespective of SNR. Further, it is noted that the performance

of ES MVDR A-LASSO is superior to that of the ES OLS A-LASSO. Similar results

have been obtained for other values of DOA angle ✓.

Based on the results of the previous experiments, it is very clear that neither

BS MVDR nor BS MUSIC is able to detect (M − 1) source signals even though

they are theoretically supposed to be able to do so, unless a very large number of

snapshots is employed. Furthermore, in order to estimate the closely-spaced source

signals, they again require a large number of snapshots to be used, which means a

tremendous increase in the computational load. Moreover, neither one of them is

able to discriminate coherent sources. On the other hand, even with a single snapshot

and with only one iteration, both of the ES-based DOA estimation techniques,

namely, ES OLS A-LASSO and ES MVDR A-LASSO, are able to detect all the
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(M − 1) source signals, identify closely-spaced source signals as well as coherent

sources. Finally, the performance of the ES-based A-LASSO techniques is way

superior to that of the BS-based methods in terms of the RMSE irrespective of

SNR.

Figure 5.12: Performance comparison of the different algorithms as SNR is varied
using BS MVDR, BS MUSIC, BS ESPRIT, ES OLS A-LASSO (single iteration)
and ES MVDR A-LASSO (single iteration).

Thus, it is clear that the ES-based DOA estimation techniques proposed in

Chapter 3 are superior to that of the existing BS-based DOA estimation methods.

This motivate us to extend compressive sensing to beamspace and propose new

BS-based CS DOA estimation techniques. For this purpose, we first present a new

BS-processor for which more than one sector of interest is covered at the same time.

Then we extend the work presented in Chapter 3 using the ES A-LASSO DOA

estimation technique to produce a new BS-based one which we shall refer as BS

A-LASSO.
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5.4 Beamspace Compressive Sensing DOA Estima-

tion

In contrast to the ES processing, where the signals derived from each sensor are

weighted and summed to produce the array output, the BS processing is a two-stage

scheme where the first stage takes the sensor array signals as input and produces

a set of multiple outputs, which are then weighted and combined to produce the

BS sensor array multiple beams. The processing done at the first stage is by fixed

weighting of the array signals and amounts to producing multiple beams steered in

different directions. The weighted sum of these beams is utilized to obtain the array

output and the weights applied to the different beam outputs are then optimized to

meet a specific optimization criterion. In general, for an M -element array, a FBS

processor consists of a main beam steered in the signal direction and a set of not

more than M − 1 secondary beams.

5.4.1 Multiple-Beam Beamspace

It is possible to combine together multiple beams so that multiple sectors could be

scanned. Assuming that it is required to provide Q fan beams and each fan beam

contains Nbs,q, q = 1, . . . , Q beams, multiple beams could be produced using the

output of the reduced-dimensional BS, described in Section 2.4.2, where for each

sector of interest, Nbs,q and ✓c,q must be determined a priori. Then the reduced-

dimensional BS matrices, bH
bs,q, q = 1, . . . , Q, are combined together to compute the

final BS transformation matrix, BH
bs, as follows

⇥
BH

bs

⇤
=
⇥
bH
bs,1 . . .b

H
bs,q . . .b

H
bs,Q

⇤
(5.18)
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Fig. 5.13 shows an example for a multiple fan beam where Q = 2 and each fan

consists of Nbs,1 = Nbs,2 = 3 beams using an array for which M = 31.

It should be noted that the columns of the BS matrix are not orthogonal.

To guarantee the orthogonality of the BS matrix columns, so that a source signal

impinging on a beam does not corrupt the output of the other beams, the following

step must be added. Let the original BS matrix to be Bno where no stands for "not

orthogonal", then the final BS matrix, Bbs, for which the columns are orthogonal,

is given by [12]

Bbs = Bno

⇥
BH

noBno

⇤− 1
2 (5.19)

so that, BH
bsBbs = I holds.

5.4.2 Beamspace A-LASSO

The BS matrix given by Equation (5.19) is used to transfer the ES array output,

y, and the ES over-complete sensing matrix, Φ, into BS output, ybs, and BS over-

complete sensing matrix, Φbs, respectively, as follows

ybs 2 R
Nbs⇥1 = BH

bsy, Φbs 2 R
Nbs⇥N = BH

bsΦ (5.20)

Thus, the matrix Bbs is used to transfer the DOA estimation problem from ES to

BS. Since the transformation matrix, Bbs, is left Π-real, the resultant ybs given by

(5.20) is real [11]. Thus, the BS processing consists of two steps, projecting the

received high dimensional complex ES sensor array data into lower dimension real

data in BS and then processing this real lower-dimensional BS data, thus reducing

the computational load of the processing scheme.

We now propose a new BS-based CS DOA estimation technique, namely, BS
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(a) u-space (b) θ-space

(c) u-space (d) θ-space

Figure 5.13: Beam pattern, multiple beam, M = 31, Nbs,1 = Nbs,2 = 3, (a) ✓c1 =
60◦, ✓c2 = 90◦ and (b) ✓c1 = 50◦, ✓c2 = 130◦.
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A-LASSO. Given the BS output of the sensor array, which can be written as

ybs(t) = Φbss̄(t) + n(t) (5.21)

the BS A-LASSO consists of solving

ˆ̄s(k) = min
s̄

kybs − Φbss̄k22 + ⌧k

NX

n=1

ŵn|s̄n| (5.22)

where two different initial weights could be used in the first iteration (k = 1). The

initial weights utilized for the first iteration of the BS A-LASSO could be OLS or

MVDR and the corresponding algorithm is refereed to as BS OLS A-LASSO and

BS MVDR A-LASSO, respectively. The LARS algorithm [91] is utilized to solve the

above BS A-LASSO and the details are given in Algorithm 5.1.
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Algorithm 5.1 The BS A-LASSO technique.

1: Initialization
Let the initial estimate for s̄ be ŝ.
Find ŵ, where the n-th element of ŵ, ŵn, is given by ŵn = 1/ |ŝn|γ , n =
1, . . . , N .
Define Φ⇤ 2 C

M⇥N matrix, such that its (m̄, n)-th element is given by φm̄n/ŵn,
where m̄ = 1, . . . ,M and n = 1, . . . , N .

2: BS transformation matrix
Select the number of the fan beams to be as that of the estimated sources, that
is, Q = L.
Chose the number of beams in each fan beam, Nbs,q, q = 1, . . . , Q.

For each one of the fan beams, set ✓c,q(k) = ✓̂l(k − 1), q = 1, . . . , Q, l =
1, . . . , L.
Compute the BS transformation matrix, Bbs.

3: BS transformation

Φ0 = BH
bsΦ

⇤ (Φ0 2 R
Nbs⇥N) (5.23a)

ybs = BH
bsy (ybs 2 R

Nbs⇥1) (5.23b)

4: for k = 1, 2, . . . , K iterations do

Solve the LASSO problem as:

ŝ⇤ = min
s

kybs − Φ0s̄k22 + ⌧k ks̄k1

Calculate ŝ(k) = ŝ⇤n/ŵn, n = 1, 2, . . . , N .

5: end for

6: Estimate the DOA angles ✓̂l, l = 1, . . . , L.
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5.5 Simulation Results

In this section, first, we investigate the performance of the BS MVDR A-LASSO

techniques, namely, FBS MVDR A-LASSO and MBS MVDR A-LASSO. For this

purpose, we conduct a number of experiments to examine the capability of these

techniques to detect the number of source signals that they are supposed to be

able to identify using a single snapshot along with a single iteration. Moreover, we

examine the capability of the techniques to detect uncorrelated as well as correlated

sources and spatially-close source signals.

Next, we investigate the performance of the BS MVDR A-LASSO techniques,

namely, FBS MVDR A-LASSO and MBS MVDR A-LASSO in comparison with

that of the ES MVDR A-LASSO technique.

5.5.1 Investigation of BS MVDR A-LASSO Techniques

In this section, we investigate the performance of the proposed BS-based techniques,

namely, FBS MVDR A-LASSO and MBS MVDR A-LASSO, with regard to identi-

fying the maximum number of sources for an antenna array of M elements as well

as there ability to estimate the DOA of closely-spaced sources as well as coherent

sources. Only a single snapshot along with only one iteration is considered for the

BS MVDR A-LASSO simulations.

Using a ULA containing M elements, one can produce M orthogonal beams,

as explained in Section 2.4.1. Let us consider a 7 element ULA; then, 7 orthogonal

beams are generated using Equation (2.25) for FBS MVDR A-LASSO simulations.

Also, for MBS MVDR A-LASSO simulations, a single beam (Nbs = 1) is assigned

for each one of the sources to be identified, as explained in Section 5.4.1. The

sampling grid ✓̄n 2 [1◦ : 180◦] that covers Ψ is chosen to be in steps of 1◦. All the

simulated source signals are modeled as ej2πfdt where fd is the Doppler frequency.
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The total number of trials, Nsim, is set to 100 for each observation point. For each

experiment, the regularization parameter, ⌧ , is selected based on the idea of the

L-Curve [101, 102] and following the same procedure given in Section 3.5.

In the first experiment, we investigate the capabilities of the proposed BS

algorithm in detecting the number of source signals that it is supposed to identify,

theoretically. For that purpose, assume a ULA containing 7 elements. For such a

scenario, theoretically, one should be able to identify up to 6 source signals, that is,

Lmax  (M − 1). Let 6 stationary equi-power source signals impinge the array from

uniformly distributed DOAs over ✓ = [40◦, 140◦]. SNR is set to 0 dB and the noise

is AWGN.

Simulations are carried out using the FBS MVDR A-LASSO as well as MBS

MVDR A-LASSO techniques to identify the 6 sources. The results are as shown in

Fig. 5.14. It is seen from this figure that all of the 6 source signals are identified

correctly using either FBS MVDR A-LASSO or MBS MVDR A-LASSO technique

employing only a single snapshot of the received data.
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(a) FBS MVDR A-LASSO, single snapshot

(b) MBS MVDR A-LASSO, single snapshot

Figure 5.14: DOA estimation of 6 sources using a ULA containing 7 elements, single
snapshot, single iteration, SNR = 0 dB, using (a) FBS MVDR A-LASSO and (b)
MBS MVDR A-LASSO.

In the second experiment, we consider two cases: (a) three uncorrelated sig-

nals impinging on the array from DOAs of 40◦, 60◦ and 160◦, and (b) three signals
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impinging from the same angles, but with the first two signals being fully correlated

(coherent). The received signal is assumed to be contaminated by AWGN with SNR

set to 0 dB. It is seen from Fig. 5.5 shows that both of the BS MVDR A-LASSO

DOA estimation techniques are able to identify the source signals when they are

uncorrelated as well as correlated.

(a) FBS MVDR A-LASSO, single snapshot,

non-coherent

(b) FBS MVDR A-LASSO, single snapshot,

coherent

(c) MBS MVDR A-LASSO, single snapshot,

non-coherent

(d) MBS MVDR A-LASSO, single snapshot,

coherent

Figure 5.15: DOA estimation for 3 source signals with DOAs 40◦, 60◦ and 160◦,
uncorrelated sources, single snapshots, single iteration and AWGN with SNR = 0
dB, using (a, b) FBS MVDR A-LASSO and (c ,d) MBS MVDR A-LASSO. (a, c)
Uncorrelated sources and (b, d) correlated sources.

In the third experiment, we examine the capability of the proposed techniques

in identifying closely-spaced sources. For this purpose, let three sources impinge
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the array form DOAs of 50◦, 60◦, and 170◦. The received signal is assumed to be

contaminated with AWGN with SNR set to 0 dB.

The simulations results are shown in Fig. 5.16. Three peaks can easily be

identified in this figure using either FBS MVDR A-LASSO or MBS MVDR A-

LASSO, thus identifying the three sources.

It should be mentioned that the same results would be obtained using either

FBS OLS A-LASSO or MBS OLS A-LASSO. However, based on the results of Chap-

ter 3 and Section 5.3, it is clear that the performance of the A-LASSO technique,

for which MVDR is employed as the initial weight, is superior to that of the OLS

one. Hence, BS OLS A-LASSO will not be considered further, and the performance

of only BS MVDR A-LASSO will be studied in detail in comparison with that of

ES MVDR A-LASSO.
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(a) FBS MVDR A-LASSO, single snapshot

(b) MBS MVDR A-LASSO, single snapshot

Figure 5.16: DOA estimation for 3 source signals with DOAs 50◦, 60◦ and 170◦,
uncorrelated sources, single snapshots, single iteration and AWGN with SNR = 0
dB, using (a) FBS MVDR A-LASSO and (b) MBS MVDR A-LASSO.
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5.5.2 Comparison of the BS MVDR A-LASSO techniques

with that of ES MVDR A-LASSO

Consider a sparse linear two-level nested array, for which M is odd, consisting of

M = 7 elements, three of whose elements are in the first level and four in the

second level. Investigating the array output by applying Equations (3.1) to (3.3) and

extracting the equivalent distinct virtual elements from the virtual array manifold

(A⇤*A), one can see that the virtual ULA contains M̄ = 31 elements. The sampling

grid ✓̄n 2 [1◦ : 180◦] that covers Ω is chosen to be in steps of 1◦ and d = λ/2, where

λ is the wavelength of the propagating waves.

The power of the simulated fluctuating source signals is assumed to follow the

Chi-squared distribution as given in Section 2.2 and the sources are assumed to be

uncorrelated either with one another or with the noise. All the four different Swerling

source signal models (see Table 2.1) are considered for the following experiments.

For Swerling source of type I as well as type III, each scan is assumed to contain 10

snapshots.

Using a ULA containing M elements, M orthogonal beams can be generated

using FBS processing, as explained in Section 2.4.1. That is, using a virtual ULA

containing 31 elements, 31 orthogonal beams are generated for FBS MVDR A-

LASSO simulations. On the other hand, in MBS MVDR A-LASSO simulations,

a fan beam containing 3 orthogonal beams (Nbs = 3) is assigned for each one of

the sources to be identified and tracked, following Equation (5.18), given in Section

5.4.1.

In the first experiment, we examine the performance of the BS MVDR A-

LASSO DOA estimation techniques, namely, FBS MVDR A-LASSO and MBS

MVDR A-LASSO using RMSE, given by Equation (5.17), as the performance mea-

sure, as we vary SNR using non-fluctuating as well as fluctuating sources. Let two

equi-power or fluctuating source signals impinge the sensor array from fixed DOAs
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of 60◦ and 120◦. Let SNR vary from −5 to 10 dB in 1 dB steps and let the number

of snapshots used be 10 and 50. These numbers correspond respectively to 1 and 5

scans for Swerling source types I and III.

Simulations are carried out using the proposed BS-based techniques, namely,

FBS MVDR A-LASSO and MBS MVDR A-LASSO as well as ES MVDR A-LASSO

to identify the sources. The performance of the BS MVDR A-LASSO DOA esti-

mation techniques are as shown in Figs. 5.17, 5.18 and 5.19. From these figures,

it is clear that increasing the number of snapshots to 50 from 10 reduces the DOA

estimation error by at least 40% for both fluctuating and non-fluctuating signals

using the different techniques. Furthermore, it can be seen from Fig. 5.17 that for

non-fluctuating sources, the performance of MBS MVDR A-LASSO is superior to

that of ES MVDR A-LASSO as well as that of FBS MVDR A-LASSO irrespective

of the value of SNR, whether 10 or 50 snapshots are used. Also, as expected, RMSE

for non-fluctuating sources, whether ES, FBS or MBS MVDR A-LASSO is used, is

lower than that for fluctuating sources irrespective of the number of snapshots used

for all values of SNR. Moreover, RMSE for all the types of sources can be reduced

substantially by increasing the number of snapshots. In such a case, MBS will yield

the lowest error.
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(a) NF Sources, 10 and 50 snapshots

(b) Type I Sources, 10 and 50 snapshots

Figure 5.17: Performance of the various CS-based DOA estimation techniques as
SNR is varied, for two source signals at DOAs 60◦ and 120◦ using 10 and 50 snap-
shots. (a) NF sources and (b) Type I sources.
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(a) Type II Sources, 10 and 50 snapshots

(b) Type III Sources, 10 and 50 snapshots

Figure 5.18: Performance of the various CS-based DOA estimation techniques as
SNR is varied, for two fluctuating source signals at DOAs 60◦ and 120◦ using 10 and
50 snapshots. (a) Type II sources and (b) Type III sources.
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(a) Type IV Sources, 10 and 50 snapshots

Figure 5.19: Performance of the various CS-based DOA estimation techniques as
SNR is varied, for two fluctuating source signals at DOAs 60◦ and 120◦ using 10 and
50 snapshots. (a) Type IV sources.

In the second experiment, we investigate the effect of varying the angular

separation between the Swerling source signals. Consider two fluctuating source

signals, the first one with a fixed DOA of 60◦ while the DOA of the second ranges

from 65◦ to 110◦ in steps of 5◦. The SNR is set 0 dB, 10 snapshots are considered

for the simulation and 100 trials for each observation point.

Fig. 5.20 illustrates RMSE versus the angular separation for the different

Swerling sources. Results for RMSE for non-fluctuating source signals is also in-

cluded for reference. The same number of snapshots is used for the non-fluctuating

sources as for the fluctuating sources. It is noted that for angular separation of 5◦

or less the two source signals cannot be identified as separate signals. Hence, the

results are presented starting with a 10◦ separation.

From this figure, it is seen that the DOA estimation error for non-fluctuating
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sources is the lowest. Further, the error for Swerling sources of types II and IV is

lower than that for types I and III for an angular separation ≥ 20◦ using FBS MVDR

A-LASSO and MBS MVDR A-LASSO. This error could be reduced by increasing

the number of snapshots (see previous experiment).

(a) FBS MVDR A-LASSO

(b) MBS MVDR A-LASSO

Figure 5.20: DOA estimation error for two sources as a function of separation be-
tween the DOAs of the sources, SNR = 0 dB, 10 snapshots using (a) FBS MVDR
A-LASSO and (b) MBS MVDR A-LASSO
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In the third experiment, we investigate the POD of the different source signals

using FBS and MBS based MVDR A-LASSO DOA estimation techniques. For this

purpose, let two source signals of the same type impinge the sensor array from fixed

DOAs of 60◦ and 120◦, with varying SNR. The POD for non-fluctuating as well as

fluctuating source signals, for different values of snapshots, are as shown in Figs.

5.21 and 5.22. It is seen from these figures that the POD corresponding to the

non-fluctuating sources as well as to the Swerling signal types II and IV are greater

than 0.99 with only 10 snapshots, while a larger number of snapshots are required

for Swerling source types I and III in order to achieve an acceptable POD similar to

that of types II and IV, using FBS and MBS-based DOA estimation techniques. It

is noted that these results are similar to what we had obtained in Section 3.7 using

the ES-based MVDR A-LASSO technique.
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(a) FBS, 10 snapshots

(b) FBS, ≥ 10 snapshots

Figure 5.21: Probability of detection of different Swerling source signals, two source
signals with DOA of 60◦ and 120◦, using FBS algorithm.
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(a) MBS, 10 snapshots

(b) MBS, ≥ 10 snapshots

Figure 5.22: Probability of detection of different Swerling source signals, two source
signals with DOA of 60◦ and 120◦, using MBS algorithm.
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In the fourth experiment, we investigate the capability of the proposed BS-

based techniques to detect and track non-fluctuating as well as fluctuating source

signals. The same three scenarios assumed in Section 3.7 are used in this simulation

and the following experiments. The SNR is set to 10 dB, the number of snapshots

was chosen to 10 for the sources of types II and IV, while for types I and III the num-

ber of snapshots is set to 100. Fig. 5.23 illustrates the ideal trajectories considered

for the simulations.

Figures from 5.24 to 5.33 illustrate the estimated trajectories for the two source

signals using either FBS MVDR A-LASSO or MBS MVDR A-LASSO when non-

fluctuating as well as fluctuating sources are required to be tracked. From these

figures, it can be seen that the FBS and MBS-based MVDR A-LASSO DOA esti-

mation techniques are able to detect and track the sources.
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(a) In phase

(b) Opp-phase

(c) Fixed vs moving

Figure 5.23: The proposed ideal source signals trajectories where in the sources DOA
are following (a) the same direction, (b) opposite directions, and (c) one source DOA
is being fixed while the other is changing.
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(a) In phase

(b) Opp-phase

(c) Fixed vs moving

Figure 5.24: Trajectories of two source signals using FBS MVDR A-LASSO DOA
estimation technique, 10 snapshots, SNR = 10 dB, non-fluctuating sources.
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(a) In phase

(b) Opp-phase

(c) Fixed vs moving

Figure 5.25: Trajectories of two source signals using FBS MVDR A-LASSO DOA
estimation technique, 100 snapshots, SNR = 10 dB, type I fluctuating sources.
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(a) In phase

(b) Opp-phase

(c) Fixed vs moving

Figure 5.26: Trajectories of two source signals using FBS MVDR A-LASSO DOA
estimation technique, 10 snapshots, SNR = 10 dB, type II fluctuating sources.
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(a) In phase

(b) Opp-phase

(c) Fixed vs moving

Figure 5.27: Trajectories of two source signals using FBS MVDR A-LASSO DOA
estimation technique, 100 snapshots, SNR = 10 dB, type III fluctuating sources.
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(a) In phase

(b) Opp-phase

(c) Fixed vs moving

Figure 5.28: Trajectories of two source signals using FBS MVDR A-LASSO DOA
estimation technique, 10 snapshots, SNR = 10 dB, type IV fluctuating sources.
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(a) In phase

(b) Opp-phase

(c) Fixed vs moving

Figure 5.29: Trajectories of two source signals using MBS MVDR A-LASSO DOA
estimation technique, 10 snapshots, SNR = 10 dB, non-fluctuating sources.
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(a) In phase

(b) Opp-phase

(c) Fixed vs moving

Figure 5.30: Trajectories of two source signals using MBS MVDR A-LASSO DOA
estimation technique, 100 snapshots, SNR = 10 dB, type I fluctuating sources.
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(a) In phase

(b) Opp-phase

(c) Fixed vs moving

Figure 5.31: Trajectories of two source signals using MBS MVDR A-LASSO DOA
estimation technique, 10 snapshots, SNR = 10 dB, type II fluctuating sources.
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(a) In phase

(b) Opp-phase

(c) Fixed vs moving

Figure 5.32: Trajectories of two source signals using MBS MVDR A-LASSO DOA
estimation technique, 100 snapshots, SNR = 10 dB, type III fluctuating sources.
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(a) In phase

(b) Opp-phase

(c) Fixed vs moving

Figure 5.33: Trajectories of two source signals using MBS MVDR A-LASSO DOA
estimation technique, 10 snapshots, SNR = 10 dB, type IV fluctuating sources.
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In the fifth experiment, we investigate the capability of the proposed BS-based

techniques to detect and track non-fluctuating source signals when their trajectories

intersect with one anther. For this purpose we assume three different cases. In the

first case, we assume that the DOA of one of the sources is fixed, while that of the

second is changing. In the second case, we assume that the DOA of both the sources

are changing. In the last case, we assume that there are three source of interest, two

of them with changing DOA, while the DOA of the third is fixed. The trajectories

of these three different cases are as shown in Fig. 5.34. The SNR is set to 10 dB

and the number of snapshots is set to 10.

The simulations are conducted using both FBS MVDR A-LASSO and MBS

MVDR A-LASSO techniques and the results are as shown in Fig. 5.35. From

this figure it is clear that both of the proposed techniques are able to track the

sources even when their trajectories intersect. Furthermore, it can be seen that

the MBS MVDR A-LASSO technique is able to discriminate closely-spaced sources

(Fig. 5.35(f)) better than FBS MVDR A-LASSO technique (Fig. 5.35(e)) can.
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(a)

(b)

(c)

Figure 5.34: The proposed ideal source signals special trajectories with intersected
paths.
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(a) FBS (b) MBS

(c) FBS (d) MBS

(e) FBS (f) MBS

Figure 5.35: The estimated source signals special trajectories with intersected paths
using FBS MVDR A-LASSO and MBS MVDR A-LASSO.
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In the sixth experiment, we investigate the computational complexity of the

ES, FBS, and MBS MVDR A-LASSO DOA estimation techniques. The CPU time

is used as the measuring tool for the computational complexity. The PC used has

Intel Core i5 CPU M 430, 2.27GHz and 3GB of RAM memory. In order to calculate

the CPU time corresponding to each one of the proposed techniques, we average the

run times of the experiments corresponding to Figs. 3.26 to 3.30 in Section 3.7 for

ES MVDR A-LASSO and the run times of the experiments corresponding to Figs.

5.24 to 5.33 in this section for FBS and MBS MVDR A-LASSO.

Fig. 5.36 illustrates the CPU time for ES, FBS, and MBS MVDR A-LASSO

DOA estimation techniques. It can be seen that the BS-based DOA estimation

techniques computational time is less than that of the ES-based technique by almost

35%. Furthermore, it can be seen that MBS MVDR A-LASSO has the lowest

computational time.

Figure 5.36: CPU time as a measure for the computational complexity of the pro-
posed MVDR A-LASSO-based DOA estimation techniques.
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5.6 Summary

It has been shown that the ES-based A-LASSO techniques are superior to that of the

existing BS-based technique. Even with a single snapshot and a single iteration, the

ES-based A-LASSO techniques have been shown to be able to identify the number

of sources that they are supposed to identify, theoretically. Further, they are able to

identify coherent source signals as well as closely-spaced sources. Moreover, in terms

of RMSE, the ES-based A-LASSO techniques are superior to the existing BS-based

DOA estimation methods.

Then, we developed a new BS processing scheme, namely, multiple-beam

beamspace (MBS), based on the reduced-dimension BS method. The new scheme

is able to scan multiple sectors of interest at the same time. Furthermore, we

utilized the MBS processing scheme to transfer the ES-based CS DOA estimation

problem into a BS-based one. We have proposed two new BS-based DOA estima-

tion techniques in the CS framework, namely, full beamspace (FBS) A-LASSO and

multiple-beam beamspace (MBS) A-LASSO.

Even with only a single snapshot and a single iteration, the proposed BS-based

A-LASSO techniques have been shown to be able to identify the number of sources

that they are supposed to identify, theoretically, as well as correlated sources and

closely-spaced source signals.

Using non-fluctuating as well as fluctuating source signals, we have intensively

examined the performance of the BS-based A-LASSO techniques. It has been shown

that RMSE for non-fluctuating sources is the lowest irrespective of the number of

snapshots employed and the estimation techniques used. Furthermore, It has been

shown that Swerling source types I and III need more number of snapshots than

that for non-fluctuating and Swerling II and IV, in order to achieve an acceptable

POD.
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Different scenarios for moving non-fluctuating and fluctuating source trajecto-

ries have been assumed and the BS-based techniques have been shown to be able to

identify and track such moving sources. Moreover, different trajectories intersection

scenarios are examined.

Finally, in terms of the CPU time, it has been shown that the BS-based A-

LASSO techniques are superior to that of the ES-based one. Furthermore, MBS

A-LASSO is superior to that of ES A-LASSO and FBS A-LASSO.
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Chapter 6

Implementation of the Proposed

DOA Estimation Schemes

6.1 Introduction

In this chapter, we conduct experiment using the Raspberry Pi board to study the

feasibility of real-time implementation of various DOA estimation schemes proposed

in this thesis.

6.2 Description of Raspberry Pi Board

Raspberry Pi is a tiny, low-cost, single-board computer that supports embedded

Linux operating systems, such as Raspbian. This board contains a Broadcom

system-on-a-chip (SoC), which includes an ARM processor, on board RAM, a Video-

Core IV GPU, and general input/output ports. We carry out experiments with

Raspberry Pi 2 Model B which is the second generation Raspberry Pi, and the

specifications of this board are given in Table 6.1. Programming languages such as

Python, C, C++, Java, Scratch, and Ruby are by default installed. The cost of this

board is less than US $35, and is very popular in view of its features. It has been
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Table 6.1: Raspberry Pi 2 Model B specification

Specs Raspberry Pi 2 Model B

SoC Broadcom BCM2836 (CPU, GPU, DSP, SDRAM)

CPU 900 MHz quad-core ARM Cortex A7 (ARMv7 instruction set)

GPU Broadcom VideoCore IV @ 250 MHz

GPU info OpenGL ES 2.0 (24 GFLOPS); 1080p30 MPEG-2 and licensed VC-1 decoder

1080p30 h.264/MPEG-4 AVC high-profile decoder and encoder

Memory 1 GB (shared with GPU)

USB ports 4

Video input 15-pin MIPI camera interface (CSI) connector

Video outputs HDMI, composite video (PAL and NTSC) via 3.5 mm jack

Audio input Inter-IC Sound (I2S)

Audio outputs Analog via 3.5 mm jack; digital via HDMI and I2S

Storage MicroSD

Network 10/100Mbps Ethernet

Peripherals 17 GPIO plus specific functions, and HAT ID bus

Power rating 800 mA (4.0 W)

Power source 5 V via MicroUSB or GPIO header

Size 85.60mm ⇥ 56.5mm

Weight 45g (1.6 oz)

used in a wide range of areas, including radiology [140] and robotics [141].

Because of its popularity, a support package has been introduced for Matlab

versions. Using this package, we can remotely communicate with the board and use

it to control, acquire, and collect data from sensors and imaging devices connected

to the board. With the help of add-on Matlab signal processing toolboxes such as

DSP System, Image Processing, and Computer Vision System toolboxes, one can

collect, process, analyze, and visualize the data under test. Figure 6.1 illustrates
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6.3 Experimental Results

In this section, we test the proposed techniques for real-time processing in the

Raspberry Pi board described in the previous section. For this reason, the DOA

techniques proposed in this thesis, namely, ES MVDR A-LASSO, FBS MVDR A-

LASSO, and MVDR MBS A-LASSO are transfered into Simulink models in order to

be compatible with the test board. Due to the absence of real data, simulated data

has been generated. A sparse two-level nested array consisting of M = 7 elements,

three elements of which are at the first level and the remaining at the second level,

is considered for all the experiments. The sampling grid ✓̄ 2 [1◦ : 180◦] that covers Ω

is chosen to be in steps of 1◦ and the inter-element spacing is set to λ/2, where λ is

the wavelength of the propagating waves. For each of the experiments, 10 snapshots

are employed and SNR set to 0 dB.

In the first experiment, we examine the capability of the ES, FBS, and MBS

MVDR A-LASSO to detect two non-fluctuating stationary sources. For this pur-

pose, we consider two non-fluctuating fixed source signals impinging on the two-level

nested array from DOAs of 60◦ and 120◦. The noise is assumed to be AWGN. Af-

ter generating the received signals, the DOAs are estimated by implementing the

ES, FBS, and MBS MVDR A-LASSO DOA estimation technique remotely on the

Raspberry Pi board. Fig. 6.3 illustrates the results of running the experiment on

the board. From this figure, it is seen that the DOAs of the two source signals are

estimated to be at 60◦ and 120◦.
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(a) ES

(b) FBS

(c) MBS

Figure 6.3: Simulink-based DOA estimation for two source signals at 60◦ and 120◦,
10 snapshots, SNR = 0 dB, External Mode, using MVDR A-LASSO (a) ES, (b)
FBS, and (c) MBS.
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In the second experiment, we investigate the capability of the proposed tech-

niques to detect and track non-fluctuating source signals. The same three scenarios

assumed in Section 3.7 are used in this experiment. The experiment is conducted

on the board using ES, FBS, and MBS MVDR A-LASSO estimation techniques

and the results are as shown in Figs. 6.4, 6.5 and 6.6. Furthermore, the execution

times for the implementation of the three techniques given in Table 6.2. In order to

calculate the execution time corresponding to each one of the proposed techniques,

we average the run times of the experiments corresponding to Figs. 6.4, 6.5 and 6.6.

As expected, the execution times for the BS-based techniques are lower than that

for the ES-based technique, thus confirming the simulation results in Section 5.5.2.

Moreover, the execution time of the MBS MVDR A-LASSO is the lowest.

Table 6.2: CS-based DOA estimation execution time (seconds).

Type 900 GHz Clock

ES MVDR A-LASSO 0.040

FBS MVDR A-LASSO 0.028

MBS MVDR A-LASSO 0.026

It can be concluded from the execution times given in Table 6.2 that real-time

implementation of the proposed DOA estimation techniques indeed feasible.
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(a) In phase

(b) Opp-phase

(c) Fixed vs moving

Figure 6.4: Simulink-based DOA estimation for non-fluctuating source signals, SNR
= 0 dB, External Mode, using ES MVDR A-LASSO.
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(a) In phase

(b) Opp-phase

(c) Fixed vs moving

Figure 6.5: Simulink-based DOA estimation for non-fluctuating source signals, SNR
= 0 dB, External Mode, using FBS MVDR A-LASSO.
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(a) In phase

(b) Opp-phase

(c) Fixed vs moving

Figure 6.6: Simulink-based DOA estimation for non-fluctuating source signals, SNR
= 0 dB, External Mode, using MBS MVDR A-LASSO.
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6.4 Summary

In this chapter, using the Raspberry Pi board, it has been shown that all the DOA

estimation techniques proposed in this thesis are feasible for real-time implementa-

tion. It can be expected that the execution time can be further reduced by reduced

by realizing these techniques on a DSP board or through a custom VLSI implemen-

tation.
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Chapter 7

Conclusions and Future Work

7.1 Conclusions

In this dissertation, techniques for estimation of the direction of arrival (DOA)

in a compressive sensing (CS) framework have been presented for various types of

source signals including fluctuating and moving sources. Three techniques have been

proposed, one in the element-space, and the other two in the beamspace (BS). All

these techniques have been shown to be capable of handling both non-fluctuating

and fluctuating source signals as well as moving signals. They can also track moving

source signals even when their trajectories intersect. Utilizing the concept of virtual

arrays, all the proposed techniques are able to detect the number of source signals of

the order O(M2), using a sparse linear array for which the number of sensors used

is of order O(M). Further, these techniques do not require an a priori knowledge

of the number of sources to be estimated.

In element-space, an adaptable version of LASSO (A-LASSO) algorithm for

the DOA estimation problem has been presented. It has been shown through a

number of simulations that the proposed algorithm outperforms the classical DOA
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estimation techniques as well as LASSO. The proposed algorithm is capable of per-

forming DOA estimation using a small number of snapshots and is also capable of

estimating correlated source signals as well as spatially-close sources. Further, a

modified version of this algorithm has also been developed to take care of sources in

unknown noise fields.

In beamspace, two techniques, one based on full beamspace (FBS) and the

other on multiple beam beamspace (MBS) that has been obtained from reduced-

dimension beamspace, have been developed. Just as the A-LASSO technique in

element-space, these techniques are also capable of estimating correlated source sig-

nals as well as spatially-close sources using a small number of snapshots. Moreover,

it has been shown that the performance of the two beamspace-based DOA estima-

tion techniques is superior to that of the proposed element-space based technique,

which already outperforms the existing beamspace-based DOA techniques. Further,

the proposed beamspace-based techniques can handle both non-fluctuating and fluc-

tuating signals as well as track moving signals.

All the techniques proposed in this thesis have been shown to be able to

handle not only moving sources but even when their trajectories intersect. The

three proposed DOA techniques enjoy similar characteristics of high performance;

however, the beamspace-based techniques take much less time in processing than

the element-space based technique does. The performance of the multiple beam

beamspace based technique is shown to be superior to that of both the element-

space and full beamspace based techniques for both fluctuating and non-fluctuating

sources. The multiple beam beamspace based method has the lowest computational

time among the three DOA techniques proposed in this thesis. Finally, by employing

Raspberry Pi board, it has been shown that it is feasible to implement in real-time

all the DOA estimation techniques proposed in this thesis.
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7.2 Scope for Further Investigations

Based on the research carried out in this thesis, there is scope for some further work:

This thesis has proposed a compressive sensing based DOA estimation tech-

nique for the DOA estimation of sources in unknown noise fields. However, the

estimation of only non-fluctuating sources has been investigated. Further investiga-

tion for fluctuating source signals can also be carried out.

All the estimation techniques presented in this thesis are for narrowband source

signals. compressive sensing based DOA estimation techniques could be developed

for wideband sources, which could be useful for ultra-wide band communication

systems.

Compressive sensing based DOA estimation techniques have been proposed

using one-dimensional sparse array. However, two-dimensional compressive sens-

ing based DOA estimation techniques, which are required for applications such as

surveillance and tracking radars, could also be developed.

Selecting an appropriate value of the regularization parameter is a very impor-

tant issue in the compressive sensing framework. A bad choice of the regularization

parameter could lead to an under- or over-regularized problem, and consequentially,

more spurious sources could appear or even one or more source signals could be

lost. In this thesis, the L-curve method has been used as a selecting tool for finding

the regularization parameter. In this regard, methods for dynamically choosing the

regularization parameter could be investigated.
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